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Abstract

An active-contour-interpolation approach is pro-

posed for semi-automatic video object generation. In

this approach, user can de�ne the contour of the same

video object on multiple frames and the computer in-

terpolates the missing contours automatically. Typical

active contour model is adapted and the contour in-

terpolation problem is decomposed into two directional

contour tracking problems and a merging problem. In

addition, a new concept of parametric neighborhood

template is introduced in order to improve the robust-

ness of contour tracking.

1 Introduction

Tracking semantically meaningful video objects

(VOs) through a video sequence is currently an in-

teresting topic. Typical approaches in literature, for

example tracking [4, 5], generally have some user in-

teractions to de�ne a VO in the �rst frame, and then

let the computer to track the VO temporally. A prob-

lem in these approaches is that during the tracking

course, no quality criteria have been proposed for the

computer to detect the loss of tracking and thus ask

for additional user input. Instead, the user has to

observe the tracking course from time to time and

o�er new input when he or she �nds necessary. In

this paper, we propose a new interpolation model for

semi-automatic segmentation. In our system, the user

can de�ne a video object by specifying its contour on

multiple frames rather than only on the �rst frame.

The computer then uses input information from mul-

tiple frames to \interpolate" the VO contour on every

frame. Compared with the pure tracking approach,

the interpolation approach is more predictable in that

the user can de�ne the VO on frames where large oc-

clusion or motion occurs and most tracking algorithms

are likely to fail. In addition, the interpolation ap-

proach makes better use of user input because the
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user input on one frame contributes to the VO def-

inition on the frames before as well as after it, while

in the tracking case, the user input on one frame only

in
uences the frames after it.

More speci�cally, our work can be expressed as fol-

lows. Given two input contours Cb and Ce of a video

object on frame b and frame e, try to �nd the object

contours Ci on frame i, i = b+1; b+ 2; � � � ; e� 1. We

call it a \contour interpolation" problem. As a com-

parison, the \contour tracking" problem is expressed

as: given one input contour Cb, try to �nd the object

contour Ci on frame i, i = b + 1; b + 2; � � � ; e. It is

natural to consider an interpolation problem as two

tracking problems, i.e., to maximize the use of input

information on two frames, we can track the input

contour from Cb to Ce also well as from Ce to Cb.

In this sense, all the available VO tracking algorithms

can be used. However, how to merge the results from

these two directional tracking and produce a �nal best

result is obviously an open problem.

To maximize the use of user input on two frames, an

active contour (snake) model [1] is used in our inter-

polation algorithm. In our work, a traditional snake

is extended in the following ways. First, we use nodes

to represent snakes and we design a \contour match-

ing" algorithm to match the node-representation of

two user input contours. Based on contour match-

ing, a contour temporal smoothness criterion is de-

�ned. Later discussion will show that this criterion is

essential for fusing the multiple tracking results. Sec-

ond, we extend the 2-dimensional snake model to 3-

dimensional model in which new energy terms that re-


ect spatial temporal constraints are included. Third,

a \parametric neighborhood template" is designed to

improve the robustness against background boundary

noises during the active-contour tracking.

The organization of this paper is as follows. First

Section 2 introduces the contour representation and

contour matching algorithm. Section 3 discusses in

detail the contour interpolation algorithm based on



contour matching. Finally in Section 4, experiments

are presented and the paper is concluded.

2 Contour Matching Algorithm

2.1 Contour Representation

In this work, a contour can be represented by a

vector array fvs;kg, (s = 0; 1; � � � ; N), where k is the

temporal location and s is the spatial index of its con-
tour pixels. The spatial location of each contour pixel

is denoted by a vector vs = (xs; ys). In addition,

for concise representation and easy matching, a con-

tour can also be represented with subsampled nodes

as fvSk(i);kg, where Sk : i 7! j, i 2 [0; 1; � � � ; Ns],

j 2 [0; 1; � � � ; N ] is the subsampling function related

to temporal position k. For example, uniform sub-

sampling function is de�ned as Sk(i) = i � unit, where
unit is the subsampling unit. In this paper, we name

fvs;kg as pixel representation and fvSk(i);kg as node

representation. Note that the node representation is

actually a �rst order polynomial approximation of the

pixel representation.

2.2 Contour Matching

The purpose of contour matching is to �nd the cor-

respondence between two contours Cb, Ce, which are

the contours of the same video object at the di�erent

temporal locations (b and e). Because in pixel repre-

sentation, the length of Cb and Ce is not necessarily

the same, we use the subsampled node representation

for contour interpolation study and a contour match-

ing algorithm is used to create correspondence be-

tween two subsampled contours. Mathematically, the

matching process can be expressed as follows. Given

two input contours: Cb = fvs;bg, Ce = fvs;eg (in

pixel representation), and a subsampled node repre-

sentation for the �rst contour fvSb(i);bg, �nd the cor-

responding node representation for the second contour

fvSe(i);eg. Here the matching of the nodes of the two

contours can be expressed with the mapping function

fm : vSb(i);b 7! vSe(i);e, i 2 [0; 1; � � � ; Ns]. Generally,

we �x the node representation of the �rst contour Cb

by uniform subsampling, and the matching process

is reduced to �nding the corresponding subsampling

function Se(i) for the second contour.

In order to �nd the mapping function fm, we de�ne
a local energy term for each matched node pair. The

�nal matching result is determined by the global min-

imization of the matching energy of the two contours.

This is similar to the matching approach in [2]. In this

work, we assume the motion of the considered video

object is nonrigid globally, but rigid locally, and the

shape of its two contours is similar locally everywhere.

Two rigid motion models, i.e., translation and aÆne,

are possible for local matching energy de�nition.

(a) (b)

Figure 1: Results of contour matching for carphone

sequence.

Translation Motion Model: If we denote the

motion vector between the two matched nodes as

MVi = vSb(i);b � vSe(i);e, then the matching energy

term is de�ned as

Ei = �jjMVi �MVi�1jj+ �(Se(i)� Se(i� 1))2;

where the �rst term is the smoothness evaluation of

the motion vectors of two neighboring nodes, the sec-

ond term is an elastic constraint on the distance of two

neighboring nodes, and �; � are two weighting factors.
AÆne Motion Model: In contrast to the trans-

lation model, the aÆne model needs three motion vec-

tors to de�ne. Here we denote the aÆne function as

Ai = AÆnei(MVi�1;MVi;MVi+1). Under this func-

tion, local contour segment fvs;bg, s 2 [Sb(i�1); Sb(i+
1)) is projected to pixel set fv0e(s)g, while its corre-

sponding contour segment in frame e is denoted as

pixel set fvSe(s);eg, s 2 [Se(i�1); Se(i+1)). Then the

matching energy term is de�ned as

Ei = �D
�
fv

0

e(s)g; fvSe(s);eg
�
+ �(Se(i)� Se(i� 1))2;

where operator D(�) is the distance measure of two

sets, which we de�ne as

D(A;B) =
h X
vi2B

min
vj2A

jjvi;vj jj+
X
vj2A

min
vi2B

jjvj ;vijj
i
=2:

With the de�nition of local matching energy terms,

the matching problem is converted to an energy min-

imization problem. This can be easily solved by DP

algorithm [3], which we do not discuss in detail here.

In Fig. (1), we show a result of contour matching un-

der translation model. Fig. (1a) is the 50th, (1b) is the

70th frame of carphone sequence. Green lines are their

contours and red lines link the matched node pairs.

3 Contour Interpolation Based on Bi-

directional Contour Tracking
3.1 Localized Energy Model

The essence of Kass' snake model [1] is to de�ne

a local energy term for each node and the shape



of the contour is determined by minimizing the to-

tal snake energy globally. When we go from a 2-

dimensional spatial snake model to a 3-dimensional

spatial/temporal model, it is possible to extend the

local energy terms from 2D to 3D as well. In this

work, we study the extended local energy terms as

intraframe energy terms and interframe energy terms

respectively. From now on, because no subsampling is-

sue will be involved, snakes are assumed to be in node

representation. The node representation fvSk(i);kg is

simpli�ed to fvi;kg whenever possible.

Intraframe Energy: As usual, we de�ne the in-

traframe energy of a snake node as

Eintra;i = �edgeEedge;i + �smoothEsmooth;i; (1)

where Eedge;i =
R S(i)
s=S(i�1)

255=(10+ jj 5 (c(vs))jj)ds;

(c(v) is the color vector of node v), and

Esmooth;i =
� 2jjvS(i�1) + vS(i+1) � 2vS(i)jj

jjvS(i�1) � vS(i+1)jj+ jjvS(i) + vS(i+1)jj

�2
:

Interframe Energy: In available papers on tem-

poral active contour tracking [4, 5], generally employed

interframe energy terms include optical 
ow, motion

smoothness, interframe color, etc. A basic problem

in their approaches is that most of their node en-

ergy de�nitions are based on the image feature only

at the node's position rather than in its neighbor-

hood. This makes the color and especially motion

information generally not accurate. Ideally, contour

nodes' neighborhood should be observed in order to

track them frame by frame. However, a problem

here is, di�erent from typical point tracking prob-

lem, contour nodes are on the boundary of a mov-

ing object, so their neighborhood is not constant. In

order to capture the consistency through the track-

ing course, we introduce the concept of parametric

neighborhood template. A parametric template T is

de�ned as a data structure including two arrays: a

vector array fdv0;dv1; � � � ;dvng and a weighting ar-

ray fw0; w1; � � � ; wng. For each contour node vi;k , a

parametric template Ti;k is de�ned and kept updated

frame by frame through the tracking course.

With parametric template Ti;k, the color of two

temporally neighboring contour nodes vi;k , vi;k�1 can

be compared as Di�c(vi;k ;vi;k�1; Ti;k) =

X
dvj2Ti;k

wj jjc(vi;k + dvj)� c(vi;k�1 + dvj)jj; (2)

where c(v) is the color vector of node v. In addition,

Weight=0

Weight=1

Figure 2: Parametric template illustration.
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Figure 3: Spatial temporal neighborhood of a contour

node for local energy de�nition. `k' is the temporal

and `i' is the spatial index.

we de�ne the motion vector at the node vs;k as

MV (vi;k ; Ti;k) =
X

dvj2Ti;k

wj �MV (p)(vi;k+dvj)=
X

dvj2Ti;k

wj ;

(3)

where MV (p)(vi;k) is the estimated motion vector at

vi;k. If we do not consider occlusion, a simple way

to determine the weights of template T is to set wj

for those neighboring pixels inside the contour as 1

and for those outside the contour as 0. This can be

illustrated in Fig. 2. For the occlusion case as was

discussed in [5], we can easily switch the weights by

setting inside weights to 0 and outside weights to 1.

In the general cases, both the size and the weights of

the parametric template can be adjusted 
exibly to

get the best results of the contour nodes tracking.

Based on parametric template, we sum up the in-

terframe energy for each contour node as follows.

1. Color similarity:

Ecolor;i;k = Di�c(vi;k ;vi�1;k; Ti;k). Here function
Di�c() is de�ned in Eq. 2.

2. Optical 
ow: Eoptical;i;k = MV (vi;k�1; Ti;k�1) �
MVi;k�1. Here the �rst term MV (vi;k�1; Ti;k�1)
is de�ned in Eq. 3 and we assume forward motion

estimation is used. The second term MVi;k�1 =

(vi;k � vi;k�1).



3. Motion smoothness: Emotion;i;k = jjMVi�1;k +

MVi+1;k � 2MVi;kjj.

4. Shape sti�ness:

Eshape;i;k = jjangle(vi�1;k�1;vi;k�1;vi+1;k�1) �
angle(vi�1;k ;vi;k;vi+1;k)jj.

5. Temporal smoothness: Etemporal;i;k = jjvi;k�1 +

vi;k+1 � 2vi;kjj.

The interframe energy Einter is then the weighted sum

of above terms.

Search Algorithm for Minimization: With the

de�nition of local energy terms, the contour interpo-

lation problem can be expressed as an energy min-

imization problem as follows. Given two contours

fvi;bg; fvi;eg; (b < e; i = 0; 1; � � � ; Ns), �nd the contour

nodes fvi;kg; (k = b + 1; � � � ; e � 1; i = 0; 1; � � � ; Ns),

that minimize the global energy
P

i;k(Einter;i;k +

Eintra;i;k).

Though it is natural to extend local energy terms

from 2D to 3D, the increasing in computation com-

plexity is an important problem. In the 2D case, each

node vi's local energy is de�ned in relation to two

neighbors, i.e., Eintra = f(vi�1;vi;vi+1), while in the

3D case, the local energy terms for each node vi;k is

de�ned in relation to eight neighbors! This change

is illustrated in Fig. 3. If each node has a search

region of n, the local searching complexity for each

node increases from n3 to n9, which makes global min-

imization algorithm diÆcult to design. Though pow-

erful algorithms such as simulated annealing should

still be able to solve this minimization problem, the

slow speed of convergence makes it inappropriate for

an interactive segmentation tool.

In this work, we try to �nd a sub-optimal solution

by converting the contour interpolation problem into

two tracking problems (a forward tracking from Cb to

Ce and a backward tracking from Ce to Cb. They are

also referred to as bi-directional tracking in this pa-

per). When converted to a tracking problem, the in-

terframe energyEinter;s;k is reduced to depending only

on two neighboring nodes in current frame k, which is

the same as intraframe energy Eintra;s. Therefore, it

is easy to design a searching algorithm with DP. After

the bi-directional tracking, another searching process

is used to �nd the optimal contours out of the previous

tracking results.

3.2 Bi-directional Tracking and Merging
of Multiple Results

Due to space limit, we do not discuss the contour

tracking algorithm in detail. Generally we employ a

DP algorithm similar to [3]. The contour in the cur-

rent frame is �rst projected with dense motion vectors

Contour created by tracking

User defined contour

Contour tracking path

DP merging path

Figure 4: Illustration of DP approach for merging the

bi-directional contour tracking.

to the next frame, and its shape is then decided by en-

ergy minimization. However, because the parametric

template is used in our algorithm, experiments show

that our tracking algorithm is more robust than the

available contour tracking algorithms such as [4].

Though the bi-directional tracking approach re-

duces the searching complexity, its limitation is that

it only makes use of user input on one frame (either

Cb or Ce). Due to error accumulation, the tracked

contour Ck always degrades when k approaching e,
if tracked from Cb to Ce, and vice versa. In this

work, we design an eÆcient DP algorithm to merge

the contours created by the two tracking processes.

The problem may be expressed as follows. Given two

set of contours fC
(1)
k g, fC

(2)
k g, (k = b; b + 1; � � � ; e),

that are created by two contour tracking processes

(one from Cb to Ce and the other from Ce to Cb),

�nd a contour set fCkg, (k = b; b + 1; � � � ; e; Ck =

C
(1)
k or Ck = C

(2)
k ) that meets certain merit criterion

as the �nal output of contour interpolation. In this

work, the merit criterion is a localized energy terms:

temporal smoothness energy ET , which is de�ned as:

ET (Ck) =
Pi=Ns

i=0 jjvi;k�1 + vi;k+1 � 2vi;kjj; where

Ns is the number of nodes in each contour. Note

here ET (Ck) is di�erent from the previously de�ned

Etemporal in that ET (Ck) is de�ned for each contour

while Etemporal is de�ned for each contour node. Be-

cause ET (Ck) is de�ned in relation to two neighbors

Ck�1 and Ck+1, it is easy to solve the minimization

problem with DP. Here Fig. 4 is used to illustrate the

DP based merging algorithm. In Fig. 4, each circle

represents a contour C
(d)
k , the DP algorithm is used

to �nd an optimal path in the temporal direction that

has the best temporal smoothness quality.

4 Experiments and Conclusion

The proposed algorithm was tested on several

MPEG-4 video sequences. First, we compared the ef-

fect of the parametric template for the active contour



Figure 5: Comparison of the e�ect of parametric tem-

plate on active contour tracking.

tracking on carphone sequence. In Fig. 5, the left col-

umn is the tracking result without and the right col-

umn is the result with the parametric template. The

�rst row is the initial contour user de�ned on frame

0, the following two rows are the tracked contours on

frames 43 and 47. Obviously the parametric template

improves the tracking robustness on complex back-

grounds. Fig. 6 depicts the merging of tracking re-

sults on mother-daughter sequence. User de�ned VO

contours are on frame 75 and 180. The left column is

the results of the backward tracking from frame 180

to frame 75, and the right column is the interpola-

tion results that merged bi-directional trackings. The

frame numbers, from top to bottom are 170, 160, 150,

130 and 90. We can see that from frame 180 to 160,

the merged results are taken from backward tracking,

while from 160 to 75, the merged results are taken

from forward tracking (which is not shown here due to

space limit). That is, the merged interpolation results

are better than tracking results on either direction.
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