Efficient Video Sequence Retrieval in Large Repositories

Hari Sundaram and Shih-Fu Chang
Dept. of Electrical Engineering, Columbia University,
New York New York 10027.
Emai | : {sundaram sf chang} @tr. col unbi a. edu

Abstract

This paper presents algorithms to deal with problems associated with indexing high-dimensional feature
vectors that characterize video data. Indexing high dimensional vectors is well known to be computationally
expensive. Our solution is to optimally split the high dimensional vector into a few low dimensional feature
vectors and querying the system for each feature vector. This involves solving an important sub-problem:
developing a model of retrieval that enables us to query the system efficiently. Once we formulate the retrieval
problem in terms of a retrieval model, we present an optimality criterion to maximize the number of results using
this model. The criterion is based on a novel idea of using the underlying probability distribution of the feature
vectors. A branch-and-prune strategy optimized per each query, is developed. This uses the set of features
derived from the optimality criterion. Our results show that the algorithm performs well, giving a speedup of a
factor of 25 with respect to a linear search while retaining the same level of Recall.

KeyWOI‘dS: Scalability, Visual Information Retrieval, Statistics, Shape and Motion Representations, Recall.

1. Introduction

In this paper, we address the problem of efficiently indexing very large video databases. In particular, we focus on developing
algorithms that efficiently index videos using low-level features extracted from the videos. There are several reasons why this
problem is important. (a) It is becoming increasingly common to find large image and video databases on the web, much of which
is unannotated. Since associated text is scarce (or subjective, when available) we would like the video descriptors to be based on
the low-level features extracted from the video. (b) Traditional feature-based methods to index images/video are unable to
efficiently scale with the size of the database due to the computational cost of indexing high-dimensional feature vectors that
characterize video data.

The effort to retrieve images using visual features (e.g. color histograms) derived from the images is of recent origin. Notable
image retrieval systems include the QBIC project [9], PhotoBook [17], VisualSEEk [20] and MARS [16]. Most of the research in
this area of Content-Based Visual Queries (CBVQ) has focussed on improving retrieval performance, primarily by developing
new image/video features to index the data. Because of the focus on the retrieval methods, most researchers tend to work with
small databases, of the order of thousands at most. On small databases, one can perform a linear search on the database, and still
obtain “real-time” results.

Scaling the search to large video databases using existing methods does not work for a very good reason. Typically, the
feature vectors detived from the video data are very high-dimensional. A Multifeature query may include many high-dimensional
features such as motion, shape, color and texture. Indexing high-dimensional vectors is an open problem in the theoretical
computer science community [1] [2] [4] [14] [19]. The cost of indexing multi-dimensional data is exponential in the dimension of
the data, and beyond dimensions in the range of 12-15 it is more efficient to do a linear search [10] [24]. Some of the techniques
used in the CBVQ community to partially overcome this problem include prefiltering techniques [12], variants on
multidimensional scaling [8] and use of the Karhunen-Loeve transform. Note that even if low-dimensional representations were
to be used for each feature, the resultant dimensionality of the combined weighted feature would still be large, ruling out a fast
search. We shall revisit these issues in Section 2.

An important aspect of the retrieval problem is determining the model to be used for retrieving the data. The retrieval model
determines how the query is processed by the system. This problem has received some attention in the image indexing community
[7] [16]. In [16], different retrieval models (Boolean, Fuzzy, Probabilistic) developed in the information retrieval community were
applied to image indexing. Most of the cutrent video/image indexing schemes use a weighted combination of features in order to
compate the query (e.g. a sketch [5], an example image/video) with the videos (images) in the database. The search is linear over
the database of images; this is in effect a linear search in a very large dimensional feature space.



Since indexing high-dimensional features is computationally expensive, we propose the following approach to indexing video
features. (a) Only use low-dimensional representations for each feature. This will allow us to search for each individual feature
efficiently. (b) Develop a retrieval model based on the Boolean AND retrieval model. This model allows us to query for each
feature independently and efficiently. Now, given a user defined query and the number of videos to retrieve, pick an optimal
subset of the features specified in the query. Then we use our algorithm to query the system using these optimal features and then
present the results to the user. In this paper, we show the following results:

*  We show that there exist some pitfalls if the AND model is chosen as the retrieval model. We then present an optimality
criterion that overcomes these problems. Given the query vectors and the N, the number of videos to retrieve, the
criterion determines the optimal feature and determines the subset of the feature that maximizes the expected number of
relevant videos. The optimality criterion is based on a novel idea of estimating conditional probability distributions for
every pair of features.

* A branch and prune strategy that uses the criterion helps pick the optimal sub-set from the query vector. Then this
subset is used to query the system and merge the results.

Our algorithms have been implemented within the VideoQ [5] framework, a sketch based video search system. VideoQ is an
object based system, indexing on object level features generated from automatic processing of videos. Each object is associated
with a feature vector having five component features: color, texture, shape, size and motion.

The remainder of the paper is organized as follows: In section 2, we present some background on the problems associated
with high-dimensional indexing. In section 3, we discuss different retrieval models and choose one that allows us to make
efficient queries. In section 4 we formulate the problem in terms of the retrieval model and present algorithms to pick an optimal
feature. In section 5 we present an algorithm for retrieval based on our optimality selection of features. In section 6, we present
our results and we follow that section with our conclusions.

2.  Scalability

The problem of efficient indexing of very high-dimensional datasets [10] [11] [19] is better known as the “curse of high-
dimensionality” [24]. Typically, all indexing algorithms perform worse than a linear search on the data. This is because algorithms
indexing high-dimensional data have a cost factor of O(29) (due to backtracking) where 4 is the dimension of the dataset. Hence,
for dimensions greater than 12-15, the indexing strategies used at present do not scale well with the size of the database. The
scaling issue is further aggravated by the use of computationally expensive metrics on the data.

If the data is static then we can perform hierarchical clustering [23] to speed up the process of retrieval. This has been
extensively used in the query by example paradigm. Dimensionality reduction techniques (such as the Karhunen-Loeve
Transforms used in QBIC) are also useful with static data. However in both techniques, the feature vectors have to be
recomputed on regular basis when videos are added or removed from the repository. Otherwise, the results of a nearest-neighbor
search on the low-dimensional space will be inaccurate. This is an issue in video collections that grow on a regular basis.

In [12], the authors discuss a technique to efficiently index high-dimensional color histograms. The authors project all the
color histograms onto a low-dimensional sub-space. After proving that the distance in the sub-space is a lower bound on the actual
histogram distance, the authors search in this sub-space. The results of the search are then checked with the actual distance metric
to remove false positives. However, since the distance in the sub-space is a lower bound on the original distance, we have false
alarms. The authors show that the false alarm rate can be reduced by increasing the dimensionality of the sub-space. The authors
obtain their best results for a sub-space of dimensionality 16. However, at this dimension, high-dimensional indexing problems
will set in.

There are some recent results [1], [14] that indicate that if we use approximate range queries, we can develop a polynomial

time algorithm (ie. polynomial in 4, the dimensionality of the dataset). The theory [14] shows that for an € neatest-neighbor
search in an Euclidean space, the following relation holds:

d(p,a) < (L+¢)d(p'0), 1)

whete d is the metric, ¢ is the quety point, p is the neatest neighbor returned by the search and p’is the true neatest neighbor.
Approximate range search techniques seem promising in multimedia retrieval problems because in very large databases the (as
also noted in [24]) need for efficient retrieval may overshadow the need for exact results. However, we have seen no actual
implementations of these approximate range search algorithms in image/video rettieval systems.

3. Retrieval Models

Every retrieval system has a retrieval model associated with it (i.e. once we have decided upon a set of features, how do we
query the system?). In this section we examine different retrieval models and pick one that enables us to execute the query



efficiently!. We now discuss three retrieval models based on metric thtesholds: AND,
OR (also known as Boolean retrieval models) and the linear constraint model which is
widely used in the CBVQ community. While we limit our discussion to the case of
retrieving two features, the extensions to multiple features will be obvious.

Assume that we wish to retrieve images from the database using two features x and
3. Each feature has a corresponding distance metric dy and dy respectively. Given a query
g, weights Wi, W, and a metric threshold d, we obtain three different result sets, one for
each model:

if A={p|d,(pa)<d/w},
B={pld,(p,g)<d/w},then
R,, = An B,
R.=A0B,
Riew ={Plwd,(pg) +w,d (pa) <3},

where, R refers to the retrieved set and the subscript refers to the model of retrieval.
The retrieved sets are shown as the shaded regions in Figures 1(a)-(c). Now each set is an
equivalence class, with members of each class satisfying a different equivalence relation.
In order to retrieve the (say) first N matches for each set, we need to order the set. This
we do by assigning a membership value to each element of the set. The elements of the
set Riintar have a natural membership value given by the following function:

o(p) =, d,(pa) +a,d (pg) OPUR e @)

The sets Rog and Ranp are unranked sets, and we could use any positive function
(e.g- Q(p)) to assign the membership value to the elements of these sets. Other examples
of membership functions include the fuzzy [15] membership functions:

f o (P) = max(d, (p,9).d,(p,9),
for(P) =min(d, (p,0),d,(p,9)),

where, foxp and for are used with the AND and the OR retrieval models
respectively. Now that all the three sets can be ordered according to their membership
values and we can perform a rank-based retrieval on each set i.e. retrieve the top N items
(this is the traditional rank query) from the set using the ordering.

In order to evaluate the retrieval effectiveness of each model, we need to use the
standard information retrieval metrics of Precision and Recall (See Figure 2; Precision =
c/(ctb) and Recall = c/(c+a); a, b, c refer to the size of the sets). Note that Precision
and Recall need require subjective testing by user evaluation. For the purposes of
retrieval, all the three models presented here are valid i.e. there is no a priori reason (in
terms of Precision and Recall) to choose one model over the other.

We use the AND model of retrieval with the membership function being given by
Equation 2. Our choice was governed by several reasons, mainly guided by
computational efficiency:

*  The use of the linear constraint model implies that we are in effect, searching in
a high-dimensional space. This is true even if we only have five or six low-
dimensional features. Using the arguments presented in Section 2, only a linear
search is feasible.

*  The linear constraint makes sense, if it were true that for a given semantic class,
the distance of an image belonging to that class with respect to each of the
features were linearly constrained. However, there is no empirical basis for
putting a linear constraint on the features.

* In the AND model, the search for each feature is independent of the other.
Hence we can execute each search in parallel. Since we ox/y use low-dimensional

! Here, the term efficiency is used in the sense of computational cost of retrieval.

d.< 8/ AND
5/ d,< 5/en
& |
N R
Vo W
((),())T 8/on  d. >

Wdi+d <O

Figure 1: Three retrieval models:
(@) AND (b) Linear constraint
(c) OR. d, and d, are the metrics for
features x and y respectively. Q:
query, o and o, are the weights.

retrieved set.

N

\

ground truth.

Figure 2: Defining Precision and
Recall




feature representations in our system, the search for each feature is computationally efficient.

*  Note that for a given 0 and s, the set retrieved using the linear constraint model is a subset of the set retrieved using
the AND model (see Figutes 1(a)-(c)) i.e Runiar [ Ranp. We can determine Runizar from Ranp by imposing the lineat
constraint on Raxp.

Note that the OR query can be done by using the AND model. Our choice of the membership function (we use Equation 2)
was ad-hoc, we could have chosen fuzzy membership functions.

4.  Optimal Feature Selection

Now that we have decided upon our retrieval model and the membership function, we shall now examine different strategies
to for retrieving features using our model. Other retrieval models make either implicit or explicit assumptions (e.g. [16]) that the
different features are independent. Instead, in our retrieval model, we exploit the correlations that exist in real-world data.

In Section 4.1 we reformulate the visual retrieval problem in terms of our model. In Section 4.2 we illustrate some of the
problems with naively using the AND retrieval model. There, we also present an optimality criterion to overcome the problem. In
Section 4.3 we discuss a method to generate some baseline statistics, while in Section 4.4 we present a technique to compute the
optimal set using the conditional probabilities on the features. In Section 4.5 we present an assumption that simplifies our
solution.

4.1 Problem Formulation

Given a query with £ features f,.f; .. f;, the desired set Dy associated with each feature is defined as follows:
D ={pld.(p.a) < (e}, ©)

whete, ¢, is the quety, dx is the corresponding metric and &(ty) is a metric threshold which is a function of the featute weight
0 (See Appendix A for the function used in this paper). The target set S under our retrieval model is then:

SEﬁDi. Q)

Now, in CBVQ systems, the user is interested in looking only at the top few return results, perhaps as few as 16. However,
each of the sets D; and the sets S can be very large. Now, we define the retrieval problem in terms of our model:

Problem Statement: Given a query Q with £ features f,,f; .. f,, and N, the number of results wanted by the user, determine
a set Sg such that:

* E@PUOS|S)>N..

Where, E() is the expectation operator and S is the target set (Equation 4). Assume
that we know the set sizes |D;| U D; and the set size |S].

Solution outline:
*  Determine optimal D, where 0 =arg max{ P(pO 9D, } This is equivalent to

choosing Dj with the smallest set size.

e Notethat SO D; i 0 SOD,.

*  Detetrmine a set Rope O Dy, such that E(pS | Repy) > No. The solution set S, is
the set Rope. The number of objects retrieved is | S, |.

Hence, in this manner we have mapped the retrieval problem into a problem of  Figure 3: The dashed sets are
determining Rept. the retrieved sets and the solid
! sets represent the desired sets.

4.2 The Null Set Issue

In this section, we show some of the problems with directly estimating the target set S using Equation 4. We shall also
present our solution to overcome these issues. Assume that we have a single object quety with two feature attributes o, 3 (e.g.
color and motion). The sets Dy and Dg (defined using Equation 3) represent the desired sets for features O, 3 respectively. Let us
quety the system for O, B and retrieve sets Rq and R%. Consider Figure 3. The set with the solid line indicates the desired set for

2 We shall use the term “retrieved set” for R;.



that feature while the set with the dashed lines represents the retrieved set. Now keeping Figure 3 consider the following schemes
to determine the target set S (Note that from Figure 3, S is non-null):
1. If we use both Ry and Rg, the estimate of the target set S is a null set. Le.

S=RNR,=¢
Here, we execute two queties, one each for 0 and 3 resulting in retrieved sets Rq and Rg. Then the target set S is the

intersection of the retrieved sets.
2. If we only use to the set Rg in order to estimate the target set S, the result is a non-null set since:

S =R,nD,
In this case, we only quety for [ resulting the retrieved set Rg. Then we use Equation 3 on Rg to filter out those that
satisfy the criteria for Dg.

3. If we only use the set Rq to estimate the target set S, the result is again a null set:

S=R,nD,=¢
In this case, we only query for O resulting the retrieved set Rq. Then we use Equation 3 on Ry to filter out those that

satisfy the criteria for Dp.
4. If we use both sets Rq and Rg but estimate S as follows:

S,=(R,nD,)0(R, nD,)
=S,
This is just the union of the results from schemes 3 and 4. However, in general, éz g é4 gs.

How do we pick the optimal scheme? The answer lies with the feature probability distribution of features O and . As is
clear from Figure 3:

P(pl:lDa |Fz/;')2 P(pDDﬁ | Ra)!

®)
ID; =D, |

Picking the feature with the larger conditional probability will maximize the likelihood that both features will be present in
the set retrieved using that feature alone. But this simply means that given features O and 3, we always pick the one with the
smaller desired set size. In Section 4.4 we show a technique to determine Rop, the optimal subset of D,

It is easy to see that the arguments presented in this section, generalize to £ features. i.e. the optimal feature to pick is always
the one with the smallest set size. This must be so since given the size of the target set |S|, the D; with the smallest set size will
have the highest conditional probability.

4.3  Generating Statistics from the Database

In order to make use of Equation 5, we need to estimate the probabilities dynamically, since the features and the metric
threshold & change with every query. Since we need to estimate the partial probabilities on the fly, we need to precompute and
store some baseline probability distributions, over the entire database of objects. We do so by finely quantizing® each feature
space that is used in the system. For example, color is quantized into 166 bins, size into 10 bins etc. (refer to [21] for more
details). Then we estimate joint statistics for every pair of features, by examining all the objects in the database. This method is
easily explained with a concrete example.

Consider the sub-problem of creating joint statistics for the features color and size. This would imply that we create a two
dimensional array of size 166x10. Now given an object in the database, we map the color and the size attributes of that object into
the appropriate bin in the 2D array and increment the count for that bin. This we do for each object in the database. Hence, at the
end of this procedute, we would be able to compute probabilities such as P(color=ted), P(size=3), P(color=red/size=3) and
P(size=3/colot=ted) etc. This procedure is repeated for each pair of features. In [21], we discuss an efficient procedute for
computing all the statistics by making a single pass through the database. There is point to be kept in mind: The statistics just

computed ate of the form P(pU |jp | é,) In otder to estimate probabilities of the form P(pO |5a, pO 61? | Iiy), we keep the

issues raised in [0] in mind and use:

P(pOD,,plD, |R)=P(p0UD, |R)P(PLUD, |R). (6)

3 This is a scalar quantization on each dimension of each feature.



This independence assumption (that 0 and (3 ate independent with respect to Y) is standard in probabilistic
retrieval. This is necessary since estimating higher order conditionals from the data is difficult due to high computational
and storage requirements™.

44  Determining D, R, and S,

Given a quety with two features 0, B we take the following steps:
1. Compute the mettic thresholds {8y, 8p} (see Appendix A).
2. To compute the optimal feature o:
*  For each feature (e.g. ), compute the quantized value. Determine the quantized desired set:

|5a ={pld,(p,a) <6,, pUa,}, where 04 is the quantized feature space. It has two important properties.

(a) The elements of |5a are mutually exclusive i.e. P((q0a,) n (qCa,)|a,,a,C |5a) =0, where q is an atbitrary
point in .

® D, O |5a . Hence 60, is an upper bound estimate of the desired set Dy . This bound is tight if the feature space

is finely quantized. For the remainder of this section, we assume D, 0D, .

e Now P(pO 60) is simply the sum of the individual probabilities of the elements of D,. ie.

+ P(OD,)=Y Pl 0D) o
where L is the number of quantized elements in Isa.
*  Hence the optimal feature is 0 =argmin{P(p Iﬁu), P(pO Iﬁ/{)}.
3. To determine the quantized optimal set éop!. Assume that O was determined to be the optimal feature.
« If|D,|< N, then R, =D,. Then S, =R_.

*  FElse, we adopt the following procedure. Note, that using our 2D statistical table (ref. Section 4.3) we know for each
x, [0 D,, the size of x;: |x]| and the number in x; that belong to S: |X [P(pPOD,|X). Then we assign a

membership value to each element x; using the function P(p[J D |X) to order the x;% Then we sort the set D, so

that x; has the highest membership value. Now define the variables My and Ny as:

i=k . .
|\/|k = U X, Wherex O Da,where k < L, the cardinality of Da. Note, My,

i=1

= D,.
i=k R R
Nk:Z|)§|P(pDD/f|)§), x UD,,where k < L. Note that Ny =

ID, |P(pOSD,).

¢ Define the index /as:

| =arg min{ N, > NO}, where N, is number desired by the uset. Then,

i Figure 4: The case of uniform
distribution of elements of S in
the desired sets. The dots in
D. and D; represent the
elements of D, n Dg.

. Ii)m:Ml.Hence SO:I%)m.and|S(,| =N

4 To compute statistics of the form P(0,3,0/Y) we would need a large four dimensional array. For the features colot, size, shape and
texture we would require 166 bins for color, 10 bins for size, 1000 bins for shape and 56 bins for texture. Hence, to compute
P(color=red, size=4,shape=785/texture=40) we would need a datastructure of size 166x10x1000x56. Cleatly, this is infeasible to
implement.



4.5 A Practical Assumption

Let us now briefly examine a practical issue with the method in the previous sub-section. In order to retrieve the set S, we
need to execute multiple queries. This point is best clarified with an example. Let D, (the optimal feature selected) have 10
elements and let R, have 5 elements. Then, to retrieve S, we need to execute 5 queries, i.e. one query to retrieve each element

of Iiom. Formally:
s =Ulpla s )aog,,

where, dg is the metric for the feature B, Ag is the quantization threshold for the feature space (. Hence, making no

assumptions on the distribution of the target set S in the sets D, and D, increases the computational cost of retrieval. It also
makes the retrieval scheme complex.

An assumption on the distribution of S simplifies the solution. Assume that the elements of the set S> are uniformly
distributed in the sets Dg and Dg (see Figure 4). Now, keeping Figure 4 in mind, we see that none of the four retrieval schemes
will yield a null set. With the uniform distribution assumption, the optimality criterion remains the same 1.e we always pick the set
with the smaller set size (Equation 5). It is easy to see that the that given the uniform distribution assumption the retrieved set size
| So| is given by:

I5.1=mint 2L D, 1 ®
IS
whete D, is the optimal feature selected. Some points need to be kept in mind about Equation 8: (a) We only query the
system if |S|#0. (b) If N, > |S|, then we can only retrieve |S| relevant elements. (c) If we use Equation 8, then the expected
relevant set size E({p € S |So})=N,. Using technique detived in the previous section, we guarantee that relevant set size is greatet
than N,. Due to the distribution assumption, S, can be any arbitrary subset of D,,. Clearly, we can retrieve the set S, with a single
query. This can be done using the |S,| nearest neighbors of f, where f is the feature corresponding to the desired set D,

5. The Branch and Prune Algorithm

In this section, we present an algorithm that retrieves videos from the database given a query with £ features. The algorithm
as presented below, assumes a single object query. This algorithm makes use of the results obtained Sections 4.1-4.5. Specifically,

we assume the AND retrieval model, and a membership function (. The membership function (refer to Section 3) in our model is

just the global distance. The membership function ((q,x) is computed as:
k=N
9@ = > @.d.(qx), ©)

where N is the number of features in the query (N £ 5 in VideoQ)), x is the weight for feature £ and d, is the metric
associated with feature £.

We present the discussion of our branch and prune algorithm by taking the concrete example of VideoQ. In VideoQ, we
have five distinct features: color, texture, shape, size and motion. Given a VideoQ query object, we take the following steps:

1. Check the number of features in the quety object. If the number of features specified is greater than three we break the
set of features into two smaller sets. In this manner, we split the input query into two sub-queries. Each sub-query is
executed independently of the other, in parallel. For example if five features were specified, they would be broken into
two sets of size two and three features respectively. This split is done for two reasons:

¢ We only have partial statistics of the form. P(0/)%. Computing conditionals such as P(Q,3,y,0/€) is not feasible due
large computational and storage requirements.

* We need to break up the features into subsets containing uncorrelated features. This is done to ensure that
Equation 6 holds. For example, color and texture are usually correlated (e.g. forests are usually green, etc.) and
hence it may be a good heuristic to place them in different sets. At the moment, our algorithm to split the features
only ensures that color and texture are placed in different sets.

> Note that P(S) = P(Dg n Dp)
¢ This is notationally equivalent to P(pOD,[D,).



2. If the number of features is greater than 3: There are two sub-queries (Figute 5(a)). Each sub-query contains a subset of
the set of features in the original query.

*  Now, use the algorithm presented in Section 4, to determine for each sub-quety, the optimal feature in the sense
defined in Section 4. The algorithm also provides us with the number to retrieve for each sub-query.

*  Use the optimal feature obtained for each sub-query, to query the system. These two queries can be executed in
parallel. The number to retrieve for each feature is given by Equation 8.

*  Now, we first take the union of the two returned sets R, and R, and then re-sort based on @.

3. If the number of features is less than 3, then there is only one query (Figure 5 (b)). We again pick the optimal feature and
query the system. The return set is re-sorted using the membership function @ (see Equation 9).

Sort on global distance

Sort on global distance

@ (b)

Figure 5: Branch strategies:(a) More than three features. Q1
and Q2 are sub-queries. f; and £ are the optimal features
picked for sub-queries Q1 and Q2. (b) Three or less features.
f; is the optimal feature picked.

For arbitrary number of features, we would have to split up the features into groups of three (i.e. each subset contains three
features). Then as before, determine the optimal feature for each sub-query and petform a search. Then, take the union of the
results of each sub-query. Again, we sort the results using the membership function @. At present, we perform a multiple object
query by querying for each object and then taking the set union the results of the query for each object. Then they are sorted
according to a membership function.

Cleatly, the procedure that we show in this section here is sub-optimal for the case of more than three features. This is (as we
have noted before) due to the problem of not having accurate estimates of higher order conditionals. Note that even for the case
£ (&£ > 3) number of features, the optimal method involves picking the feature with the smallest desired set D;. Hence, even in
that case, one of the features picked will have been the optimal feature. However, a sub-optimal subset of the feature would have
been chosen i.e. Ry due to our algorithm would be sub-optimal.

6. Experimental Results and Discussion

In section 6.1 we give a brief description of the representation schemes used in our experiment. In sections 6.1.1-2 we shall
give short descriptions of our low-dimensional reptresentations for shape and motion (details in [21]). These two feature that have
been traditionally hard to index. Then in Section 6.2 we provide experimental results for the retrieval scheme developed in
Sections 4-5.



6.1 Representations for Retrieval

The feature set that we use builds upon the set used in the VideoQ project. All these features are attributes of video objects.
We define a video object to be a contiguous set of pixels that is homogeneous (spatially as well as temporally, across frames) in
the features that we are interested in (i.e. texture, color, shape, size and motion). These regions ate automatically segmented and
tracked over the duration of the video shot [5]. The color feature used is a triple in the LUV color space. We use the first three
Tamura textures [22] for the texture feature. Size is one dimensional. Shape and motion are high-dimensional and to alleviate the
problem, we use low-dimensional (implementation details in [21]) approximations for both of these features. All the features used in
our system are low-dimensional and are hence amenable to efficient indexing schemes.

6.1.1  Shape

The shape approximations that we choose to use are widely used in the field of Geographical Information Systems (GIS) [4].
We classify the each object’s shape attribute into four types: circles, squares, rectangles, ellipses. We use a metric based on
geometric-shape difference to make this classification. Our shape approximation algorithm is independent of scale and leads to
logarithmic indexing. We use the following shape metric:

d(g,b) =|f, = f,| @, +mine, - 6,], 277-]6, - 6,)) @, +|R, - R | e (10)

Where frefers to the geometric fitting etror, 8 to the direction of the principal axis of the shape and R the aspect ratio of the
shape. The w’srefer to the different weights and the labels g and 4 refer to the query and the database shape respectively.

6.1.2 Motion

A motion trail describes the trajectory of the centroid of the video object. In VideoQ), the motion trail is simply a collection
of points in the x-y plane. We decompose all motion trails [21] into a sum of linear and quadratic segments.

X(s)=as’ +bs+c
y(s) =ds® +es+ f

This level of abstraction is intuitive and is amenable to user interaction. It is also low-dimensional and easily indexible. The
metric for motion trail comparison is a Mahalanobis distance:

d(q,b):\/i(tq —t)AT(, )" )

Wherte, t is the four-parameter feature vector for each segment’ and A is the cross-correlation matrix of the parameters; ¢ and
b refer to the query and the database trail respectively.

6.2 Evaluation Results

All our experiments took place over the video database used in our VideoQ system. The video database comprises over 2500
clips with diverse subjects such as sports, nature, travel etc. Each clip is processed giving a set of video objects associated with the
clip. These objects have been obtained using the segmentation and tracking algorithms developed for VideoQ. Each video object
has five attributes: {colot, shape, size, texture, motion}. In our system, we need to deal with 25,000 video objects.

There are two issues that are of concern when evaluating our system. Since we address the issue of scalability, the
computational cost of retrieval. And since we focus on efficient visual retrieval models, the performance of the system using
standard information retrieval techniques. Hence, we choose to evaluate our system using the following metrics:

*  System effort

*  DPrecision and Recall

In our retrieval model, the computational cost of retrieval can be decomposed into three costs: indexing costs, disk access
costs and the cost of computing the metric. In this paper, we ignore disk access costs. Since all our features are low dimensional,
the metric cost for feature comparison can be assumed to be the same across features. The indexing cost is a function of several
parameters:

1. The number of optimal features chosen, since each optimal feature must be indexed. In our implementation, this

number can be either 1 or 2 (since N £ 5, where N is number of features in the query).

2. 'The user weight for each feature.

7 We translate each segment to the origin.



3. 'The joint probability distribution. The weight and the probability distribution together determine the number of objects
to retrieve for each feature.

Since, our algorithm picks the features used to query the system dynamically, the indexing cost® is a function of several
random variables. Hence, to simplify analysis, we assume that the computational cost of retrieval is proportional to the number of
objects retrieved from the database. This is defined to be the system effort. Had we used the linear constraint model (ref. Section
3), the cost due to the combined dimensionality of all the features would have been significant. For example even with the low-
dimensional feature representations discussed in Section 6.1 the combined dimensionality of features is 18-22°. Cleatly, the
“dimensionality curse” will prevail if we attempt to use the linear constraint model to index using a structure such the R-tree or
the k-d tree. Now, in order to evaluate our retrieval model we need to answer two questions:

*  Does the optimality criteria really work? Instead of using Equation 5 to pick our feature, could we have selected any sub-
set of query features and still obtained (or bettered) the results due to our “optimal” features?

e How does our retrieval model compare against the linear constraint model? This comparison is necessaty, since most of
the current CBVQ systems use this model.

In order to answer the first question, we compatre the retrieval results due to
the optimal set of features selected by our algorithm, against results due a random
sub-set of the query features. This comparison is done using the metrics of
Precision and Recall. Since the system effort is a random variable!?, we equalize the
system effort in this comparison artificially, by holding it constant at 1000 (we
always retrieve 500 results for each branch. i.e. set |S,| =500 for each branch). This
is done to prevent the variability in the system effort from affecting our results. As
the database size is 25000, this also implies that we only retrieve about 4% of the
database. The document cut-off value (the number of results actually shown to
user), was chosen to be 16. The weights for the different features were held  Figure 6: An example query of a
constant across the experiment. high jumper.

The query used in this experiment (see Figure 6) was that of the high jumper.

There are nine high-jumper video sequences in the database (out of 2500 clips). The object shown in Figure 6 has four attributes:
color, motion, shape and size. The user also sets weights for each feature. Given the query, we use our branch and prune
algorithm to determine the optimal set of features for this quety. Since there are four features, we have two sub-queries Qi:
{colot, size} and Qo {shape, motion}. As mentioned eatlier, this split is deterministic and our splitting algorithm only ensures
that color and texture are not in the same sub-quetry. In this case, the optimal feature set chosen was {color, motion}. In order to
create queries using a random selection, we pick two features at random, from the set: {color, motion, shape, size}. Table 1 shows
the results of the experiment. In the table, the “Feature Selected” column refers to the two features chosen ( f; and f, in Figure 5
(a)) in order to retrieve the high jumper.

Our Algorithm 4/16 4/9
Color and Shape 0/16 0/9
Size and Shape 0/16 0/9
Color and Size 0/16 0/9
Size and Motion 4/16 4/9
Shape and Motion 4/16 4/9

Table 1: Precision-Recall values with constant
system effort (1000) (i.e. we examine only 4% of
the database.). The document cut-off value was 16.

The results in Table 1 make interesting reading. Choosing the incotrect feature set without the motion parameter gives very
poor results. In case of the query scenarios of {colot, shape} and {size, shape}, when the document cut-off value was increased
to 40, Precision and Recall increased to 1/40 and 1/9 tespectively. The Precision and Recall values did not change in the case of
{color, size}. The reason why the Precision-Recall values wete identical whenever motion was chosen is because motion is a very

8 Since all of our features are low-dimensional and each optimal feature is queried separately under our model, the dimensionality of
the feature does not contribute significantly to the indexing cost.

9 Dimensions for each feature: color=3, size=1, texture=3, shape=3, motion= 8-12. Total: 18-22.

10 Note, the number of objects retrieved per feature is a random vatiable.



strong characteristic of the class of high-jumpers. In the case of more than three features (Figure 5 (a)) we take the union of the
results of each sub-query. Since we sort using the membership function @ (the global distance), the results are influenced by
whether motion was selected as a feature. If motion was selected as one of the features, due to strong matches because of motion,
the objects selected using the motion feature appear at the top of the list.

Now, we applied the linear constraint model to the query. Due to the high-dimensionality of the combined feature-set we
had to perform a linear search on our database of objects, to obtain the retrieved set. Again using a document cut-off value of 16,
we obtained the same result (i.e. the same Precision-Recall values) as the optimal case due to our algorithm. Since there are 24545
objects in our database the system effort due to a linear search is 24545. This 1s to be compared against a system effort of 1000
for our retrieval model.

7. Conclusions

A novel approach to indexing high-dimensional video feature vectors is presented in this paper. Given a query and the
number of relevant videos desired (N,), the proposed scheme splits the high-dimensional query feature vector into subsets of
low-dimensional feature vectors. It determines an optimal feature for each subset using pair-wise conditional probabilities for the
features within the subset such that the expected number in the retrieved set is greater than N,. This procedure is dynamic i.e. all
the parameters used and decisions made by the algorithm change with every query.

In this paper, we develop a variant of the Boolean AND retrieval model to be used in our system. We show that our retrieval
model enables us to retrieve videos from the database efficiently. We also showed that a naive use of the AND model can yield
very poor retrieval results. We then presented an optimality criterion that maximizes the expected number of videos that satisfy
our retrieval model. This criterion depends upon our ability to compute query-time conditional probability estimates of the
features. We also presented algorithms to generate some baseline statistics on the data which are used to compute the conditional
probabilities at query time.

We also presented the branch and prune algorithm which used the optimality criterion to split the input query vector and
subsequently query the system. The retrieval model was evaluated using two performance criteria: the system effort and Precision-
Recall. The performance results show that the model developed to enable efficient querying, works well. For the case of the high-
jumper class, it yields the same results as the linear constraint model. It is important to note that this was achieved by examining
only 4% of the entire database; a considerable reduction (25 times as compared to the linear constraint case) in the computational
cost of retrieval. The evaluation results presented in this paper are still very preliminary. We plan to conduct more elaborate
evaluation of our retrieval model against the other information retrieval models.

There are many potential applications of this wotk, the most direct one being to facilitate scalable video databases. It should
be kept in mind that the retrieval model used here is not limited to indexing video data. Our retrieval model and the methods to
maximize the expected size of the tatget set could have been implemented over azy set of multimedia features. For instance, these
features could have been derived from images or audio. An interesting implementation would be to use our principles on mixed
media (for example, audio and video features) directly.

There are several system issues that have not been adequately dealt with in this work. The most important concern is the fact
that we can only directly compute conditionals of the form P(0/[). The higher order conditionals (as explained eatlier) could not
be ditectly calculated due to prohibitive system costs. Instead we estimate conditionals of the form P(a,3/Y) using the lower order
conditionals. We believe that some of these problems result due to using scalar quatization in this work. Using vector quantization
would enable more accurate higher order estimates.

Another problem that we are currently working on is the multiple object query scenario. Our algorithm, optimizes the
retrieval for each object in the query. To query for multiple objects, we simply perform a conjunction on the videos retrieved by
each object query. This is clearly sub-optimal in the sense that it does not attempt to maximize the likelihood that all objects
would be present in the returned result.

8. References

1] S. Arya, D.M. Mount Approximate Range Searching, Proc. 11t Annual ACM Symposium on Computation Geometty,
pp. 172-181, 1995.

[2] N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, The R™ Tree: An Efficient and Robust Access Method for Points and
Rectangles, Proc. ACM SIGMOD, Int. Conf. on Management of Data, pp. 322-331, 1990.

[3] S. Betchtold, C. Bohm and H.P. Kriegel The Pyramid-Technigue: Towards Breaking the Curse of Dimensionality, Int. Conf. on
Management of Data, Seattle WA, Jun. 1998.

[4] T. Brinkhoff, H.P. Kriegel, R. Seeger Comparisons of Approximations of Complex Objects Used for Approximation-based Query
Processing in Spatial Databases Systems, Proc. 9™ Int. Conf. on Data Engineering, pp. 40-49, Vienna Austria, 1993.



[5] S.F. Chang, W. Chen, J. Meng, H. Sundaram, D. Zhong VideoQ: An Automated Content Based Video Search System Using
Visual Cues, ACM Multimedia '97, Seattle, Nov 8-14. 1997.
[6] W.S. Coopet Some Inconsistencies and Misnomers in Probabilistic Information Retrieval, SIGIR '91. Proc. ACM/SIGIR Conf.
on Research and Development in Information Retrieval, pp. 57-61, 1991.
[7] R. Fagin Combining Fuzzy Information from Multiple Sonrces, Proc. ACM SIG-PODS '96 pp. 216-226, Montreal, Quebec,
Canada, Jun. 1996.
[8] C. Faloutsos and K.-1 Lin FastMap: a Fast Algorithm for Indexing, Data-Mining and Visnalization of Traditional and
Multimedia Datasets, Proc. ACM-SIGMOD, pp. 163-174, San Jose, CA, May, 1995.
[9] M. Flickner et. al. Query by Image and 1 ideo Content: The OBIC Systemn, IEEE Computer Magazine, Vol. 28, No. 9, pp.
23-32, Sep. 1995.
[10]  J.H. Friedman, J.L. Bently, R.A. Finkel An Algorithm for Finding Best Matches in Logarithmic Expected Time, ACM
Transactions on Mathematical Software, Vol. 3, No. 3, pp. 209-226, Sep. 1977.
[11] A. Guttman R-trees: A Dynamic Index Structure for Spatial Indexing, Proc. ACM SIGMOD, Int. Conf. On Management of
Data, pp. 47-54, 1984.
[12]  J. Hafner et. al. Efficient Color Histogram Indexing for Quadratic Form Distance Functions, IEEE Trans. On PAMI, Vol. 17,
No. 7, pp. 729-736, Jul. 1995.
[13]  J.M. Hellerstein Optimization Techniques For Queries with Expensive Methods, to appear, ACM Transactions on database
systems.
[14]  J.M. Klienberg Two Algorithms for Nearest-Neighbor Search in High Dimensions, Proc. 29th ACM Symposium on Theory of
Computing, 1997.
[15] S. Miyamoto Fuzzgy Sets in Information Retrieval and Cluster Analysis, Kluwer Academic Publishers, Boston MA, 1990.
[16] M. Ottega et. al. Supporting Similarity Queries in MARS, Proc. Of ACM Multimedia ‘97, pp. 403-413, Seattle,
Washington , Nov. 8-14, 1997.
[17] A. Pentland, R. Picard and S. Scatloff Photobook: Content-Based Manipulation of Image Databases, IJCV, Vol. 8, No. 3, pp.
233-254, 1996.
[18] G. Salton, M.]. McGill Introduction to Modern Information Retrieval McGraw Hill Computer Science Series, Nov. 1983.
[19] T. Siedl H.P. Kxiegl Optimal Multi-Step k-Nearest Neighbor Search, Proc. ACM SIGMOD Int. Conf. on Management of
Data, Seattle WA, Jun. 1998.
[20]  J.R. Smith, S.F. Chang, VisnalSEEk: A Fully Automated Content-Based Image Query Systers, ACM Multimedia '96 Boston,
MA, Nov. 1996.
[21] H. Sundaram S.F. Chang Effuient Algorithms for Video Retrieval, Tech Rep. Dept. of Electrical Engineeting, Nov. 1998.
[22] H. Tamura, S. Moti Textural Features Corresponding to Visual Perception, IEEE Trans. on Systems, Man, and Cybernetics,
Vol. 8, No. 6, Jun. 1978.
[23] A. Thomasian, V. Castelli, C.S. Li CSV'D: Approximate Similarity Searches in High Dimensional Spaces Using Clustering and
Singular Valne Decomposition, Proc. Of the SPIE Conf. On Multimedia Storage and Archiving Systems III, SPIE Vol.
3527, pp. 144-154, Boston MA, Nov. 1998.
[24] D.W. White and R. Jain Similarity Indexing: Algorithms and Performance, Proc. Of the SPIE Conf. On Storage and
Retrieval for Image and Video Databases IV, pp. 62-75, San Jose, CA, Feb. 1996.

Appendix

A Relating Weights to Metric Thresholds

In this section we show how the metric threshold for each feature is determined using the weight ¢ set by the user. The
feature weight represents in the view of the user, the relevance of that feature with respect to the query. We interpret a large
feature weight to imply that the feature is very discriminatory implying that we need only retrieve a small set. Hence, we use the
following equation for the mettic threshold:

1
olw)= ,
() a+bw

where, @ and & ate constants such that &(1) = d,and 6(0) = 1.0. Note that & [ [4,,1.0]. In our system, d,, has been empirically
set at 0.2. Note that a metric threshold of 1.0 implies that we shall retrieve the entire database. This must be so since (W=0) the
feature has been deemed to be non-discriminatory.




