
VII. CONCLUSION

     In this paper we presented an integrated schema for semantic
object segmentation and content-based object search based on
the region-based video object model.  We first discussed
AMOS, a generic video object segmentation system which
combines low level automatic region segmentation with  user
input for defining and tracking semantic video objects.  Our
experiments and performance evaluation have shown very
good segmentation results.  Using the region-based video
object model, an object query model which effectively com-
bines local region-level features and spatial-temporal structures
is then presented. Experiments have shown promising results
and great potential for developing  advanced video search tools
for semantic video representations such as MPEG-4.
   In the future work, we will include multiple objects tracking,
which can potentially be supported by our current algorithms. It
would also be desirable to develop a hybrid strategy where
video objects with simple motion and background can be
tracked faster with less computation.  Building upon the visual
searching tools of video objects, we will explore object level
video search and study application of the object search tools to
MPEG-4 scene descriptions (i.e., BIFS).
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ate this problem and improve searching accuracy, we
develop a novel query time region merging process (Figure
8).  For each candidate region list, the query system will
merge regions from a same video object into a large "virtual
region" if 1) they spatially connected with each other; 2) the
merged region is closer to the query region (feature dis-
tance).  When a "virtual region" is generated, it is added to
the current candidate region list.

3) Perform join (outer join) of the region lists on ObjectID to
create a candidate object list. Each candidate object in turn
contains a list of regions.  A "NULL" region is used when :

- a region list doesn’ t contains regions with the ObjectID
of a being-joined object
- a region appears (i.e. matched) more than once in a
being-joined object

4) Compute the distance between the query object and each
object in the candidate object list as follows: 

     + 

               (3)

  where  is the ith query region.  is the ith region in a

candidate object. FD(.) is the feature distance between a
region and its corresponding query region. If  is NULL,

maximum distance (i.e., 1) is assigned. (spatial),

(topological) and (temporal) are structure

features of the query object. ,  and  are

retrieved from database using indices on ObjectID,
RegionID. When there is a NULL region (due to the above
join process), the corresponding dimension of the retrieved
feature vector will have a NULL value. SD(.) is the L1-
distance and a penalty of maximum difference is assigned
to any dimension with a NULL value.

5) Sort the candidate object list according to the above
distance measure D (Eq. 3) and return the result.

C. Query Results

    A prototype system has been developed to demonstrate and
evaluate our proposed visual similarity searching method
which integrates matching of localized feature matching and
spatial-temporal structures.  We created a semantic video object
database with 104 video objects from  different types, including
people, sports, animal, flowers and transportation. About 500
salient regions and their visual features are extracted and stored
in the database.
  Our query experiments have shown encouraging results.  The
matching of structure features has been proved to be critical in
finding objects with multiple parts and special relationships
(e.g. human body). Four query examples are shown in Figure
9.  In the first example (Figure 9a), we are trying to find flow-
ers by specifying two regions with color, shape and spatial rela-
tionship.  Higher weight is put on the shape feature.  Our
experiments show  that the shape matching of the stem part
plays a key role in successfully finding flowers.  In the second
example (Figure 9b), we define a more complex query object,
which has four parts with specific spatial relationship.  While
color and shape features are important in finding similar feature
regions for each part, the matching of spatial structure elimi-
nates false candidates and brings correct objects to the top of
the return list. Figure 9c shows an example of partial matching.
Users draw a face with two eyes.  In the feature library, small
regions like eyes are usually not extracted.  Using the outer join
and partial match method, we are able to find similar faces
including those do not have extracted eye regions (results
except the first one shown in Figure 9c). Figure 9d shows an
example of trajectory matching. The retrieved objects are mov-
ing to the left-bottom direction on the screen.
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stored so that they can be quickly accessed and examined in the
similarity matching process.
   There are several different ways to compare spatial structures,
such as 2D-Strings [24] and spatial-temporal logics [25].  We
use a relatively fast method, the spatial-orientation graph, to
represents spatial relationships as edges in a weighted graph
[26].  This graph can be easily constructed by computing the
orientation of each edge between the centroids of a pair of
query regions, and stored as a n* (n-1)/2-dimension feature vec-
tor, where n is the number of query regions (Figure 7a).  As the
spatial-orientation graph cannot handle the "contain" relation-
ship, we extend it with a topological graph (Figure 7b), which
defines the contain relation between each pair of regions with
three possible values: contains(1), is-contained(-1) or not con-
taining each other(0).  Similarly, the temporal graph (Figure
7c) defines whether one region starts before(1), after(-1) or at
the same time(0) with another region. Note here for simplicity
we only define the temporal order according to the first appear-
ing time (or starting time) of each region.  By taking the ending
time, a more complicated temporal relation graph can also be
generated. These structure features are computed from ordered
region lists, and each feature vector is stored together with its
region ordering list (e.g. ABC in Figure 7).  This provides an
index for the sub-graph matching issue that will be met in the
object query process.

B. Region-Based Object Query Model

   Given a query object (composition of a set of query regions),
there are generally two searching approaches.  One is to
directly match query object against objects in the database
based on indexing techniques such as R-Tree. However, they
are usually not suitable for a large set of high-dimension fea-
tures.

    The other searching approach is to first find a matching
region list for each query region based on visual features, and
then "join" these region lists to find the best matched video
objects by combining visual and structure similarity measures.
We used this approach in our earlier work, VisualSEEK [6]. In
[27], Li and Smith further proposed a querying scheme which
divides a composite query into a sequential of representation of
sub-queries.  A fast dynamic programming method is then used
to retrieve the best matches for a composite object. However,
sequentialization of a large set of visual and structure features
is difficult.  In this paper, we use a parallel query and join
scheme which supports partial matches.
   Given a query object with N regions, the object searching pro-
cess consists of three stages. The first stage, region search, is to
find a candidate region list from the database for each query
region. The second stage, region merge, is to merge regions
from a same video object into a large "virtual region". The final
stage, join & validation, is to join the candidate region lists to
produce the object candidate list and to compute the final glo-
bal distance measure. The detailed procedure is given as fol-
lows:

1) For every query region, find a candidate region list based
on the weighted sum of distance measures of different
visual features. Only regions with distances smaller than a
threshold are added to a candidate list. Here the threshold is
a pre-set value used to empirically control the number or
percentage of objects the query system will return.  For
example, a threshold 0.3 indicates that users want to
retrieve around 30 percent of video objects in the database1.
The threshold can be set to a large value to ensure
completeness, or a small value to improve speed.

2) Sort regions in each candidate region list by their Objec-
tID’s, and perform query time region merge.  As users don’ t
know exactly which segmented regions are included in the
database, query regions may not match regions in the data-
base on some visual features, e.g., size and shape. To allevi-

1. Assume the feature vectors of the video objects in the database 
have normal distribution in feature spaces.

Figure 7. Examples of the three relationship graphs 
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tional user inputs bring very small improvement. The bird
sequence contains a small, fast-moving object.  The abrupt
shape change between successive frames causes the missing of
part of the wings in some frames.  These errors are corrected
after 2-3 more user inputs.  For the plane sequence, after the
first input, most false pixels come from a black strip at the left
frame border.  Part of the strip is merged into the plane in some
successive frames.  This error is easily corrected after 1-2 more
user inputs.
   The foreman and skater sequences have relatively large errors
at the first user input, due to complex object motion.  Missing
pixels are mainly caused by the emerging of new foreground
regions around the frame border (e.g., the left shoulder in the
foreman sequence).  These new regions connect with old object
regions only by a few pixels when they first appear and they
also abruptly change the shape of object.  Thus they are classi-
fied as background regions during the tracking process.  False
pixels are included mainly because of uncovered background
regions enclosed by the object.  In the skater sequence, frame
50 has a background region included in the object.  The back-
ground region is uncovered when the two legs move apart.  As
it is enclosed by the object and the frame border and thus not
connected to any exist background regions, the new back-
ground region is falsely classified as foreground.  The above
two types of errors can be corrected by one user input at the
frame where the error starts to happen. For the foreman and
skater sequence, the numbers of missing and false pixels drop
rapidly after the first 2 user inputs.  And after this, maximum
boundary deviations are generally within 10 pixels.
  Generally the segmentation speed depends on the object size
and the complexity of the scene.  For a typical object like akiyo
in CIF size images, it takes around 20 seconds per frame on a
SUN UltraSparc-2 workstation.  Note this includes all the com-
putation processes described in the system architecture. Also it
is based on a pure JAVA implementation of all segmentation
and tracking processes in the system without speed optimiza-
tion. Optimization may be performed to determine critical pro-
cesses and ignore non-critical processes to reduce
computations. Parallel processing can greatly improve the
speed of our system.  As one can see, the computations of three

feature maps, which  are the most computation intensive parts
of the system, can easily be done in parallel.  The main region
segmentation and tracking algorithm can also have parallel
implementation, as region merging is accomplished by examin-
ing local  minimums.
   We have been using this system to extract more than 100
video objects, and building a video object database for many
object-based video applications such as MPEG-4 compression,
content-based retrieval (which we will discussed in Section
VI), and network transmission.

VI. REGION FEATURE BASED OBJECT QUERY

   Although in the AMOS system, the underlying regions of
video objects are already created and tracked during the object
segmentation process, these regions usually have small sizes
and short durations in order to achieve accurate object bound-
aries.  Thus extra efforts (e.g., grouping or user interaction) are
required to create salient feature regions that can facilitate effi-
cient object retrieval. 
   Here we developed an extra module in the AMOS to preform
a second pass region tracking inside video objects. As the seg-
mentation is within the masks of a tracked object, this process
is relatively simple, and can be done automatically.  After the
salient region segmentation, all segmented region and their cor-
responding objects are stored as a sequence of masks for the
following feature extraction and matching process.

A. Visual and Structure Features

   Similar to those in the VideoQ system, a large set of visual
features of video objects and their underlying regions are com-
puted and stored in a visual feature library. Detailed descrip-
tions of the features can be found in [7].  A feature vector is
stored together with its corresponding ObjectID and RegionID.
These ID’s are used as index in the following object matching
and retrieval process.
    Given a set of regions of an object, the structure features can
be derived from their spatial and temporal positions and bound-
aries.  These features need to be pre-computed and properly
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Figure 6. Objective evaluation over 100 frames  (numbers in the legends  are the average region sizes)
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they are composed with the background with random noise.
For the akiyo sequence, there are no noticeable errors after only
one input at the starting frame.  For the foreman, bird and plane
sequences, three user inputs give us outputs without noticeable
errors.  The skater sequence, which has fast and complex
motion, requires 4 user inputs to remove noticeable errors.
These subjective evaluations are confirmed and further
explained in detail in the following objective evaluation experi-
ments.
   In the objective evaluation, we manually extracted semantic
objects in each frame over 100 successive frames, and consid-
ered these as the ground truth.  We then computed the average
numbers of missing pixels, false pixels and maximum boundary
deviations between the ground truth and the segmentation
results.
    Numbers of missing and false pixels are simply computed by
comparing a segmented object mask with its related ground

truth.  While there are different ways to define the boundary
deviation, we define the deviation for a missing pixel, as the
distance between this pixel and its nearest foreground pixel in
the segmented object mask; and for a false pixel, as the distance
between this pixel and its nearest foreground pixel in the
ground truth mask (Figure 5).  The maximum boundary devia-
tion is the maximum value of the deviations of all missing or
false pixels.
   The performance results are shown with different numbers of
user inputs in Figure 6. Main tracking errors are usually caused
by new or uncovered background or foreground regions.  This
is clearly reflected in Figure 6c, where the maximum devia-
tions are around 40 pixels when a large region is missed or
falsely included.  As shown in the plots, such errors are cor-
rected after 2 or 3 user inputs.  The remaining errors may be
considered an accuracy limitation of our segmentation and
tracking algorithm.  The number of false and missing pixels can
be reduced from 30 to 200 pixels depending on the object size.
The maximum deviation curves show that these missing and
false pixels are less than 5 pixels away from the ground truth.
Considering inherent errors caused by boundary blur (espe-
cially for the MPEG sequences with fast motion) and manual
segmentation, our system generates very good tracking results.
   As shown in Figure 6, the Akiyo sequence only requires one
user input to obtain good tracking result over 100 frames. Miss-
ing and false pixels are mainly around the hair, which is not
clearly separated from background by color or by edge.  Addi-
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B. Region Tracking

  Unlike existing approaches, projected regions are not used
directly as the new segmentation, but as seeds in another color
based region growing process to track existing regions. First,
non-edge pixels are walked through and labeled one by one
from left to right and top to down. As in the common labeling
process, if a pixel has the same color as that of its labeled
neighboring pixels, it is assigned the label as its neighbors.
When the color of a pixel is different from the colors of its
labeled neighboring pixels, its color is compared with all
projected regions that cover its coordinate at the current
frame.  If its color distance to the closest region is below the
given color threshold, this pixel is "tracked", and assigned the
label as well as the classification (i.e., foreground or
background) of the closest projected region.  Otherwise, a new
label is generated and assigned to the pixel.  Regions
identified by this new label are classified as "new" regions.
   The subsequent color merge, edge labeling, motion split and
small region elimination processes are similar to those in
Section III with some additional constraints.  Foreground or
background regions tracked from the previous frame are
allowed to be merged only with regions of the same class or
new regions, but merging between a foreground region and a
background region is forbidden.  New regions can be merged
with each other or merged with foreground/background
regions.  When a new region is merged with a tracked region,
the merged result inherits its label and classification from the
tracked region.

C. Region Aggregation and Object Composition

  As shown in Figure 3, region aggregation includes two
inputs: the homogeneous region and the estimated object
boundary.  The object boundary is estimated from projected
foreground regions. Foreground regions from the previous
frame are projected independently of one another and the
combination of projected regions forms the mask of the
estimated object.  The mask is refined with a morphological
closing operation (i.e. dilation followed by erosion) with a size
of several pixels in order to close tiny holes and smooth
boundaries.  To tolerate motion estimation errors, which are
common for general video sources, the resulting mask is
further dilated for the tracking buffer size, which is specified
by users at the beginning of tracking.  Generally a larger
buffer size is required for objects with fast motion or abrupt
shape change.
 The region aggregation module implements an iterative
region grouping and boundary alignment algorithm based on
the estimated object boundary as well as the edge and motion
features of the region. The algorithm is described as follows.
   For every segmented region, if the region is tagged as
background, keep it as background. If it is a foreground or
new region, we compute the intersection ratio of the region
with the object. If a foreground region is covered by the object
mask by more than certain percentage (e.g., 80%), it is kept as
foreground; otherwise, it is intersected with the object mask

and split into one foreground region and one new region. We
use a relatively lower ratio (around 80%) here to include a
foreground or new region, as the project object boundary is
not as accurate as the initial boundary given by users.
   For a new region, if it is covered by the object mask by more
than certain percentage (e.g.,80%), it is grouped into the
object as foreground; if the intersection ratio is very small
(e.g., less than 30%), it is kept as new.  Otherwise, visual
similarity (including edge and motion) between this region
and its neighbors is examined.  The region is grouped into the
object as foreground if the region is separated from
background regions by more edge pixels than foreground
regions (or this region is not connected to any background
regions), and its closest neighbor according to the motion
feature (e.g., mean motion vector) is a foreground region.
  The above aggregation and boundary alignment process is
iterated multiple times (e.g., 2 or 3) to handle possible motion
projection errors, especially for fast motion. At the end of the
last iteration, all remaining new regions are classified into
background regions.

V. SEGMENTATION EVALUATION

    The AMOS system has shown very good segmentation and
tracking results on general video sources.  As shown in Figure
4, five video sequences with different types of motion and
background are used to do subjective and objective evaluation
of our system.
   After the first user input at the starting frame, more user
inputs are applied at subsequent frames where the largest track-
ing errors occur or start to occur to refine the tracking results.
Notice that the effort users need to correct boundary errors are
much less than the initial object definition.  As we will discuss
below, major tracking errors come from uncovered background
or foreground regions, as such errors usually propagate to the
subsequent frames.  Thus, it is obvious for users to identify
such frames for correction.  Users can also at the beginning pro-
vide multiple inputs at the frames where errors are expected to
occur. This will reduce the user intervention and attendance in
the tracking process.
    Figure 4 shows object tracking results of the five testing
sequence after 3 user inputs, which gave us acceptable results
for all five sequences. For subjective evaluation, segmented
objects are superimposed onto gray background with random
noise and played in real time for users to see whether there are
observable errors.  To remove boundary jitter (i.e. high fre-
quency noise), a temporal median filtering process (with a
radius of 2 frames) is applied to the binary object masks before
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and non-edge-pixels are set to 0.  It is generated by applying the
Canny edge detection algorithm. Finally, the motion field is
generated by a hierarchical block matching algorithm [23].

C. Region Segmentation

   The segmentation algorithm is developed based on the three
feature maps: color map, edge map and motion field.
Departing from old merge-and-split methods where the edge
is applied after color-based region merge, we propose a new
method to fuse edge information directly in the color merging
process.
   First, a color-based pixel labeling process is applied to the
color map. Labeling is a process where one label is assigned
to a group of neighboring pixels with the same (or very
similar) color. To prevent assigning one label to two regions
with the same color but separated by edge pixels, only non-
edge pixels (i.e. pixels that are set to 0 in the edge mask) are
labeled in the process.  Edge pixels remains un-labeled.  This
process generates an initial group of regions (i.e. pixels with
the same label) as well as their connection graph.  Two
regions are linked as neighbors if pixels in one region has
neighboring pixels in another region.
   The color merging is an interactive spatial-constrained color
clustering process. Color distances (Eq. 1) between every two
connected regions are computed.  Two connected regions (e.g.,
i and j) are merged if the color distance between them is (1)
smaller than the given color threshold; and (2) the local mini-
mal, (i.e. it is smaller than all the other distances between these
two regions and their neighbors).  Once a new region is gener-

ated from two adjoining regions, its mean color  is computed
by taking weighted average of the mean colors of the two old

regions ( ),

                                    (2)

where c is L* , u*  or v* ; sizes of the two old regions  are

used as weights.  The region connections are also updated for
all neighbors of the two old regions.  The new region takes the
label of the larger one of the two merged regions. Then the two
old regions are dropped.
    The merging is iterated until color distances between every
two connected regions are above the color threshold.  As edge
pixels are not labeled, two regions separated by edge pixels
are not connected as neighbors.  Thus, the growth of each
region is naturally stopped at its edge pixels. Note that (1)
some missing edge pixels will not cause a false merge of two
neighboring regions provided that their colors are different;
(2) short edges inside a large homogeneous color region do
not stop the merging process, as the region connection graph
can "walk around" such internal edges. These properties
ensure that the merging process is not sensitive to noises
which usually exist in edge maps. After the color merging
process, edge pixels are simply assigned to their neighboring
regions with the smallest color distances.

    To ensure homogeneous motion, an optional motion-based
segmentation using dense optical flow is applied to the
segmented color regions to check the uniformity of the motion
distribution.  A similar clustering process is used to group
pixels inside a color region according to their motion vectors
and the given motion threshold. 

D. Region Aggregation

   The region aggregation module takes homogeneous regions
from the segmentation and the initial object boundary from the
user input.  Aggregation in the starting frame is relatively
simple, as all regions are newly generated (not tracked) and
the initial outline is usually not far from the real object
boundary.  A region is classified as foreground if more than a
certain percentage (e.g., 90%) of the region is included by the
initial object boundary.  On the other hand, if less than a
certain percentage (e.g., 30%) of a region is covered, it is
considered as background.  Regions between the low and high
thresholds are split into foreground and background regions
according to the intersection with the initial object mask.
These thresholds depend on the boundary accuracy of user
inputs.
   Finally, affine motion parameters of all regions, including
both foreground and background, are estimated by a
multivariate linear regression process over the dense optical
flow inside each region.  They are stored and will be tracked
over time in the successive frames. The reason for tracking
background regions is to improve the object boundary
accuracy. This has proven very useful, especially when the
background is complex or contains other moving objects.

IV. SEMANTIC OBJECT TRACKING

  Segmented regions from the previous frame, including both
foreground and background, are first  projected onto the
current frame using their individual affine motion models.
Projected regions keep their labels and original classifications.
Then an inter-frame segmentation process as follows is
applied to track the semantic object.

A. Generation of Feature Maps

   Generation of the three feature maps (color, edge and
motion) utilizes the same methods as we described in the
previous section.  The only difference is that in the
quantization step, the existing color palette computed at the
starting frame is directly used to quantize the current frame.
Using a consistent quantization palette enhances the color
consistency of segmented regions between successive frames,
and thus improves the performance of region tracking.  As
object tracking is limited to single video shots, in which there
is no abrupt scene change, using one color palette is generally
valid. Certainly, a new quantization palette can be
automatically generated when a large quantization error is
encountered.
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library, the system supports sketch based visual queries in
which users can define one or more query objects with various
visual features.
  Although VideoQ supports localized feature matching, it
mainly uses low-level uniform feature regions.  These regions
do not necessarily correspond to meaningful real-world objects.
While it has the advantage of being fully automatic, further
efforts have to be made to support high level semantic queries
[22].  Under the MPEG-4 framework, we have semantic objects
available in video streams, and this gives us a new opportunity
to extend the visual searching methods to high-level queries.
    Semantic video objects introduce one more description level
in the visual feature library of VideoQ.  While existing tech-
niques can be applied to similarity search of semantic video
objects, there are several new critical issues.  First, underlying
regions of a video object are tightly connected with each other,
and thus similarity matching of spatial-temporal structures
become more important and should be performed more pre-
cisely. Secondly, the problem of partial matching between
query regions and object regions stored in the feature library
need to be solved.  In the previous work, query regions can be a
subset of regions of a matched object (or video clip).  However,
a matched object has to contain matches for all query regions.
This implicitly limits the number of regions that a user can use
to define an object.  Finally, there are efficiency concerns, espe-
cially when using a rich set of temporal and spatial structure
features.  It is time-consuming to compute and match them in
query time.  They need to be pre-computed and properly
indexed for efficient query processing.
   Here we would like to address the problem of similarity
matching of video objects using localized visual features.
Based on the same object model and the segmentation frame-
work in the AMOS system, we extend our prior work, VideoQ,
to develop a new content-based search system for semantic
objects. The system contains three basic processes.   The first
step is to create salient regions suitable for object searching.
The second step extracts visual features at both object and
region levels and builds a visual feature library for segmented
video objects.  The last one is an object searching process
which effectively searches the visual feature library, combines
global and local features and examines the spatial-temporal
structures of video objects.

III. SEGMENTATION IN THE INITIAL FRAME

  The system diagram of semantic object segmentation at the
starting frame is shown in Figure 2. It consists of four major
processes as follows.

A. Object Definition and Threshold Specification

   First, the user identifies a semantic object by using tracing
interfaces (e.g., mouse).  The input is a polygon whose
vertices and edges are roughly along the desired object
boundary.
  After the object definition, users can specify a set of
parameters to start the tracking process.  These parameters

include a color merging threshold, weights on the three color
channels, a motion merging threshold, and a tracking buffer
size.  Usually users may just rely on the default values for
these parameters. Determination of these parameters will be
explained in more detail in the following sections.  These
parameters can be optimized based on the characteristic of a
given video shot and experimental results. The segmentation
results are not sensitive to slight changes of parameter values.
However, optimization may be used to reduce the computation
complexity. The system also allows a user to stop the tracking
process at any frame, modify the object boundary that is being
tracked, then restart the tracking process from the modified
frame.  

B. Generation of Feature Maps

   The three feature maps, edge map, color map and motion
field are created from the original images. The color map is
the major feature map in the following segmentation module.
We have developed a novel process to generate it.  This
process contains the following steps:  First, the original image
is converted into CIE L*u*v*  color space. The color
difference is thus given by the weighted Euclidean distance in
the three dimensional space, i.e.

       (1)

where  are weights given by users.  Our

experiments show that it generally generates better results to
put higher weights on chrominance channels (e.g., two times
higher than that of the luminance channel). The
aforementioned color threshold is chosen according to this
distance measure.
  Then the L*u*v*  image is smoothed to remove noise, as well
as tiny detail, for the purpose of region merging.  This is done
by an adaptive quantization and median filtering process. We
use a clustering-based (e.g., K-Means) method to analyze the
input image and determine an adaptive quantizor in the
L*u*v*  space. After quantization, a median filtering process
is applied on each of the L*u*v* channels to produces the
final color map.
    The edge map is a binary mask where edge pixels are set to 1
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Figure 2. Object segmentation in the starting frame 
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to semantic objects, (2) extracting accurate object boundaries
and salient indexed regions simultaneously, and (3) effective
similarity matching at multiple levels. We first review these
issues in the following subsections.  

A. Active Video Object Segmentation

  Many approaches have been developed to segment moving
objects using the motion field or optical flow. Wang and
Adelson in [10] presented an affine-clustering based
algorithm.  In [11], instead of using optical flow, Ayer and
Sawhney proposed a method to estimate motion models and
their layer support simultaneously. In [12], Meyer and
Bouthemy developed a pursuit algorithm to track an object
based on the multi-resolution estimation of the affine model
from the motion field within the object.  In general, the above
methods concentrate on segmenting moving objects and
cannot track static objects or objects with intermittent motions
(e.g., people stop and move while crossing the street).
Furthermore, due to the accuracy limitation of motion
estimation, motion segmentation may not give clear object
boundaries.
   To track non-rigid objects, deformable models have been
widely studied.  Active contour (i.e., snakes) [13] is one of the
basic energy-minimizing elastic contour models.  As snakes
require very accurate initialization (thus can handle only slow
motion) and are sensitive to textured image regions, many
improvements [14,15] have been developed.
  Recently, with the demand for object tracking in general
videos and the requirement of more accurate segmentation
boundaries, region-based methods, which combine common
image segmentation techniques with motion estimation
methods, have been reported in [1,16,17]. In [1], Dubuisson
and Jain presented an approach to combine motion
segmentation using image subtraction with static color
segmentation using the split-and-merge paradigm.  In [17], an
algorithm is developed to match edge detection and line
approximation results with motion segmentation, and to
determine the final object boundary.  In [16], Gu and Lee
proposed a semantic object tracking system using

mathematical morphology and perspective motion.
   Satisfactory results from the aforementioned region-based
work were reported for certain type of video content, e.g.,
those with rigid objects and simple motions.   However, these
techniques usually track a single contour or video object,
ignoring complex components and their associated motions
within the object.  In real-world video sources, an object
usually contains several parts with different motions
(sometimes non-rigid and with rapid changes).  One single
motion model is not adequate to track a semantic object.
Meanwhile, these techniques still use the motion field as the
main feature for tracking purposes.  Static color or gray-level
segmentation is fulfilled separately, and the fusion of the two
segmentation results is done only at the final stage using
certain heuristic rules.  Due to the noisy nature of the motion
field in real-world scenes, tracking results may also be error
prone.  As there are no constraints being applied between
motion and static segmentation [1], when the two results are
different from each other, it is hard to align them to generate
the final object mask.  Furthermore, these techniques tend to
ignore the background content during the tracking process.
This may cause problems in tracking regions near the
boundary of the object.
   To solve the above problems for general video sources, we
developed an active system (AMOS) which uses an
innovative method for combining low level automatic region
segmentation and tracking methods [18,19] with an active
method for defining and tracking video objects at a higher
level. The system contains two stages: an initial object
segmentation stage where user input at the starting frame is
used to create a semantic object with underlying homogeneous
regions; and an object tracking stage where homogeneous
regions and the object are tracked through the successive
frames.  Note that the segmentation process is applied within
individual video shots where there are no scene cuts.
Automatic scene cut detection algorithms [20] can be used to
cut a long video stream into short clips.

B. Region Feature Based Object Query

   Content-based image and video retrieval has been studied by
many researches in the recent years. Examples of systems
include QBIC, PhotoBook, VisualSEEK, MARS and VideoQ
[4,5,6,21,7].  These systems provide methods for content-based
retrieval of images and videos by using query examples and
sketches.  Color, texture, shape, motion and spatial-temporal
composition are popular visual features being used for visual
similarity match.  While QBIC, PhotoBook, VisualSEEK,
Virage and many other systems support only still image
retrieval, content-based video search has been explored in
VideoQ [7,8].
    Our previous work, VideoQ is a content-based video search-
ing system which allows users to search video clips based on a
rich set of visual features and spatio-temporal relationships.  In
this system, a fully automatic video region segmentation and
tracking process is utilized to build a rich visual feature library
including color, texture, shape, and motion.  Based on this

Figure 1. An integrated approach for video object 
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  Abstract - Object-based video data representations enable
unprecedented functionalities of content access and
manipulation. In this paper, we present an integrated approach
using region-based analysis for semantic video object
segmentation and retrieval. We first present an active system
which combines low level region segmentation with user inputs
for defining and tracking semantic video objects.  The proposed
technique is novel in using an integrated feature fusion
framework for tracking and segmentation at both region and
object levels. Experimental results and extensive performance
evaluation show excellent results compared to existing systems.
Building upon the segmentation framework, we then present a
unique region-based query system for semantic video object. The
model facilitates powerful object search, such as spatio-temporal
similarity searching at multiple levels.

   Index Terms - object segmentation, region analysis, content-
based retrieval, video object model, spatio-temporal structure

I. INTRODUCTION

  To meet the challenges of future multimedia applications, the
newly established MPEG-4 standard has proposed a new
object-based framework for efficient multimedia
representation. This representation enables unprecedented,
flexible access and manipulation functionalities of multimedia
content.  However semantic object segmentation and content-
based object searching for general sources remain as two
challenging tasks.
   Image and video object segmentation has been a challenging
task over decades.  Although much work has been done in
decomposing images into regions with uniform features
[1,2,3], we are still lacking robust techniques for segmenting
semantic video objects in general video sources;  especially
when accurate object boundaries are needed.  In this paper, we
first propose techniques for effective semantic object
segmentation and tracking in general video sequences.  We
use "semantic object" to refer to video objects corresponding
to meaningful real-world objects, in contrast with lower-level
regions, which correspond to image areas with homogeneous
features.  In the rest of the paper, we use "semantic object"
and "object" interchangeably.
  Object-based video representation also provides a natural
framework for content-based video retrieval.  Although much
research has been done in the area of content-based image
retrieval in the past few years [4,5,6], content-based search of
video objects has not been fully explored.  In our prior work
VideoQ [7], automatically extracted video regions and their
visual features are used to build a visual feature library. The

video regions and spatial-temporal features are then used in
the similarity-based retrieval of video clips. Low-level feature
similarity searching of video has been explored in other works
[8,9] as well. While in VideoQ the feature extraction is a fully
automatic process, only low-level salient feature regions are
used. Semantic objects in MPEG-4 provide new potential for
more powerful, high-level video search.  Specifically,
similarity searching of video objects at multiple levels (region
vs. object vs. scene)  introduces new important issues.
   In this paper an integrated approach is proposed to address
both video object segmentation and content-based retrieval.
In this approach, a semantic object is modeled as a set of
regions with corresponding spatial and visual features.  This
model directly links the semantic object to its underlying
feature regions.  For segmentation, the region-based method
generates more accurate object boundaries and is also more
robust in handling various real-world situations, including
complex objects, fast and/or intermittent motion, multiple
moving objects and partial occlusion.  For content-based
similarity search, underlying regions provide localized
features as well as the spatial-temporal structure of a video
object.
  We first give an overview of our integrated approach
compared with existing techniques in Section II. The object
segmentation and tracking algorithms are discussed in Section
III and IV. Extensive segmentation results and performance
evaluation are given in Section V. In Section VI, we present a
content-based searching system which addresses search and
retrieval of semantic objects. The conclusion and future work
are discussed is in Section VII.

II. APPROACH OVERVIEW

  Automatic segmentation of semantic objects is difficult
except for specific application domains.  In general video,
semantic objects may correspond to multiple regions which
may have very great spatio-temporal variations.  On the other
hand, segmentation and tracking of uniform feature regions
are considered more practical.  The rich set of features and
spatio-temporal structural information at the region level have
also been proved to be effective in video retrieval [7].
Therefore, we propose an integrated region-based approach
for video object segmentation and retrieval.  As shown in
Figure 1, the integrated region based analysis extracts the
semantic objects that are suitable for object-based coding such
as MPEG-4, and at the same time the salient features at both
the region and object levels that are very useful for content-
based query. 
    Key research issues lies in (1) linking the low-level regions
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