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ABSTRACT 
After an image is printed-and-scanned, it is usually 

filtered, rotated, scaled, cropped, contrast-and-
luminance adjusted, as well as distorted by noises. 
This paper presents models for the print-and-scan 
process, considering both pixel value distortion and 
geometric distortion. We show properties of the 
discretized, rescanned image in both the spatial and 
frequency domains, then further analyze the changes 
in the Discrete Fourier Transform (DFT) coefficients. 
Based on these properties, we show several techniques 
for extracting invariants from the original and 
rescanned image, with potential applications in image 
watermarking and authentication. Preliminary 
experiments show the validity of the proposed model 
and the robustness of the invariants.  

KEYWORDS: Printing, Scanning, Rotation, Scaling, 
Cropping, Watermarking 

1 Introduction 
Today the print-and-scan (PS) process is commonly 

used for image reproduction and distribution. It is popular 
to transform images between the electronic digital format 
and the printed format. The rescanned image may look 
similar to the original, but may have been distorted during 
the process. For some image security applications, such as 
watermarking for copyright protection, users should be 
able to detect the embedded watermark even if it is 
printed-and-scanned. In image authentication cases, the 
rescanned image may be considered as authentic, because 
it is a reproduction of the original.  

Little work has been done to understand the changes 
that digital images undergo after the PS process. Most 
work discusses individual models of printing or scanning. 
In this paper, we begin with the characteristics of the PS 
process. Then, in Section 3, we propose a model that can 
be used to analyze the distortion of a discretized digital 
image after the PS process in the spatial and frequency 
domain. Then, we will analyze the variations of DFT 
coefficients, leading to important properties for extracting 
invariants. In Section 4, we discuss several methods that 

can be used to extract invariants of the PS process. Some 
experimental results, including an analysis of the feature 
vector proposed in [5], are shown in Section 5. In Section 
6, we make a summary and discuss some future work. 

2 Properties of the print-and-scan process 
Distortion occurs in both the pixel values and the 

geometric boundary of the rescanned image. The 
distortion of pixel values is caused by (1) the luminance, 
contrast, gamma correction and chromnance variations, 
and (2) the blurring of adjacent pixels. These are typical 
effects of the printer and scanner, and while they are 
perceptible to the human eye, they affect the visual 
quality of a rescanned image.  

Distortion of the geometric boundary in the PS 
process is caused by rotation, scaling, and cropping 
(RSC). Although it does not introduce significant effects 
on the visual quality, it may introduce considerable 
changes at the signal level, especially on the DFT 
coefficients of the rescanned image.  

It should be noted that, in general image editing 
processes, geometric distortion cannot be adequately 
modeled by the well-known rotation, scaling, and 
translation (RST) effects, because of the design of today’s 
Graphic User Interface (GUI) for the scanning process. 
From Figure 1, we can see that users can arbitrarily select 
a range for the scanned image. We use “cropping” to 
describe this operation, because the rescanned images are 
cropped from an area in the preview window, including 
the printed image and background. The RST model, 
which has been widely used in pattern recognition, is 
usually used to model the geometric distortion on the 
image of an observed object. In those cases, the meaning 
of RST is based on a fixed window size, which is usually 
pre-determined by the system. However, in the PS 
process, the scanned image may cover part of the original 
picture and/or part of the background, and may have an 
arbitrarily cropped size. These changes, especially that of 
image size, will introduce significant changes of the DFT 
coefficients. Therefore, instead of RST, a RSC model is 
more appropriate to represent the PS process. We will 
discuss this in more detail in Section 3. 
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3 Modeling of the print-and-scan process 
In this section, we first propose a hypothetical model 

of the pixel value distortions. To our knowledge, there is 
no existing appropriate model in the literature to describe 
the pixel value distortions in PS process. Therefore, we 
propose the following hypothetical model based on our 
experiments and [1][2]. Although more experiments are 
needed to verify its validity, we have found this model is 
appropriate in our experiments using different printers 
and scanners, as it shows several characteristics of 
rescanned images. In Section 3.2, we analyze the 
geometric distortion in the PS process, and then focus on 
the changes of DFT coefficients for invariants extraction. 
These models can be applied to general geometric 
distortions, although a special case (the PS process) is 
considered here.  

3.1 Pixel value distortion  
We are interested in modeling the variation of 

luminance values of color pixels  before and after the PS 
process, because we only use luminance as the main place 
for embedding information (e.g. watermarking) or 
extracting features in our system. Readers who are 
interested in color variation can find extensive references 
in [3]. Our focus is on the popular consumer PS devices 
such as color inkjet printers and flatbed scanners.  

Consumer printers are based on halftoning, which 
exploits the spatial lowpass characteristics of the human 
visual system. Color halftone images utilize a large 
number of small colored dots. Varying the relative 
positions and areas of the dots produces different colors 
and luminance values. The lowpass property is usually 
shown in the spread function of the scanner.  

Discrete images are converted to continuous images 
after printing. In the continuous physical domain, assume 

we have a virtual finite support image, x, which is 
reconstructed from the original discrete image, x0, 
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where To1 and To2 are the inverse of DPI (dots per inch) 
values in the t1 and t2 directions, and T1 and T2 are the 
range of support of the image. Then, the printed image 
will be a dithered version of x with additional noises. 
Combining with scanning process, we assume the pixel 
value distortion in the PS process can be modeled as  

( )211212212112121 ,])),(*),((),(),([),(' ttsNttttxttttxKttx ⋅⋅+∗= ττ   (2) 

where x´(t1,t2) is the output discrete image, K is the 
responsivity of the detector, and s(t1,t2) is the sampling 
function. There are two components inside the bracket. 
The first term models the system point spread function,  

),(),(),( 2121211 tttttt sp τττ ∗=              (3) 

where τp(t1,t2) is the point spread function of printer, and 
τs(t1,t2) is the detector and optical point spread function of 
scanner. In the second term, τ2 is a high-pass filter, which 
is used to represent the higher noise variance near the 
edges, and N1 is a white Gaussian random noise. The 
noise power is stronger in the moving direction of the 
carriage in scanner, because the stepped motion jitter 
introduces random sub-pixel drift. This indicates that τ2 is 
not symmetric in both directions  

In Eq. (2), the responsivity function, K, satisfies this 
equation, 

)()()( 2 xNxxK Kx ++−⋅= ββα γ                 (4) 

which includes the combined AC, DC and gamma 
adjustments in the printer and scanner. N2 represents that 
power of noises is a function of pixel value. It includes 
thermal noises and dark current noises. The variance of N2 
is usually larger on dark pixels, because sensors are less 
sensitive to their low reflectivity. 

From this model, we can analyze the low-pass filtering 
properties on the Fourier coefficients and describe the 
high noise variances in the high band coefficients. Some 
tests of its validity are shown in Section 5. 

3.2 Geometric distortion  
In general, the scanning process follows a customary 

procedure. First, a user places a picture (or the printed 
original image) on the flatbed of the scanner. If the 
picture is not well placed, this step may introduce a small 
orientation, or a rotation of 90°, 180° or 270° on the 
scanned image with a small orientation1. Then, the 
scanner scans the whole flatbed to get a low-resolution 
preview of the image. After this process, the user selects a 
cropping window to decide an appropriate range of the 

 
 
Figure 1: Typical control windows of scanning processes. Users 
have the freedom to control scanning parameters, as well as can 
arbitrarily crop the scanned image. [source: Microtek ScanWizard]
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picture. Usually, it includes only a part of the original 
image, or the whole picture with additional background 
(a.k.a. zero padding). The scanner then scans the picture 
again with a higher resolution to get a scanned image. The 
size of this image is usually different from the original, 
because the resolution in the scanner and the printer may 
be different. The final scanned discrete image is obtained 
by sampling the RSC version of the printing-distorted 
image with additional scanning noise.  

Images are discretized at both ends of the PS process, 
while they are continuous in the intermediate stages of a 
printout. We should notice that images are first 

reconstructed to be continuous, then manipulated, and 
sampled again. Therefore, a continuous-domain definition 
of geometric distortions will be more appropriate. 
Examples of the images after general geometric 
distortions are shown in Figure 2. 

In this section, we propose a general model, including 
multi-stage RSC in the continuous spatial domain, and 
discuss how to simplify it. We also show the change of 
Fourier coefficients after RSC. Since DFT is usually used 
for frequency-domain analysis of discrete images, we will 
discuss the impact of RSC in the DFT domain, and then 
show how to choose an appropriate method to calculate 
DFT coefficients for invariants extraction. 

3.2.1 Continuous-domain models for geometric 
distortion and the definition of RSC 

Considering a general case of the geometric distortion 
introduced by multiple stages of rotation, scaling, and 
cropping, the distorted image can be represented as 

xG = G x                                (5) 

where G is the geometric distortion operator. For 
instance, G may equal to RRSCSRCSRSSC…, where R, 
S and C, are  the operators of rotation, scaling and 
cropping, respectively.  

We first show the individual effect of RSC. If the 
image is rotated by θ  counter-clockwisely, i.e., xR = R x, 
then  
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where X is the Fourier transform of x.  

If the original image is scaled by λ1 in the t1-axis and 
λ2 in the t2-axis, i.e., xS = S x, then 
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We define cropping as the process that crops the 
image in a selected area (which may include part of 
background) at GUI window. Cropping introduces three 
effects on the image: (1) translation of the origin point of 
the image, (2) change of the support of image , and (3)  
information loss in the discarded area. They can be 
considered as a combination of translation and masking. It 
is well known that translation introduces only phase shift 
in the frequency domain. Masking includes the second 
and the third effects. In the continuous domain, the effect 
of changing support is not evident, because Fourier 
transform uses an infinite support, and ignores it. 
However, in the discrete domain, changing the support of 
image will change the image size. This results in 
significant effects on DFT coefficients. We will further 
discuss it in Section 3.2.2.  

 

1 In our tests, the small orientation is not common, because 
pictures or documents are usually placed in the corner of 
the flatbed. Even if they are not well placed, the rotation 
angle is generally within a small angle, e.g., ±3�. 

(a)  

(c) (d) 

(b) 

Figure 2: General geometric distortion of images: (a) original, 
(b) rotation and cropping with background and the whole image, 
(c) rotation and cropping with background and part of the image, 
(d) rotation and cropping with part of the image, (e) scaling, (f) 
cropping without background, (g) cropping with background, 
(h) scaling and cropping, and (i) rotation, scaling, and cropping. 

(e) 

(g) 

(f) 

(h) 

(i) 
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Changes of Fourier coefficients introduced by 
information loss can be considered in two ways. First, the 
cropped image could be a multiplication of the original 
image with a masking window, which introduces blurring 
(with the sinc function) in the Fourier domain. The other 
method is to consider the cropped image, Cx , as a 

subtraction of the discarded area, 
Cx , from the original 

image, x. Then, this equation,  

|),(),(||),(| 212121 ffXffXffX CC −=         (8) 

represents the cropping effect in the continuous Fourier 
domain. We find that the second method is a better way to 
describe the cropping effect. 

From Eqs. (6)~(8), we can see that rotation and/or 
scaling in the spatial domain results in rotation and/or 
scaling in the frequency domain, respectively, while 
cropping introduces phase shift and/or information loss. 
These are shown in Table 1. 

Geometric distortion of RSC can also be represented 
by using coordinate mapping and masking. For instance, a 
geometric distortion of single rotation, scaling and 
cropping, sequentially, can be described by  
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M is a masking function and x´ is the image after 
coordinate mapping. Eqs. (9) and (10) show that RSC can 
be considered as RST + masking. 

How to simplify Eq.(5)? One solution is to reduce 
multiple RSC operations to a combination of single 
rotation, scaling, and cropping. First, adjacent similar 
operations, e.g., RRR, can be represented by a single 
operation. Second, from Eq. (9), we can easily verify that 
RC, SC are all inter-changeable. In other words, a 
rotation operation after cropping can be substituted by a 
(different) cropping operation after rotation. We notice 
that RS is not inter-changeable unless the scaling factors 
in t1 and t2 dimensions are the same. Therefore, only in 
the case that images are scaled with the same aspect ratio 

can Eq. (5) be simplified. Or, Eq.(5) can also be 
simplified, if rotation is not allowed.  

If we only focus on a simple print-and-scan process, 
then the geometric distortion of the image is a special case 
of Eq. (5). The manipulations are in the order of rotation, 
scaling, and cropping. We notice that, without deliberate 
adjustment, the scaling factor in this process is usually the 
same in both directions. Therefore, the geometric 
distortion of PS process in the continuous domain can be 
described by Eq. (9) with the λ1 = λ2. In the continuous 
Fourier domain, the changes are a combination of Eqs. 
(6)~(8). Unlike scaling, cropping usually results in a 
different image size that does not keep the aspect ratio of 
the original. 

3.2.2  Discrete-domain models for geometric distortion 
We first define the geometric distortions in the 

discrete domain. The discretized image is sampled from 
distorted continuous image, xG. As we have mentioned, 
geometric distortion is better described in the continuous 
domain. Therefore, when we refer to a rotated discrete 
image, that means the image is converted to the 
continuous domain, then rotated, and sampled again using 
the original sampling rate. In practice, discrete images 
may not be really converted to the continuous domain, but 
it is possible to use interpolation to approximate this 
operation. The same definition applies to scaling and 
cropping. It should be noted that, because using a fixed 
sampling rate on the scaled continuous image is the same 
as using a different sampling rate on the original image, 
“change of sampling rate” and “scaling” indicate the same 
operation in the discrete-domain models. 

 It is well known that, in practical implementation, 
DFT coefficients can be obtained by using radix-2 FFT 
with zero padding. Some other fast methods of calculating 

 Operations in the continuous image 
domain 

 Scaling  Cropping Rotation 
Change of 
Fourier 
coefficients  

Scaling Phase shift + 
(Information 
loss)  

Rotation 

Table 1: Change of Fourier coefficients after operations in 
the continuous spatial domain.  

(a) 

(c) (d) 

(b) 

Figure 3: Four common methods to calculate DFT coefficients. 
The length and width of DFT window are: (a) the image size, 
(b) a fixed large rectangle, (c) the smallest rectangle with radix-
2 width and height, (d) the smallest square including the whole 
image. 
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DFT without using radix-2 FFT are also available. For 
example, Matlab calculates DFT coefficients by using the 
original size without zero padding. One of the two 
methods is usually used for calculating 2-D DFT of the 
sampled image. They are shown in Figures 3(a) and 3(c). 
Figures 3(b) and 3(d) show some alternatives mentioned 
in the literature. All of these methods can be used to 
obtain DFT coefficients. However, different calculation 
methods introduce different responses to the coefficients 
after geometric distortion. Unfortunately, this 
phenomenon is usually overlooked. In the following 
paragraphs, we will show some general properties of DFT 
coefficients, and then analyze them.  

••  General properties of DFT coefficients 
We first show the relationships between continuous 

Fourier coefficients and DFT. Once a continuous image is 
discretized, its Fourier coefficients become periodic (and 
are continuous). They are called the Discrete-Time 
Fourier Transform (DTFT) coefficients. For images, 
because their support is finite, we can periodically repeat 
it in the spatial domain. This will discretizes DTFT 
coefficients, and gets DFT coefficients. In other words, 
DFT coefficients are sampled from the Fourier spectrum 
of the repeated discrete image (see Figure 4). 
Alternatively, if we first consider the periodicity of an 
image and then consider its discrete property, DFT 
coefficients will be the same as Fourier Series (FS) 
coefficients, with additional noise introduced by aliasing 
effect.  

Figure 5 shows how DFT coefficients change with 
different spatial sampling rate and different DFT size. 
Figure 5(a) is a continuous 1D signal and its 
corresponding Fourier coefficients. This signal is then 
discretized. The DFT coefficients (DFT window size T0) 
of the discretized signal are the samples in the frequency 
domain. Figure 5(b) shows that the frequency sampling 
interval (f0=1/T0) is determined by the repetition period 
(T0), i.e., the size of DFT. It is obvious that DFT size 
plays an important role in the final coefficients. For 
example, consider the case when the DFT size keeps a 
fixed ratio to the signal/image size. Then, in Figure 5(c), 
if the signal is up sampled (or scaled) by 2, we can see 
that the sampling position of the DFT coefficients in 
Figure 5(b) and 5(c) are the same, with only difference in 
the aliasing effect. This is different from the continuous 
case, where scaling in the continuous domain results in 
scaling in the continuous Fourier domain. Figure 5(d) 

shows the effect of zero padding. The more we pad zeroes 
outside the image, the smaller the sampling interval in the 
frequency domain will be. Using these properties, we can 
model the change of DFT coefficients, which are 
calculated from the four cases in Figure 3, after geometric 
distortion.  

Case I: DFT size equals the image size 
In the first case, if the image is scaled, then the FS 

coefficients of the repeated original continuous image, 
X
~ , and the scaled image,

SX
~ , should be the same at the 

same indices. That is, 
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where TS1, TS2 are the sizes of the scaled image, and T1, T2 
are sizes of the original image. Adding the concern of 
discretization in the spatial domain, we can get the DFT 
coefficients in the scaled case, 

SX̂  as 

samplingS NnnXnnX += ],[ˆ],[ˆ
2121

                 (12) 

where X̂  is the DFT of original image. Eq. (12) indicates 
that, after scaling, the DFT coefficients at each indices are 
still the same as the original with only (sampling) aliasing 
noises. We can see this property from Figure 5(c). It 
should be noted that XX S

ˆˆ ⊂  or XX S
ˆˆ ⊃ , because the 

numbers of sampling points are difference in these two 
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Figure 5: The relationship of DFT coefficients and Fourier 
coefficients: (a) the original continuous signal, (b) the 
discretized signal (c) the up -sampled signal (or enlarged signal 
in a 2-D image), and (d) the zero-padded signal. 

T 0 T S 

T B 

f0 fS 

2T 0 

T S/2 f0 

fB 

f0/2 

2fS

fS T S 

T 0 

FT Sampling DFT  
coefficients

Figure 4: DFT coefficients are obtained from the repeated image. 



International Symposium on Multimedia Information Processing (ISMIP 99), Taipei, Taiwan, Dec. 1999 

images.  In Eq. (12), the power of sampling noises is 
larger, if the image is down-sampled.  

In this case, the size of the cropped image will be the 
DFT size. If we assume this size to be α1T1 x α2T2, then 
the DFT coefficients after scaling and cropping are, 

|],[ˆ],[ˆ||],[ˆ| 2121 2
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In Eq. (13), if the cropped area include the entire original 
image, i.e., α1, α2 >= 1, then the effect of the discarded 
area can be ignored. If the cropping ratios are too small, 
then the power loss in the discarded area may not be just 
ignored as noises. The reliable minimum thresholds that 
can be considered as noises depend on the system design 
and specific images. In Eq. (14), strictly speaking, there is 

no definition in X̂  at the non-integer positions. But, since 
X̂  are samples of X, we can set 
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Fourier coefficients. In practical applications, these values 
are generally obtained from interpolation.  

In cases where DFT size equals image size, rotation in 
the spatial domain results in the same rotation in the 
frequency domain.  

Several properties of the change of DFT coefficients 
after geometric distortions are listed in Table 2. In the 
other three cases, these properties can be readily verified 
by similar methods in the first case. Thus, we will only 
discuss them later. 

Case II: DFT size is a fixed large rectangle  
When calculating DFT, if the number of DCT 

coefficients is fixed, then the properties of RSC 
operations are the same in the DFT domain and the 
continuous Fourier domain. We can see it by comparing 
Table I and Table II. In this case, previous discussions of 
the continuous cases are all valid in the DFT domain. 
However, this method is not practical because it requires a 
very large fixed-size DFT window for all images.  

In cases where DFT size is a fixed large rectangle, Eq. 
(13) and (14) are still applicable, but α1 and α2 should be 
replaced by λ1 and λ2. 

Case III: DFT size is the smallest rectangle with radix-
2 width and height 

The third case in Figure 3(c) is widely used, but it 
introduces an unpredictable scaling effect, if image sizes 
change across the boundary of two radix-2 values, (e.g., 
sizes changed from 127x127 to 129x129). This 
unpredictable property makes the invariant extraction 
process more difficult in practical applications. In this 

case, α1 and α2 in Eq. (13) and (14) should be replaced by 
other more complicated values that are functions of image 
sizes, scaling factors, and cropping factors. 

Case IV: DFT size is the smallest square including the 
whole image 

 In this case, since cropping and scaling may also 
introduce unpredictable scaling effects in the DFT 
coefficients, similar problems occur as in Case III. 

•• Rotation 
The DFT coefficients of the rotated image have two 

important properties: the ‘cross’ effect and the Cartesian 
sampling points. In Figure 6, we can see that the spectrum 
of the original image holds a strong cross, which is caused 
by the discontinuity of pixel values after the image is 
repeated as in Figure 4. After rotation, if the image 
includes the whole original and additional background, 
then this ‘cross’ will also rotate with the image. However, 
if the rotated image is cropped as in Figure 6, then this 
cross will not be rotated, while other coefficients are 
rotated. In other words, the shape of the support of image 
decides the angle of ‘cross’. We found that this 
phenomenon becomes less noticeable, if images are 
subtracted by their mean values before calculating DFT 
coefficients. Observing from Figure 5(b) and 5(d), we can 
see the spectrum of a cropping mask The larger the 
distance of repetition period and the support of mask, the 
larger the magnitudes of the sidelobe pulses would be. 
Since these pulses convolve with all the DFT coefficients 
in the frequency domain, large DFT coefficients domain 
the values along the angle of the mask. In 
implementation, we have to notice this effect, and in 

 Operations in the discrete image 
domain 

DFT Size Scaling  Cropping Rotation 
Case I Almost no 

effect* 
Scaling + 
Phase shift + 
(Information 
loss)  

Rotation 

Case II  Scaling  Phase shift + 
(Information 
loss)  

Rotation 

Case III Scaling Phase shift + 
(Information 
loss) + 
(Scaling) 

Rotation 

Case IV Scaling in one 
dimension and 
no effect* in 
the other 
dimension 

Scaling + 
Phase shift + 
(Information 
loss) 

Rotation 

*: No changes on sampling positions but may introduce different 
aliasing effect. See Eq. (12). 

Table 2: Change of DFT coefficients after operations in the 
discrete spatial domain.  
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acknowledge that some DFT values may be affected near 
the angle of mask. 

DFT coefficients of a discrete rotated image are 
sampled from the Cartesian grid points of the rotated 
original continuous spectrum. Therefore, they are not the 
rotated original DFT coefficients. Two methods can be 
used to solve this problem in practical cases. The first is 
to calculate DTFT coefficients at the rotated grid point 
positions. They are exactly the same sampling points as in 
the original. However, these calculations are time-
consuming. The other method is to interpolate from the 
DFT coefficients. This method can take advantage of 
FFT, and can get reasonable results in experiments. To 
improve the accuracy, zero-padding may be applied to the 
image to conduct interpolation from denser frequency 
samples. In implementation, we chose to interpolate 
coefficients from the magnitudes of DFT coefficients, 
because phase shifting (introduced by translation) could 
have significantly changed the complex coefficients.  

4 Extracting invariants in the print-and-scan 
process 

••  Using scaled images for the DFT-domain analysis  
Using DFT as a frequency analysis tool, we can 

manipulate images a priori to make their DFT 
coefficients more predictable after geometric distortions. 
Here are two examples. We scale images uniformly or 
non-uniformly to a standard size (e.g., 256x256), and then 
apply radix-2 FFT. (In the uniform scaling cases, we may 
need to pad zeros outside the scaled image.) From Eq. 
(12), we know that scaling introduces almost no effect on 
the DFT coefficients, if images are not extensively down-
sampled.  

As we discussed in Section 3.2.1, uniform scaling can 
be combined with the original single RSC in the PS 
process, and it still results in single RSC. Therefore, if 
both original and distorted images are uniformly scaled to 
a fixed size before calculating DFT, their DFT 
coefficients should demonstrate the same properties 

shown in the continuous Fourier domain. Therefore, we 
can conclude that the DFT coefficients obtained by this 
method only suffer single rotation, scaling, phase shift, 
and noises in the PS process. (Here, scaling and phase 
shifting in the DFT domain are introduced by cropping in 
the spatial domain, and noises are introduced by scaling 
and cropping in the spatial domain.)  

 An alternative method is to non-uniformly scale 
images to a standard size before calculating DFT. In some 
applications other than the PS process, such as operations 
in general image editing software, images may be cropped 
and scaled with an arbitrary aspect ratio but may not be 
rotated. This method can be applied to these applications. 
Examples can be found in [4]. 

••  Using log-polar or log-log map of DFT coefficients to 
extract invariants 

It is well known that the log-polar map of Fourier 
magnitudes (a.k.a. the Fourier-Mellin Transform) 
possesses simple shifting properties, if images are rotated, 
translated and uniformly scaled. That is  

|),log(log||),(log| RRST rXrX θθλθ ++=         (15) 

where every coordinate point (f1,  f2) is represented by 
(r⋅cosθ, r ⋅sinθ). Eq.(15) can be easily verified from Eq.(6) 
and (7). As we know, the DFT coefficients of a uniformly 
scaled image have similar properties as in the continuous 
Fourier coefficients. Therefore, Eq. (15) will be satisfied 
in the discrete DFT domain. We can use interpolation to 
obtain the coefficients at log-polar coordinate points. 
Examples of the log-polar maps of Figures 6(a) and 6(b) 
are shown in Figure 7. 

Since the log-polar map of the rescanned image is a 
translated version of the original (with noises), it is 
natural to expect that the 2D DFT magnitudes of this map 
should be invariant. Therefore, any function of them is 
expected to be invariant, and served as a feature vector. 
However, in practical cases, the noises introduced by 
scanning and cropping are too large to ignore. Also, in the 
discrete image cases, the invariant-magnitude property of 
Eq.(15) is valid only if images are cyclically shifted 
(because DFT is calculated from the repeated image, see 
Figure 4). This cyclic shift only happens at the axis of θ, 
but not at the axis of log r. Therefore, DFT magnitudes of 
this map usually do not possess a sufficient invariance.  

Figure 7: Log-polar map of DFT coefficients. RSC introduces 
simple shift on this map. 
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Figure 6: The spectrum of rotated-zero-padded image and 
rotated-cropped image 

(a) (b) (c) 



International Symposium on Multimedia Information Processing (ISMIP 99), Taipei, Taiwan, Dec. 1999 

An alternative method for generating feature vector 
has been developed in [5], and is summarized as follows. 
The basic idea is to project all log-polar coefficients along 
each angle, so that we can obtain a 1D signal that is 
invariant in the PS process except the cyclic shift 
introduced by rotation. The feature extraction process is 
shown in Figure 8. Images are first scaled to a standard 
size (e.g., 256x256), then zero-padded to double the size 
(e.g., 512x512). We can get the magnitudes of log-polar 
coefficients (a.k.a. Fourier-Mellin coefficients: Fm) from 
DFT coefficients. The purpose of these steps is to get 
more accurate |Fm|. The next step is to sum up the log 
values of |Fm | along each angle from rl t o  ru, which 
includes mid-band coefficients. Log values of |Fm| are 
taken so that the summation will not be dominated by 
principal values, and the utilization of mid-band 
coefficients is for watermarking. This signal is then 
divided to two parts, and each value is summed up with 
the value at its orthogonal direction. There are two 
reasons. First, the resulted signal will be invariant if the 
rescanned image is rotated by 90°, 180°, or 270°. Second, 
its distribution will be more like white Gaussian, which is 
important to embedding watermark. The final feature 
vector is the AC component of this signal, which excludes 
the coefficients near the angle of the axes. This feature 
vector is very robust. We show some experimental results 
in Section 5. As mentioned above, rotation introduces 
cyclic shift to this feature vector. Therefore, in practical 
PS process, tests should base on shifting the original 
feature vector within a range, (e.g. ± 5°).  

In addition to the method in [5], some other methods 
may be applied to extract invariants. The 1D DFT 
magnitude of the previous feature vector is an example, 
which is rotation invariant but less robust. Another 
example is to use a similar step, but sum up values along 
each r or log r. The resulted feature vector will be 
invariant to non-uniform scaling, rotation, and cropping to 
the scaled size. As we mentioned, in some cases, non-
uniformly scaling and cropping is a more demanding 
process. We can use the log-log map instead of the log-
polar map, because it only suffers simple shifting 
properties after general scaling and cropping [4].  

5 Experiments 

• Pixel value Distortion 
We tested our models using the EPSON Stylus EX 

Inkjet printer and the HP Scanjet 4C scanner, both 
common commercial products. Five different images are 
tested, and they showed similar results. Here is an 
example. A color image of 384x256 was printed on the 
inkjet paper, with the physical size of 5.32”x3.54”. Then 
it was scanned with 75 dpi [size: 402x266]. To isolate the 
inference of pixel value distortion, we crop, scale, and 
estimate its sub-pixel translation to register this image to 
the original. Experimental results are shown in Figures 

9(c)~(e). We can see that the noises in the rescanned 
image are not like additive Gaussian noises. Instead, they 
depend on pixel values and the spatial distribution of 
pixels. In Figure 9(c), we show the mapping of the pixel 
values from the original image and the registered 
rescanned image. We can see that Eq. (4) can suitably 
model the distribution of mapping function. We use 
optimum estimation methods to estimate (α, γ, βx, βK), 
which are (8.3, 0.6, 35, 20). The MSE of estimation noise 
is 73.58. At Figure 9(d), we show the difference between 
the original pixels and the gamma-corrected pixel values 
of the rescanned image. We can see that noises are larger 
in the edges and the dark areas. The former satisfies N1 in 
Eq.(2), and the latter shows N2 in Eq.(4). In Figure 9(e), 
we show the difference of the frequency spectrum of 
original image and gamma-corrected image. We can 
clearly see the lowpass filtering and high frequency noises 
in the spectrum.  

The above experiment shows the effectiveness of our 
model of Eq.(2)~(4). In the practical applications, 
however, if the original image is not available for 
registration, then we can not estimate the gamma 
corrected model. In that case, we can use a linear model, 
i.e., γ=1, in Eq.(4). In Figure 9(c), we can see the result of 
a linear model, which uses linear regression. The MSE of 
this model is 124.08. We can see that noises are larger 
when pixels are very bright or very dark. Noise 
distribution in the spatial domain is similar to Figure 9(d), 
but with larger variances in the bright areas Distribution 
of noises in the frequency domain is similar to Figure 
9(e).  

Calculate the magnitudes of Fourier-
Mellin coefficients, |Fm|, from DFT 

magnitudes 

Summation of the log of the Fourier-
Mellin magnitudes along each angle 
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Combine the values in orthogonal directions
g1(θ) = g0(θ) + g0(θ+90°) 

Subtract g(θ) by its global mean  
g(θ) = g1(θ) – )(1 θg  

The Feature Vector 
fv = g(θ) , θ =θl~ θu 

Figure 8: Extract invariants from log-polar map of DCT coefficients.

Image is scaled to a standard size, and 
zero-padded to double its size 
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We also tested our models by scanning a photo 10 
times, and comparing differences. The noise distribution 
satisfied N1 in Eq. (2) of our model. Furthermore, we 
tested some of the cheapest consumer inkjet printers and 
scanners (which cannot print or scan images higher than 
300 dpi), and found their quality is so bad that individual 
color halftone dots look very distinct in the rescanned 
image. In these cases, the rescanned images have to be 
further blurred by users to obtain merely acceptable 
images. Our hypothetical models are found sustainable 
with a lowpass filter of very low cutoff frequency. 

• Geometric Distortion 
We use the famous Lenna image [512x512] as an 

example to show the properties of the described feature 
vector. The experimental results are shown in Figure 10. 
Correlation coefficients, ρ, of the feature vector extracted 
from the original image and the distorted image are used 
to measure the invariance. In our experience, if ρ>0.6, 
then the extracted feature vector will be invariant enough 
to be applied to public watermarking. It should be noted 
that no information from the original image is needed for 
the feature vectors of rescanned image. In these 
experiments, (rl, ru, θl, θu) = (34, 100, 8°, 81°). 

In Fig. 10(a), we show that the extracted feature vector 
is very robust to scaling. Testing is based on different 
scaling factors, λ, from 0.1 to 2.0. We found that ρ>0.98 

for all λ>0.25. In other words, the feature vector extracted 
from a scaled image which is larger than 128x128 is 
almost the same as the original. Only if λ<0.12, i.e., 0.014 
of the original area, then the correlation coefficient, ρ, 
becomes smaller than 0.6. 

In Fig. 10(b), we test its robustness against JPEG 
compression. The testing results are so good that ρ>0.988 
for all quality factors >30, and ρ>0.947 for all quality 
factors >10.  

In Fig. 10(c), the cropped area only includes part of 
the original and no background (a.k.a. strict cropping). 
We tested three ways: uniform, non-uniform , and one-side 
cropping. Uniform cropping  means that the cropping 
ratios at both axes are the same. We choose cropping 
factors α1=α2=0.6~1, and show the result by the ratio of 
cropped area, i.e., α1×α2. Non-uniform cropping uses 
different cropping ratios at axes. Their cropping factors 
are randomly chosen between 0.6~1. The one-side 
cropping method sets α2=1, and α1 from 0.6~1. These 
methods result in different image shapes, which affect the 
feature extraction process. For instance, the largest size, 
i.e. , max(width, height), of the distorted image after one-
side cropping remains the same as the original. Because 
images are uniformly scaled to a standard size (256x256) 
in the feature extraction process, the distorted image will 
be a subset of the original image. Therefore, only 
information loss results in the change of DFT coefficients. 
We can see that information loss is still acceptable if the 
ratio of cropped area > 0.6. The other two cases introduce 
scaling in the DFT coefficients, in addition to the 
information loss. We see that their correlation coefficients 
are smaller. But, no matter which method is used, a ratio 
of cropping area > 0.6 is usually acceptable.  

In Figure 10(d), we show the test results of general 
cropping including background. We can see that ρ<0.6 if 
the ratio of cropped area > 2.5. Distortions come from the 
scaling of DFT coefficients in the extraction process. 
Although it only introduces shifting in the log-polar map 
of the DFT coefficients, the loss of coefficients shifted 
outside the calculated range is too large to ignore. 
Experimental results are not good in this case. However, 
this kind of cropping is not common, and we can always 
crop the image again to obtain a better feature vector. 

Figure 10(e) shows the experimental results of 
rotation. Images are rotated within ± 3°, and then cropped 
to the original size. Because the extracted feature vector 
suffers cyclic shift, tests are based on the largest 
ρ calculated by shifting the original feature vector in a 
range of ± 5°. All ρ values are all acceptable in these 
cases. To compare the extracted feature vector, we show 
the results of another method that uses the DFT 
magnitudes of the feature vector. This  method does not 

(a) (b) 

(c) 

(d) (e) 

Figure 9: Pixel value distortion of rescanned image. (a) original 
image [384x256], (b) rescanned image [402x266], (c) 
corresponding pixel mapping and modeling, (d) noise in the spatial 
domain after gamma correction, (e) noise in the frequency domain 
after gamma correction. 
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require any cyclic test of the feature vector, but it is not as 
robust as the previous method.  

••  Geometric distortion + pixel value distortion 
Figure 10(f) shows that the proposed feature vector is 

robust to a combined attack  of rotation, scaling, 
cropping, JPEG, brightness and contrast adjustments . In 
this test, the image is rotated within ± 3°, strictly cropped 
with the largest area that does not cover background, 
scaled with λ1=λ2=0.4, and then either JPEG compressed 
(qf=75) or brightness/contrast adjusted (α=1.2, γ=1, βx=0, 
βK=10). Compared to Figure 10 (e), we can see that 
distortion of feature vectors are mostly introduced by 
rotation and cropping, while the effects of scaling, JPEG 
compression, brightness/contrast adjustments are 
negligible. 

In Figure 10(g), we show the result of a combination 
of RSC and our pixel value distortion model. The 
parameters estimated in Figure 9 are used in these 
experiments. We use an additive Gaussian noise (σ=8.5) 
in these tests. Because it is distributed in all bands, it will 
be worse than the real situations in which noises only 
affect uncalculated high-band. We observed that noises 
have larger effect in downsized images. Comparing to 
Figure 10(f), we can see that their results are similar. 

We tested the practical rescanned images in Figures 
9(a) and (b), and obtained their correlation 
coefficient, ρ=0.915. Applying the proposed feature 
vectors for watermarking, we have tested a large database 
of 20,000 color images from the Corel image library. 
Their results have proved the invariant properties of the 
feature vector [5]. Also, a very low false positive rate in 
those experiments helped prove that the feature vectors 
from different images are mutually uncorrelated. 
6 Summary 

Our contribution in this paper is the new, extensive 
work on modeling the changes that digital images 
undergo in the print-and-scan process. We propose a 
model for the pixel value distortion, define the RSC-based 
geometric distortions, analyze the change of DFT 
coefficients after geometric distortion, and describe 
methods to extract invariant feature vector. Preliminary 
experimental testing of the pixel value distortion, as well 
as experimental analyses of the feature vector in [5], have 
indicated the effectiveness of the proposed models. These 
models can be used in several applications, such as image 
watermarking[4][5], authentication and registration.  
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