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Abstract

We analyze the problem of optimal data partitioning of MPEG-2 coded video in an op-
erational rate-distortion context. The optimal algorithm is characterized and shown to have
high complexity and delay. A causally optimal algorithm based on Lagrangian optimization
is proposed, that optimally solves the problem for intra (I) pictures, while it provides an op-
timal solution for predicted/interpolated (P/B) pictures when the additional constraints of
causal operation and/or low-delay are imposed. A memoryless version of the algorithm, the-
oretically optimal for intra-pictures only, is shown to perform almost identically but with sig-
ni�cantly less computational complexity. Finally, a fast, suboptimal algorithm using purely
rate-based optimization is also proposed, and is shown to perform quite close (within 1 dB)
to the causally optimal one. Experimental results are provided using actual MPEG-2 coded
video bitstreams.

1 Introduction

The traditional problem in video coding for the past several decades has been that of compression:

describe the signal with as few bits as possible. The signal is treated as a single waveform, with

compression employing techniques such as transform and/or prediction [8, 10] and resulting in a

lossy representation. In several cases, however, it is bene�cial to segment the original signal into

multiple parts, and handle each one independently. Such an approach was originally applied to

speech using the so-called sub-band coding approach [10], which partitions the signal into multiple

1Presented in part at the IEEE Int'l Conf. on Image Processsing, Austin, Texas, November 1994.
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frequency bands. The primary motivation is that, since the human aural system perceives the

various frequency bands in di�erent ways, one could apply di�erent compression techniques to

each of the sub-bands.

A more general application of this principle is the so-called pyramidal, or hierarchical ap-

proach [15]. Here the signal is again decomposed into a number of di�erent layers, but now each

layer represents a successive re�nement of the previous one. During compression, each layer is

formed by compressing the di�erence between the original signal and its reconstructed version up

to the particular layer. Consequently, an equivalent point of view is that each layer represents the

compression error of its immediately lower layers. This representation is again typically (but not

necessarily) lossy, hence leaving a residual compression error. In sub-band coding approaches, the

individual layers are orthogonal to each other (or approximately so, depending on the �lter bank

used). For this reason, compression of the di�erent layers can occur in parallel.

The bene�ts and applications of both approaches are numerous. A key feature is that they can

facilitate interoperability. A classical example from the analog world is that of monochrome and

color television receivers: the base layer here is the luminance signal (the monochrome component),

while the added layers are the chrominance. The two layers are transmitted separately (modu-

lated at di�erent frequencies), and hence allow monochrome receivers to process color signals by

\decoding" only the luminance part.

A more modern example from the digital domain is compatible High De�nition Television

coding: a layered approach allows the base component to be compatible with standard resolution

television receivers, and hence a single signal can be used to service both systems.

Another important feature of layered compression is that it can be made robust to channel

errors. In particular, one can associate a better transmission environment for the base layer, and

less protected ones for the higher layers. In some transmission environments this association is

directly supported. In packet-based networks for example, it is possible to mark higher layer

packets so that, when congestion is created in intermediate routers or switches, they are dropped
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�rst. In systems that are not capable of prioritized transmission, one can essentially emulate

the same e�ect by using di�erent levels of forward error correction. By utilizing more e�cient

error-correcting codes for the lower layers, one can ensure|given some assumptions about the

channel \noise"|that the base layer will arrive intact at the receiver. Examples of such channels

are over-the-air broadcast, as well as individual virtual circuits within packet-based networks.

A signi�cant drawback of layered approaches is that they are, in general, less e�cient than

their single-layer counterparts. In other words, for a particular signal to noise ratio (SNR), it is

better to compress a signal using a single layer than multiple ones. \Better" here implies that

fewer bits are required to represent the signal. In several applications, however, this is acceptable

due to the added 
exibility. We should also note that layered approaches also tend to be much

more expensive to implement that single-layer ones, due to the added encoding and decoding

complexity.

From an applications perspective, the most important drawback of layering is that it is em-

bedded in the encoding method. In other words, the layers can only be constructed during the

encoding process; doing so at a later stage would require signi�cant computational resources, in

essence consisting of full decoding and recoding. There are several reasons, however, to desire a

layered structure even without support from the encoder. First, due to the cost of hierarchical (or

scalable) encoding, it is likely that single-layer, general-purpose encoders will dominate in actual

systems. Second, the exact partitioning point in terms of bit rates is not obvious, due to the

potentially large number of channel types over which the signal may be transported. Finally, due

to the loss in compression e�ciency it is likely that, in applications such as video-on-demand,

only a single-layer high-quality version of the signal will be utilized (stored for retrieval by the

users). It is then important to examine approaches in which layering is provided after encoding

has already taken place.

In this paper we examine one such approach, called \data partitioning", which is applicable

to any block-based, transform coding scheme. Our primary focus will be the MPEG-2 coding
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scheme [2], which provides direct support in its bitstream syntax to e�ect data partitioning, and

in which partitioning was �rst introduced.

We analyze the problem of optimal data partitioning using an operational rate-distortion ap-

proach. The optimal algorithm is characterized, and is shown to have signi�cantly high complexity

and delay, as a result of the temporal structure of predictive compression. A \causally optimal"

algorithm based on Lagrangian multipliers is described; it optimally solves the problem when the

additional constraints of causal operation and/or low-delay are imposed. A memoryless version

of the algorithm, theoretically optimal for non-predictive compression only, is shown to perform

almost identically but with signi�cantly lower computational complexity. Finally, a fast, subop-

timal algorithm using \rate-based" optimization is also proposed, and is shown to perform quite

close (within 1 dB) to the causally optimal one. We should note that data partitioning can be

applied to potentially any compression scheme; although the theoretical tools would be identical

to those presented here, the performance characteristics may be signi�cantly di�erent.

The structure of the paper is as follows. In Section 2 we introduce the problem of data

partitioning, and formulate it in an operational rate-distortion context. In Section 3 we present

the optimal solution for non-predictive coding, whereas in Section 4 we analyze the more general

predictive coding case. In both cases we present experimental results using actual MPEG-2 video

bitstreams. The paper concludes with a summary of the key results presented and a discussion

of their importance for actual applications. It is assumed that the reader is familiar with the

algorithmic foundation and bitstream syntax of MPEG. An overview is presented in [13], while

detailed descriptions can be found in [9, 14]; the standards themselves are documented in [1]

(MPEG-1) and [2] (MPEG-2).
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2 The Data Partitioning Problem

2.1 Data Partitioning

Data partitioning is a feature of the MPEG-2 standard that provides for the segmentation of a

coded signal bitstream into two components or partitions [2, 5, 6, 9]. It can be a very e�ective

tool for the transmission of video over channels that allow selective protection of each of the

partitions. Channels of this type can be implemented, for example, using increased forward error

correction, or employing high priority transmission in an ATM-based networking environment.

By transmitting the most critical information with high reliability, i.e., over the highest quality

channel, the average quality of the signal reconstructed at the receiver can be signi�cantly increased

for the same level of channel distortion. This feature is one of the major bene�ts of pyramidal

or|more generally|hierarchical, multi-layer coding schemes.

An important characteristic of data partitioning is that it can be employed even after encoding

has taken place, in contrast with other hierarchical approaches, such as the SNR, spatial, or

temporal scalability modes of MPEG-2 [2, 9], or the embedded DCT coding approach proposed

in [17]. This is because the encoder does not need to maintain a prediction loop per each signal

layer, a necessary requirement for a pyramidal scheme in which each coding layer is an enhancement

of its previous one. As a direct consequence, it is also less robust in the sense that neither partition

is self-contained; loss of information in either one will cause error propagation and accumulation

during the decoding process if temporal predictive/interpolative modes are used. As we will see

later on, error accumulation can in fact be kept under control. Although data partitioning is

currently supported only in MPEG-2, it is trivial to incorporate into other coding schemes.

The system diagram of the data partitioning scheme is shown in Figure 1. In between an

MPEG-2 encoder/decoder pair, the bitstream (assumed here to be coded at the constant rate of

B Mbps) is split into two parts, each being transmitted on a di�erent \channel". In this paper

we assume that channel 0 is a perfect one, i.e., it exhibits no losses, errors, or insertions. We
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Figure 1: Block diagram of a Data Partitioning system.

also assume that it has a given �xed available bandwidth B̂ < B. Channel 1 is assumed to

exhibit arbitrary stochastic behavior (a minimax problem formulation will make the details of this

behavior irrelevant).

In other words, we are given a bitstream of bit rate B, but our communication resources only

allow us to reliably transmit at a bit rate of B̂. The problem is then how to optimally split the

bitstream into two parts, the base one complying with the rate constraint B̂, so that the quality

of the decoded signal at the receiver is maximized.

Partitioning is performed at well-de�ned points in the bitstream syntax [2], called breakpoints.

These can occur at various levels of the bitstream hierarchy. For our purposes, and to ensure

that partition 0 is independently decodable, we will constrain the allowable breakpoint positions

so that critical quantities such as macroblock address increment (indicating the relative position

of a macroblock with respect to the previously coded one) and DCT DC di�erential values (for

intra-coded macroblocks) are included in partition 0. As a result, partitioning will only a�ect the
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Figure 2: Breakpoint position in the zig-zag pattern of DCT coe�cients.

number of coe�cient run-length codes that will be carried in partition 0, while the rest will be

assigned to partition 1. This is depicted in Figure 2.

Note that, in MPEG-2, the breakpoint value is the same for all blocks of a given slice. The

breakpoint value, i.e., a �xed-length code indicating the number of run-length codes that are in-

cluded in partition 0, is included in the slice header. Sequence headers are replicated in partition 1

to increase robustness, and hence the total rate for the transmission of the signal is slightly in-

creased. In partition 1, the breakpoint value is set to 0 since it is not needed. We now proceed to

a mathematical formulation of the problem.

2.2 General Problem Formulation

Denoting by y the coded video signal, by ŷ the output of the decoder, by pi the signal of the i-th

partition, and by R(�) the bit rate, the problem of optimal data partitioning can be expressed as
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follows:

min
R(p0)�B̂

fky � ŷkg (1)

The metric k � k above denotes the squared error criterion:

kxk � xTx =
N�1X
i=0

x(i)2 (2)

and is applied only in the luminance component. The rate constraint, however, refers to all three

color components. Since channel 1 is assumed to exhibit stochastic behavior, we consider the

deterministic problem of minimizing the maximum average distortion D, i.e.,

min
R(p0)�B̂

n
D

def
= maxfky � ŷkg

o
(3)

This corresponds to the case where the entire partition 1 is lost. D will be referred to in the sequel

as the \partitioning distortion".

The optimization window in (3) is not speci�ed, and it can span from just a part of a picture,

up to any number of pictures. In general, and taking into account that data partitioning as

described here is performed after encoding has taken place, it is desirable to keep the end-to-end

delay low. Computational complexity considerations impose additional constrains on the window

length, as will be made evident later on. Consequently, we will typically be interested in solutions

of (3) that consider up to a single complete picture.

An important aspect of the problem not readily evident in (3) is its recursive nature, caused

by the corresponding recursive process with which y and ŷ are generated (decoded) when P and

B pictures are involved. In the following we separately consider the two cases: optimal data

partitioning in non-predictive coding (I pictures only), and optimal data partitioning in predictive

coding (I, P, and B pictures).
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3 Non-Predictive Coding

3.1 Problem Formulation

In non-predictive or intra-picture only partitioning, there is no temporal dependence between

pictures. Consequently, the partitioning distortion will simply consist of the DCT coe�cients that

were assigned to partition 1. Since the DCT matrix C is unitary, i.e.,

CTC = I (4)

the energy of the signal in the spatial domain is equal to its energy in the transform domain. In

other words, and considering the one-dimensional case for simplicity, if:

X = Cx (5)

then

xTx �
N�1X
i=0

x(i)2 =
N�1X
i=0

X(i)2 � XTX (6)

Now let b denote the truncation point, i.e., all DCT coe�cients from b up to N � 1 are moved to

partition 1. Considering the truncated|in the DCT domain|representation ~x of x and using (6)

we have:

kx� ~xk = kX � ~Xk =
N�1X
i=b

X(i)2 (7)

eq. (7) provides an expression for the truncation, or partitioning distortion directly in the DCT

domain. Generalization to two dimensions is straightforward.

Let us now consider the partitioning distortion in two dimensions for a group of blocks. We

recall that the breakpoint values are identical for all blocks of a given slice i (Section 2.1). This

value will be denoted by bi, and indicates that the bi-th and higher-order DCT run-length codes

of all blocks of this slice will be removed and placed in partition 1. The domain of bi is the set of

values f0; 1; : : : ; 64g. Since blocks are transformed independently, the partitioning distortion for

a set of blocks will simply be the sum of the partitioning distortions of the individual blocks.
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Denoting the DCT coe�cient of the k-th run-length of block j of slice i by X i
j(k), and the set

of blocks that belong to slice i by Si, we can express the partitioning distortion for a particular

slice as:

Di(bi) =
X
j2Si

X
k�bi

X i
j(k)

2
(8)

Note that this is a function of the breakpoint value bi. Since error calculations are only done on

the luminance component, we will assume that, for chrominance blocks,

Di(bi) = 0 (9)

Returning to eq. (3), we can now explicitly express the problem of minimizing the maximum

partitioning distortion D as:

min
R(p0)�B̂

fmaxfky � ŷkgg () minP
S

i=1
Ri(bi)�B̂

(
SX
i=1

Di(bi)

)
(10)

where Ri(bi) denotes the rate required to encode slice i when the breakpoint value bi is used, and

S is the total number of slices considered (may span several pictures).

Our objective here is to �nd those values b�i , i = 1; : : : ; S that minimize the maximumdistortion

as given in (10). An exhaustive search would be clearly impossible, as the number of possible

combinations that would have to be examined can be huge (65S). We recall that data partitioning

is typically applied immediately prior to transmission (when the value of B̂ becomes known), and

hence complexity and delay considerations are very important.

3.2 The Optimal Algorithm

This constrained minimization problem can be solved using the approach of Lagrange multipli-

ers [7]. A similar algorithmic approach but in a di�erent context has been used in [11, 12, 18]. The

Lagrange multipliers approach converts the constrained optimization problem to an unconstrained

one, by adding more dimensions to the parameter space. Consider the following problem. Given

a constraint B, �nd

min
b2A

D(b) (11)
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subject to

R(b) � B (12)

Then the following theorem holds [7].

Theorem 1 For any � � 0, the solution b�(�) to the unconstrained problem

min
b2A

fD(b) + �R(b)g (13)

is also the solution to the constrained problem (11){(12) with the constraint B = R(b�(�)), that

is, with R(b) � R(b�(�)).

The proof is quite simple and can be found in [7]. Note that Theorem 1 does not guarantee

any solution to the constrained problem (11){(12) (in other words, the two problems are not

equivalent). It only indicates that for every nonnegative �, there is a corresponding constrained

problem which solution is identical to that of the unconstrained one. If, however, R(b�(�)) happens

to be equal to B, then b�(�) is the desired solution for the constrained problem.

Since the constraint B in our problem is given (the reliable channel bandwidth B̂), our algo-

rithm will have to �nd an appropriate value for � so that R(b�(�) = B. Since the domain of b

in our case is discrete, such an exact solution may not be attainable. We will consequently be

satis�ed with a solution for which R(b�(�)) is as close as possible to B.

Returning to our original problem, we can rewrite (10) as an unconstrained problem as follows

min

(
SX
i=1

Di(bi) + �
SX
i=1

Ri(bi)

)
(14)

By de�ning the per-slice quantity

Li(�; bi)
def
= Di(bi) + �Ri(bi) (15)

the above can be rewritten as

min

(
SX
i=1

Li(�; bi)

)
(16)
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Figure 3: Overview of the bisection algorithm.

We observe that, given a particular �, the minimization problem above can be solved indepen-

dently for each slice, since Li(�; bi) � 0. In other words, each Li can be minimized independently

of the others. This structure helps to signi�cantly reduce the complexity of the problem. Within

each particular slice, one can even use exhaustive search to obtain the optimum breakpoint value

b�i , since the possibilities are limited (65 in the worst case). Hence the complexity of the problem

becomes proportional to 65S, where S is the number of slices (recall that for a full-search it is

65S).

In order to �nd the optimal solution b�i , however, we must also �nd the appropriate value ��

for �. This can be accomplished using an iterative bisection algorithm [11, 12]. The algorithm

starts with two initial estimates for � (typically its extreme values 0 and 1), and continuously

re�nes its estimate until convergence is achieved.

Figure 3 illustrates the procedure for the simple case of a single slice. The graph shows the

various rate-distortion points (marked with \x") when di�erent breakpoint values are selected. For
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example, point A (�rst from the left) corresponds to the breakpoint value b = 0, i.e., to the case

where all DCT coe�cients are carried in partition 1. This gives rise to a particular partitioning

distortion D and rate R that is required to represent the slice, as depicted in the �gure. The rate

is non-zero, since there are also overhead bit for headers etc. Similarly, point C corresponds to the

breakpoint value b = 2. Since more DCT coe�cients are included in partition 0, the rate is slightly

increased but the distortion is reduced. Hence the R(D) curve2 is monotonically non-increasing.

The curve does not necessarily have to have 64 points, since typically only a small number of

run-lengths are needed to encode each block.

We should note that these R(D) curves are not results of a stochastic minimization problem as

in rate-distortion theory [3, 4], but discrete point curves that result from actual compression and

di�er from slice to slice. This is the reason why the term \operational" rate distortion minimization

is used to di�erentiate it from the stochastic case (an R(D) curve obtained from actual data is

shown in Figure 4).

As initial values for � we select the two extreme cases �l = 0 and �u =1 (the subscripts are for

\lower" and \upper' respectively). In the former case the minimum is achieved by independently

minimizing the distortion, and hence the optimal breakpoint for this value of � (denoted by b�(�))

is obtained by using the maximumpossible value of b: b�(0) = bmax � 64. This solution is indicated

at point B in Figure 3. In the case �u =1, the minimum is achieved by independently minimizing

the rate, corresponding to b�(1) = 0 or point A of Figure 33. At points A and B we also show the

lines that pass from these points and have as a slope the negative value of their corresponding �.

Observe that these points minimize the expression: D(b) + �R(b) + c, and hence for some value

of the constant c (for the particular �) the optimum solution is on the line, while all other points

are above it.

2Although the term \R(D) curve" is used in this paper, we should note that, strictly speaking, it is imprecise
as it implies continuity.

3Using this formulation, and for purposes of precision, the rate should be exactly 0; one can always, however,
subtract the overhead bit rate from the rate constraint B̂, ensuring this way that R(0) = 0.
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We observe that our initial estimates R(�l) and R(�u) contain the desired target rate B̂, which

ensures that the problem is feasible. The next step is to select a new value for �, which can be

done in any number of di�erent ways. Lacking any a priori information on the R(D) curve, and

given its high variability from slice to slice, a plausible selection is the slope of the line segment

interconnecting our original points A and B. We thus have:

�next =
D(�u) �D(�l)

R(�l)�R(�u)
(17)

Next, we minimizeD(b)+�R(b) for this particular �, and obtain as a solution, say, point C. Note

that the new optimal breakpoint value will be between those of points A and B.

We then examine which of the intervals

[R(b�(�u)); R(b
�(�next))) and (R(b�(�next)); R(b

�(�l))] (18)

contains our target bit rate B̂, and repeat the procedure from the start using these new values of

� as starting points. If it turns out that R(b�(�next)) = B̂ then we have found an exact solution.

In practice, convergence will occur when the new R(D) point coincides with one of the initial two

points.

We now present the detailed description of the algorithm, applicable to any number of slices.

Since in an actual implementation it is more convenient to deal directly with the number of bits

instead of the rate, in the following we can consider that rate-related quantities refer to just

quantities of bits. The two are proportional to each other, related by a normalization constant,

and hence the two interpretations are equivalent.

We denote by b�i (�) the optimal breakpoint for slice i for the particular value of �, and R�i (�)

and D�
i (�) the optimal rate and distortion respectively of slice i for the given value of �, i.e., we

have:

R�i (�)
def
= Ri(b

�
i (�)) and D�

i (�)
def
= Di(b

�
i (�)) (19)

We also denote by Rbudget the target bit budget for the particular set of slices fSig. We should

note that although the average rate of partition 0 has to be less than or equal to B̂, there is
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exibility on how the target bit budget for any given set of slices is allocated.

Lagrangian Minimization Algorithm

Step 1: Initialization

Set �l = 0 and �u =1. If the inequality:

NX
i=1

R�i (�u) � Rbudget �
NX
i=1

R�i (�l) (20)

holds as an equality for either side, an exact solution has been found. If the above does not hold

at all, then the problem is infeasible (this can happen if the target rate B̂ is too small). Otherwise

go to Step 2.

Step 2: Bisection and Pruning

Compute:

�next :=

�����
PN

i=1[D
�
i (�u)�D�

i (�l)]PN
i=1[R

�
i (�u)�R�i (�l)]

����� (21)

and �nd R�i (�next) and D�
i (�next) such that B�

i (�u) � B�
i (�next) � B�

i (�l).

Step 3: Convergence Test

If

NX
i=1

R�i (�next) =
NX
i=1

R�i (�u) or
NX
i=1

R�i (�next) =
NX
i=1

R�i (�l) (22)

then stop; the solution is B�
i (�u), i = 1; : : : ; N . If

NX
i=1

R�i (�next) > Rbudget (23)

then �l := �next, else �u := �next.
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Figure 4: Slice 20 (full-width, frame 0) from \Flower Garden", coded at 24 Mbps (x) and 12 Mbps
(o).

The bisection algorithm operates on the convex hull of the R(D) curve of each slice. Con-

sequently, points which lie above that, and hence are not R(D) optimal, are not considered by

the algorithm. Figure 4 shows the R(D) plots for an actual slice (frame-based, intra coding of

\Flower Garden" at 24 and 12 Mbps, slice 20|full-width|of frame 0). Worth noting is the lo-

cally non-convex behavior in both cases. This property can be traced back to the structure of the

MPEG-2 run-length encoding tables [2], where speci�c examples of non-convexity can be easily

found. In most cases (and particularly for P and B pictures as we will see later on), the number of

R(D) points which lie above the convex hull is small, and hence in practice they do not represent

a signi�cant problem.

In some cases, if theR(D) curve of a slice is su�ciently misbehaved, the bisection algorithm can

be set o� track, with a resulting underutilization of the target bit budget. In order to mitigate this

e�ect, and also to speed up operation, each iteration considers a continuously shrinking interval

of possible breakpoint values (\pruning"). This will result in convergence of the algorithm to a

much smaller set of non-convex points, and is a byproduct of convexity.
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3.3 Performance Evaluation

The collection of necessary data in eq. (14) that is needed to run the algorithm, requires only

parsing of the input bitstream up to inverse quantization of the DCT coe�cients. In other words,

all operations can be performed directly in the compressed domain. Note that distortion data

are computed from the luminance component only, whereas rate data are computed from all

three components. The parsing process represents a very small fraction of the complete decoding

process; the dominant processing step in decoding is in fact the inverse DCT.

The window S (number of consecutive slices) in which the algorithm operates has been con-

sidered up to now a design parameter. Since data partitioning is performed after encoding, it is

desirable to minimize the additional delay introduced by the extra processing step. Even in cases

where partitioning is applied on stored material prior to transmission, delay is a very important

parameter for interactive applications. A plausible selection is then a complete single picture

(frame or �eld).

As we mentioned in the previous section, the target bit budget Rbudget can be set quite arbi-

trarily, given however that the average rate does not exceed B̂. This represents another degree of

freedom which is not (and cannot be) optimized by the above algorithm. A convenient selection

is obtained by choosing for each picture the value

Rbudget = (B̂=B)R �Ro (24)

where R is the size (in bits) of the currently processed frame (or,more generally, set of slices),

and Ro is the number of bits spent for coding components of the bitstream that are not subject

to data partitioning (overhead bits for headers, motion vectors, etc.). Allocated bits that are left

over from one picture are carried over to the subsequent picture. Note also that R is immediately

available after the complete picture has been parsed.

It is very easy to show that the budget selection in (24) guarantees that the target bit rate is
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not exceeded. We have:

Rbudget+Ro =
B̂R

B
(25)

and the average value �R of R over time is �R = B. Hence the average rate for the partitioned

picture will be:

Rbudget+Ro =
B̂ �R

B
= B̂ (26)

In addition, it is easy to see that this allocation can satisfy any scaled bu�ering constraints that

may be imposed.

The value given by eq. (24) carries over to the partitioning algorithm several properties of the

encoder. In particular, we observe that bit allocation is performed in a manner proportional to the

one decided by the encoder. Assuming that an \intelligent" encoder has been used, the original

bit allocation may have been meticulously optimized; utilizing a proportional allocation in the

partitioning process can help to improve the overall video quality. In the case where bu�ering

constraints are imposed to partition 0 for placement prior to transmission, one can convert the

problem to a bu�er-constrained optimization problem. The approach would be similar to [16],

although the problem there was focused on quantizer selection. It is doubtful, however, that the

signi�cant extra complexity of the problem can in fact achieve improved results (an optimal fast

algorithm for this problem is not known).

The computational overhead of the iterative algorithm is small, with convergence achieved

typically within 8{10 iterations. Figure 5 shows the results of applying the algorithm to 20 frames

of \Flower Garden", using frame-based intra coding at 24 Mbps, and with a target rate of 12

Mbps for partition 0. The quality metric used is \Y-PSNR", i.e., the Peak SNR of the luminance

component only. PSNR is derived from the squared error e = ky � p0k using:

PSNR = �10 log10

 
2552

e

!
in dB (27)

where 255 is the peak value for the luminance signal (using an 8-bit representation).
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Figure 5: Data partitioning of frame-based, intra coded \Flower Garden", from 24 Mbps to 12
Mbps, using optimal and rate-based algorithms.

Also shown in Figure 5 are the results of a simpler algorithm that uses rate-based optimization.

In this latter case each slice is independently assigned a target bit budget proportional to its

original size Ri, and a breakpoint is selected so that this budget is not exceeded (leftover bits are

carried over to the next slice). In other words, we select the breakpoint of each slice as:

b�i = max
n
bi : Ri(bi) � Rbudgeti

o
(28)

The bit budget for each slice is set according to:

Rbudgeti =
Ri

Rbudget=S
(29)

where S is the number of slices. In order to computeRbudgeti, a complete picture is read; this makes

the algorithms comparable in terms of the optimization window used. Note that this algorithm is

purely rate-based, i.e., the distortion is completely ignored. Lagrangian optimization outperforms

in this case the rate-based algorithm by 0.6 dB on the average.
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4 Data Partitioning in Predictive Coding

4.1 Problem Formulation

When all variants of picture coding types are used (I, P, and B), the problem of data partitioning

becomes signi�cantly more complex. The decoding process can be described by:

yi =Mi(yi�1) + ei (30)

where Pi denotes the i-th decoded picture (in coding order),Mi(�) denotes the motion compensa-

tion operator for picture i, and ei denotes the coded prediction error. The �rst picture is assumed

to be intra-coded, and hence

e0 = y0 (31)

Although, for simplicity, a single reference picture is shown above for motion compensation, the

expression can be trivially extended to cover the general case (which includes B pictures).

By applying data partitioning and decoding partition 0, eq. (30) becomes:

ŷi =Mi(ŷi�1) + êi (32)

where êi denotes the partitioned prediction error. Recall that the original partitioning problem

was set in its minimax form in eq. (3) of Section 2.2 (page 8) as follows:

min
R(p0)�B̂

n
D

def
= maxfky � ŷkg

o
(33)

Using (30) and (32), and observing that the maximum average distortion is maximized when

ŷ = p0 (i.e., partition 1 is lost), eq. (33) becomes:

minP
N

i=1
Ri(bi)�B̂








MX
p=1

Mi(yi�1)�Mi(ŷi�1) + ei � êi







 (34)

where M is the number of pictures over which optimization takes place. Note that:

Mi(yi�1)�Mi(ŷi�1) 6=Mi(yi�1 � ŷi�1) (35)
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i.e., motion compensation is a non-linear operation, because it involves integer arithmetic with

truncation away from zero [2].

From eq. (34) we observe that, in contrast with the intra-only case, optimization involves the

accumulated error:

ai
def
= Mi(yi�1)�Mi(ŷi�1) (36)

Furthermore, due to the error accumulation process, partitioning decisions made for a given picture

will have an e�ect in the quality and partitioning decisions of subsequent pictures. As a result,

an optimal algorithm for (34) would have to examine a complete group of pictures (I-to-I), since

breakpoint decisions at the initial I-picture may a�ect even the last B or P picture. Not only the

computational overhead would be extremely high, but the delay would be unacceptable as well. It

is desirable then to seek fast solutions with small delay, that are able to control error propagation

in a well-de�ned fashion.

An attractive alternative algorithm is one that solves eq. (34) on a picture basis, and where

only the error accumulated from past pictures is taken into account. This algorithm will be

referred to as causally optimal. In addition, in order to avoid similar complications that arise

when the optimization window spans more than one picture, we will restrict our discussion for

the case where the windows is up to a complete single picture. This property is also an indirect

consequence of the causality argument.

Note that in order to accurately compute ai, two prediction loops have to be maintained: one

for a decoder that receives the complete signal, and one for a decoder that receives only partition 0.

This is because of the nonlinearity of the integer arithmetic of motion compensation expressed by

eq. (35). With the penalty of some lack in arithmetic accuracy, these two loops can be collapsed

together. In the following we will assume that the (optimal) dual-loop operation is always used.
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4.2 The Causally Optimal Problem

The causally optimal problem can now be formulated as follows. Substituting eq. (36) in (34) we

have

min
R(p0)�B̂

fkai + ei � êikg (37)

We must now obtain an expression for the total partitioning distortion ai + ei � êi.

As in the non-predictive case of Section 3.1, we �rst consider a single block. Let A(k) denote the

k-th DCT coe�cient of the accumulated error a (in zig-zag scanning order), E(k) the corresponding

coe�cient of the decoded picture e, Ê(k) the one of the partitioned picture, and b the breakpoint

value. We then have

kai + ei � êik =
N�1X
i=0

�
A(k) + E(k)� Ê(k)

�2

=
N�1X
i=0

A(k)2 + 2
N�1X
i=0

A(k)
�
E(k)� Ê(k)

�
+

N�1X
i=0

�
E(k)� Ê(k)

�2

=
N�1X
i=0

A(k)2 + 2
N�1X
i�b

A(k)E(k) +
N�1X
i�b

E(k)2 (38)

since

Ê(k) =

8><
>:
E(k) if k < b

0 otherwise
(39)

Observe that the total distortion involves not only the accumulated error and the current picture's

partitioning error (identical to the non-predictive case), but crossterms as well.

Due to the independence of individual blocks, we can extend (38) for a complete slice. We

should note, however, that while the prediction error DCT coe�cients are represented by their

run-lengths, and the truncation point is also de�ned by the number of run-length to be included in

partition 0, the accumulated error has no such representation. Consequently, a mapping function

I(k) is necessary that maps the k-th run-length of a block into the appropriate position in the

zig-zag scanning pattern.
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Figure 6: Slice 20 (full-width, frame 3, P-picture) from \Mobile" coded at 4 Mbps and partitioned
at 3.2 Mbps: (x) D̂(Bi), (o) D(Bi).

Denoting by D̂i(bi) the total partitioning distortion of slice i for the breakpoint value bi, we

have

D̂i(bi) =
X
j2Si

8<
:
N�1X
k=0

Ai
j(k)

2 +
X
k�bi

2Ai
j(I

i
j(k))E

i
j(k) +

X
k�bi

Ei
j(k)

2

9=
; (40)

where Si denotes the blocks of slice Si, Ai
j(k) is the k-th DCT coe�cient (in zig-zag scanning order)

of the j-th block of the i-th slice of the accumulated error ai, and Ei
j(k) is the DCT coe�cient of

the k-th run-length of the j-th block of the i-th slice of the coded prediction error. Using (40),

the data partitioning problem (37) for the predictive case can be formulated as:

min
R(p0)�B̂

fkai + ei � êikg () minP
N

i=1
Ri(bi)�B̂

(
SX
i=1

D̂i(bi)

)
(41)

where S is the total number of slices in the optimization window.

4.3 The Causally Optimal Algorithm

The minimization problem in (41) can be solved using the Lagrangian optimization approach of

the non-predictive case in Section 3.2, using the more general de�nition of the distortion D̂ given

by eq. (40).
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Of particular concern is the convexity of the R(D) curves when the total distortion (including

the accumulated error) is taken into account. Figure 6 shows the R(D) curve for slice 20 of frame 3

(P-picture) from the sequence \Mobile" coded at 4 Mbps (frame-based coding) and partitioned

at 3.2 Mbps using the causally optimal algorithm. The upper curve takes into account the accu-

mulated error ai, whereas the bottom one involves only the prediction error partitioning distortion

ei � êi.

We observe that convexity is clearly present. In fact, for predicted pictures, R(D) curves

tend to be uniformly convex, compared with intra pictures which tend to have a concave middle

segment. We have experimentally veri�ed that this property holds even for small slice sizes (e.g.,

11 or 4 macroblocks per slice, instead of the regular 44 which amounts to the whole picture width),

although the curves become progressively 
atter.

4.4 Performance Evaluation

An important issue in mixed-mode coding, as in non-predictive coding, is the target bit budget

that will be set for each picture (or more generally, set of slices). The matter is more complicated

than in the intra-only case, due to the irregular bit distribution among pictures of di�erent types.

In a typical situation, I and P picture DCT coding requires a signi�cant number of bits, while B

picture sizes are dominated by header and motion vector coding bits. Figure 7 depicts the number

of total vs. overhead bits for the \Mobile" sequence coded at 4 Mbps. \Overhead" here includes

everything except the DCT coe�cients which are subject to partitioning. Observe the evident

periodic pattern between I pictures, and the irregularity of the bit distribution between I, P, and

B pictures.

As a result of the bit distribution irregularity, B pictures provide much less 
exibility for data

partitioning. In order to accommodate this behavior, I and P pictures are assigned proportional

bit budgets as in Section 3.3. For B pictures the same is done, except when the resulting bit

budget is negative, in which case it is set to 0. The negative budget, however, is accounted for, so
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Figure 7: Bit distribution for the \Mobile" sequence coded at 4 Mbps, with I period 12, and B
period 3 (the overhead bits include all non-DCT bitstream components).

that the bits spent for the B picture are subtracted from the budget of the immediately following

picture. Note that an optimal bit allocation for each picture would be a direct by-product of the

optimal non-causal algorithm.

Figure 8 shows the Y-PSNR resulting from the causally optimal algorithm on 15 frames of the

\Mobile" sequence (I distance N=15, I/P frame distance M=3), frame-based coded at 4 Mbps

and partitioned at 3.2 Mbps (80% of the rate goes to partition 0). This is the signal quality that

would be observed by a decoder that receives only partition 0, compared with one that receives

both partitions. We see that I and P frames su�er the most, while B frames are in general up to 1

dB better.

The complexity of solving eq. (41) is signi�cant, as it requires at least one complete decod-

ing loop for the luminance signal. If the non-linearity of the motion compensation is taken into

account, then two such loops are required. In addition, since motion compensation is performed

in the spatial domain while partitioning is performed in the DCT domain, a forward DCT com-

putation module is required as well in order to compute Ai
j(�). As a result, the implementation

complexity is between that of a decoder and an encoder.
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Figure 8: PSNR (Y only) for \Mobile" sequence, frame-based coded at 4 Mbps and partitioned
at 3.2 Mbps using the causally optimal, memoryless, and rate-based algorithms.

4.5 The Memoryless and Rate-Based Algorithms

Given the complexity of the causally optimal algorithm, it is interesting to examine the bene�t

of error accumulation tracking. This can be evaluated by applying the algorithm of Section 3.2

(intra-only case) to the mixed-mode case, since the only di�erence is the accumulated error term

ai. Bit budget allocation, however, is performed as discussed in Section 4.4 (mixed-mode case).

Surprisingly, the results of this memoryless mixed-mode partitioning algorithm are almost

identical to the causally optimal one. Figure 8 shows the relevant PSNR values for the \Mobile"

sequence. The di�erence is in general less than 0.1 dB and the curves can hardly be distinguished.

We have experimentally veri�ed that this holds for a very wide range of bit rates (i.e., down to

50% reduction, or more depending on the original rate and picture resolution) and slice sizes. The

di�erence, however, increases slightly to 0.2{0.3 dB. We should note that these di�erence values

are perceptually insigni�cant.

This is a very important result, as it implies that we can dispense completely with the error

accumulation calculation and its associated computational complexity, for a minimal cost in per-

formance. The quality degradation between the causally optimal and memoryless algorithms will

be perceptually insigni�cant, across the spectrum of slice sizes and partition rates.
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Figure 9: Distribution of accumulated error, causally optimal, and memoryless distortions across
all slices of a picture (\Mobile", coded at 4 Mbps and partitioned at 3.2 Mbps, frame 3, P picture).

This property is hinted at by Figure 6 upon closer examination. The upper and lower curves

are almost identical, except for a vertical shift. Figure 9 depicts the two types of distortions (from

the causally optimal and memoryless algorithms) as well as the accumulated error across all slices

of a picture. We observe that the two distortions behave in very similar ways as we move along

the picture. In order for the accumulated error to a�ect the partitioning decisions, either the slope

of the R(D) curves or the overall accumulated error distribution across a picture would have to

be signi�cantly a�ected. This, however, is not the case, because at each picture the partitioning

decisions are optimally made.

Finally, we examine the performance of the rate-based optimization algorithm introduced in

Section 3.3 (eq. (28)), in a mixed-mode coding environment. Since, as was previously pointed out,

rate-based optimization does not take into account the distortion, there is no di�erence whether

or not the accumulated error is tracked. Consequently, the only di�erence lies in the bit budget

allocation. Figure 8 depicts the results obtained on the \Mobile" sequence, with the same coding

and partitioning parameters as before. We see that the rate-based algorithm is inferior by about 1

dB. The complexity, however, is signi�cantly reduced as well, as the Lagrangian optimization

iteration is avoided. This makes the rate-based algorithm attractive, when complexity and/or
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implementation costs are of importance.

Figure 10 shows the same reconstructed frame (luminance only) using the various partitioning

algorithms4. The frame is what a decoder would display if only partition 0 was received, except

from Figure 10(a) which is the decoded frame at full rate. The �gures show frame number 12 (a

P picture) from the \Mobile" sequence, coded at 4 Mbps and partitioned at 3.2 Mbps. We can

see instances where the optimal (causally and memoryless) algorithms perform better than the

rate-based scheme, but there are a few cases where the reverse is true as well. For example, the

small birds in the middle of the top-most slices are better in the optimal algorithms; the same is

true for the dotted ball (bottom left), the border of the stream engine and the car, as well as the

3rd row of the calendar's numbers (11{17). There are two cases, however, where the allocation

performed by the rate-based scheme provides better perceptual results: the duck in the middle

of the left-hand side border is sharper, as well as the 2nd row of the calendear's numbers (4{10).

These results corroborate our SNR evaluations, indicating that the rate-based approach, although

de�netely inferior, is still a competitive technique.

5 Concluding Remarks

The problem of optimal data partitioning in motion-compensated transform coding was analyzed,

with particular emphasis in its use by the MPEG-2 video coding standard. Data partitioning can

be a very e�ective tool for transmission of single-layer video bitstreams over unreliable channels,

including channels that provide prioritized transmission (i.e., virtual channels in packet-based

networks). A key property of the approach is that it can be applied even after encoding has already

taken place, and thus is applicable not only for live transmission systems, but also for stored video

applications such as video-on-demand. A potential drawback of the approach is that, in contrast

with other scalable coding approaches, neither of the two partitions in which the bitstream is split

4The images here hare halftoned and scaled down for printing. The original images can be accessed at
http://www.ee.columbia.edu/~eleft/dp (in PGM format, luminance only).
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(a) No partitioning (b) Causally optimal partitioning

(c) Memoryless optimal partitioning (d) Rate-based partitioning

Figure 10: Reconstructed frame using various data partitioning algorithms (\Mobile", coded at 4
Mbps and partitioned at 3.2 Mbps, frame 12, P picture).

29



is self-contained. Consequently, due to the recursive nature of motion-compensated compression,

if part of the bitstream is lost (namely, from partition 1), error accumulation will occur.

We provided an analysis of data partitioning in an operational rate-distortion context. An op-

timal algorithm based on Lagrange multipliers was derived for non-predictive (intra-only) coding,

and shown to be less complex than a full decoder. For the predictive coding, or mixed-mode case

(I, P, and B pictures) the optimal algorithm was characterized and shown to possess signi�cantly

high complexity and delay, as a complete group of pictures was required to be processed at a

time. As an alternative, a \causal" minimization formulation was proposed, in which only the

accumulated error from past pictures is taken into account (while the one propagated to future

pictures is ignored).

An optimal algorithm for the causal problem was developed as a generalization of the non-

predictive case. Experimental results have shown that the algorithm performs quite well, with P

and B pictures having about 1 dB higher quality than I ones. It was then shown that tracking the

error accumulation from one frame to the next does not actually bene�t the partitioning process

in any signi�cant way, and hence that a memoryless algorithm employing Lagrangian optimization

is su�cient.

Finally, a faster but suboptimal algorithm that uses rate-based optimization was also proposed

for comparison purposes. It was shown to perform quite close (within 0.6 dB on the average) to

the optimal one for the intra-only case, but proved to be inferior by 1 dB on the average for

the mixed-mode case. Nevertheless, its simplicity makes it potentially attractive for low cost

implementations.
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