
2-D Transform Domain Resolution Translation

Jae-Beom Lee and Alexandros Eleftheriadis

Department of Electrical Engineering

and Columbia New Media Technology Center

Columbia University

New York, NY 10027, USA

fjbl,eleftg@ee.columbia.edu

March 9, 1998

Abstract

The extensive use of discrete transforms such as the Discrete Cosine Transform in image and
video coding suggests the investigation on �ltering before down sampling (FBDS) and �ltering
after up sampling (FAUS) methods directly acting on the transform domain [1, 2]. On the
other hand, Transform Domain Filtering (TDF) was recently introduced as an important tool
for implementing linear �ltering and other linear operators directly in the compressed domain
[3]. In this paper, we introduce the concept of \transform domain resolution translation"
as a combined form of the transform domain FBDS and FAUS issues, and then propose the
solution with the context of TDF. We, �rst, generalize the TDF to include non-uniform and
multirate cases. The former is de�ned as a TDF problem in which the original transform
domain is of di�erent size from the target one, while the latter considers the implementation
of sampling rate conversion in the transform domain. The implementation architecture is
based on pipelined structures that involve matrix-vector product blocks and vector addition,
but is not limited to only hardware eventhough the proposed architecture is easily realizable
with distributed arithmetic designs and minimizes arithmetic errors due to the small number
of processing stages involved. Chang and Messerschmitt showed that TDF is still useful in the
form of software architecture since transform data usually take on immensively compressed
form [4]. We show step by step examples of how these generalized notions of TDF can
provide general solutions to the sub-adjacent block problem, to the 1-D transform domain
resolution translation problem and, �nally, to the 2-D transform domain resolution translation
problem. Such techniques are particularly useful for fast algorithms for processing compressed
images and video, where transform coding is extensively used (e.g., in JPEG, H.261, MPEG-1,
MPEG-2 and H.263).

1

1 Introduction

Transform coding techniques are widely used for compressing digital image and audio signals. In

particular, the Discrete Cosine Transform (DCT) is used as the primary means for image and video

compression and transmission [5, 6, 7], and is at the core of several international standards (e.g.,

JPEG, H.261, MPEG-1, MPEG-2, and H.263). The large data rates (more than 100 Mbps) asso-

ciated with uncompressed video necessitate its storage and transmission in a compressed form; in

several instances, however, it is desired that processing operations are applied on the compressed

data. Examples include traditional image and video production facilities, as well as modern dis-

tributed multimedia systems that bring editing and processing capabilities to end-users.

Typical operations are pixel-oriented and applied in the spatial domain, and include overlays,

translation, scaling, linear �ltering, rotation, etc. The straightforward approach of decompressing,

processing, and recompressing is undesirable, due to the signi�cant computational overhead associ-

ated with compression and decompression (particularly for highly assymetric codecs like MPEG).

This makes it desirable that these operations are applied directly in the compressed or transform

domain. The computational overhead can then be signi�cantly reduced, as it only involves parsing

of the data up to the point where transform coe�cient data is available, and regeneration of data

based on the new transform coe�cient values. As an example, direct transform domain manipu-

lation has been employed in [4, 8] in order to provide fast video compositing algorithms, whereas

in [9, 10] it has been used to perform rate changes.

With respect to transform domain �ltering, a number of techniques have been applied to provide

convolution-multiplication properties to the DCT. Such \DCT �ltering" approaches successfully

reduce the number of multiplications and additions, but also possess some limitations and imper-

fections. For example, the scheme in [11] relies on a distortion factor w(n) which is di�cult to

implement, while the scheme in [12] requires that �lter coe�cients are real and symmetric. Fur-

thermore, since both schemes are concerned with circular convolution applied to individual signal

blocks, they cannot implement linear �ltering and cannot also avoid block edge e�ects.

More recently, an interesting idea was reported by Martucci in [13]. He derived a complete set of

symmetrical convolution routines for a family of discrete trigonometric transforms including DCT.

His method can be modi�ed to obtain linear convolution algorithms by appropriate zero padding

2

in the convolution domain. In our opinion, unfortunately, these algorithms cannot be used in most

of practical applications since the DCT domain data are already given without prior zero padding

in the spatial domain.

In recent work [3], we proposed the concept of transform domain �ltering (TDF) as a technique

to get around these problems, taking advantage of advanced modern VLSI technology. TDF is a

block-based �ltering process that is applied to transform domain data, and that can implement the

desired time domain �ltering. It is shown in [3] that the existing DCT �ltering approach can be

generalized to TDF, and a pipelining structure was presented as a means to implement it. The

TDF scheme overcomes the limitations in �lter coe�cients and is free from imperfections in the

reconstructed data. This �ltering scheme completely avoids the block edge e�ect caused by circular

convolution since it employs linear convolution. In addition, the two transforms, T1 and T2 of the

input and output respectively, need not be of the same kind. That is, T1 could be the inverse

DCT (IDCT) while T2 could be DFT, WHT, or others, thus directly providing a representation

of the �ltered signal in a di�erent transform domain. Applications for such conversions include,

for example, a DCT-based edge detector where T1 is IDCT and T2 is the Haar transform. Note

also that it is possible that T1 is a forward transform, while T2 is an inverse one, and hence the

input and output data are in the spatial (or time) domain. Thus this approach can even be used

for operations which are more naturally performed in the transform domain. Moreover, recent

works showed that TDF is still useful in software architecture since transform data usually take on

immensively compressed form such as DCT [4, 8]. The compression ratio is achieved to 50-100 to 1

in practical DCT-based codec, and hence a small proportion of transform data needs computation

in software architecture.

The original TDF approach in [3], however, is only applicable when the sizes of the transforms

T1 and T2 are the same. And it was not designed for multirate environments. In this paper, we

extend recent TDF into the notion of general transform size and multirate processing. This paper

also addresses the sub-adjacent block problem, 1-D transform domain resolution translation, and

2-D transform domain resolution translation as a combined form of transform domain FBDS and

FAUS issues for which we provide the solution in the form of TDF; However, this paper doesn't

mention issues of TDF itself, since they are examined in detail in recent papers [3, 4, 8]. In Section 2

3

we extend this approach by introducing the concept of Non-Uniform TDF (NTDF), in which the

two transform sizes need not be the same. A modi�ed TDF is applied by mapping the non-uniform

problem to a uniform one. As an example of the applications of NTDF, we show how it can be

used to provide a general solution to the direct computation of transform coe�cients in the \sub-

adjacent block problem" given in [14] . Section 3 extends TDF to include multirate processing

as well, resulting to Multirate TDF (MTDF). Again, a modi�ed TDF is applied, by mapping the

multirate problem into a non-uniform one. An example is given by providing a general solution to

the 1-D transform domain resolution translation problem. And then, we generalize it in the next

section to 2-D transform domain resolution translation problem, which is actually a 2-D version

of generalized transform domain FBDS and FAUS issues given in [1, 2]. Finally, in Section 5 we

discuss implementation considerations and present some concluding remarks.

2 Uniform and Non-Uniform Transform Domain Filtering

The Uniform TDF

We de�ne TDF as an operation which has the same functionality as a combination of transform,

�ltering, and transform [3]. The TDF problem for the case where the input and output transform

sizes are equal is depicted in Figure 1 (a) [3]. In this paper, this will be referred to as uniform TDF

(UTDF), since the original transform domain is of same size as the target one. In a traditional

approach, T1 would be the IDCT, T2 would be the DCT, and h(n) would be the desired linear �lter.

The pipelined implementation shown in Figure 1 (b) involves a set of matrix-vector multiplication

modules (Pi), and a vector adder. Denoting by M the transform block size and by q the �lter

length, we can de�ne:

H = [hij](M+q�1)�M (1)

4

where

hij =

8>>>>>>>>><
>>>>>>>>>:

h(i� j); j � i < j + q;

i = 0; 1; : : : ;M + q � 2;

j = 0; 1; : : : ;M � 1;

0; otherwise

(2)

and

Wj = [wkl]M�(M+q�1) (3)

with

wkl =

8>>>>>>>>><
>>>>>>>>>:

1; l = k + jM;

k = 0; 1; : : : ;M � 1;

l = 0; 1; : : : ;M + q � 2;

0; otherwise

(4)

The multiplying matrices can then be obtained as:

Pj
def
= T2WjHT1 (5)

resulting to an output from the vector adder:

Yi =
lX

j=0

PjXi�j (6)

where

l =
�
M + q � 1

M

�
(7)

Non-Uniform TDF

We de�ne Non-Uniform Transform Domain Filtering (NTDF) as a transform domain �lter which

has the same functionality as a combination of transform, �ltering, and transform, where the two

transforms are of di�erent sizes. The block diagram for an NTDF system is shown in Figure 2 (a).

Note that the sizes of the input (T1) and output transform (T2), M1 and M2 respectively, are not

necessarily the same. In the case where M1 = M2 we have the uniform TDF problem discussed

5

length qlength M length M

 h(n)T1 T2X Y

+ ++

z-1 z-1z-1 z-1 z-1z-1 z-1z-1

Y

X

PlP1P0

(b)

(a)

Figure 1: Single-stage Uniform TDF structure: (a) system model, (b) pipelined implementation
architecture.

6

in Section 1. We can map the non-uniform problem to a uniform one by extending the transform

matrices. In particular, let

T 0

1 = I lcm(M1;M2)
M1

�
lcm(M1 ;M2)

M1

 T1 (8)

and

T 0

2 = I lcm(M1;M2)
M2

�
lcm(M1 ;M2)

M2

 T2 (9)

where
 denotes the Kronecker matrix product, and where Im�n is a matrix with ones in the

major diagonal and zeros elsewhere. Note that the transform block sizes for T 0

1 and T 0

2 are both

lcm(M1;M2) where lcm(�) denotes the least common multiple, and hence the uniform TDF results

can be applied. As a result, the pipelining multiplication matrices become:

Pj = T 0

2WjHT 0

1 = (I
 T2)WjH(I
 T1) (10)

By de�ning

M
def
= lcm(M1;M2) (11)

the various parameters of the system are given only if M = lcm(M1;M2) by Eqs. (1) through (7).

The equivalent system model is shown in Figure 2 (b).

A concern in terms of implementation complexity is the size M of the expanded transform

matrices T 0

1 and T 0

2. We should note, however, that in most typical situations transform sizes are

powers of 2. In this case, M would simply be equal to the largest of M1 and M2, i.e.

M = lcm(M1 = 2k;M2 = 2l) =

8><
>:

M1; k � l

M2; k < l
(12)

thus making the hardware requirements equivalent to that of uniform TDF.

The following example provides a general solution to the direct computation of transform coef-

�cients for the sub-adjacent block problem using the NTDF method.

7

length M1

length M2

T1 T2 h(n)

length q

X Y

(a)

length lcm(M1,M2)

h(n)

length q

T1
’ T2’

length lcm(M1,M2)

(b)

YX

Figure 2: Single-stage Non-Uniform TDF structure: (a) system model, (b) equivalent uniform TDF
model.

8

The Sub-Adjacent Block Problem

As an example of the use of the non-uniform TDF approach, and due to its importance in prac-

tical video processing applications, we discuss the sub-adjacent block problem. Here we are given

the transform coe�cients of a rectangular array of blocks, and we are interested in obtaining the

transform coe�cients of a block which is not aligned perfectly with the original block structure. In

the two-dimensional case, such a block overlaps with up to 4 adjacent blocks. In this example, we

consider only one dimension for simplicity, and hence overlap will occur with only two blocks; gen-

eralization to two dimension is straight forward. The obvious method of solving this problem is to

take the inverse transform, and then compute the forward transform for the sub-adjacent block. In

recent work, transform domain manipulation techniques have been used to provide a direct method

for the sub-adjacent block problem [15, 16]. The proposed solution in [15] is restricted only to DCT.

In addition, a new block is formed by taking the \halves" of two adjacent blocks, so that an o�set

of only 4 is allowed between the input signal and output signals in the case of an 8-point transform.

The proposed method in [16] gives a particular solution for a special kind of transform family, in-

cluding WH, for which an output block is formed by taking some �xed pattern (i.e., not halves) of

two adjacent blocks in [17]. The solutions are given based on a speci�c fast algorithm so that for

practical applications several kinds of processors should be designed due to di�erent combination

of transforms and delays. In other words, this is not a general solution for arbitrary o�set patterns

and transform pairs. To overcome these drawbacks, we propose a generalized solution using the

NTDF method. To cast the sub-adjacent block problem in an NTDF context, we consider a simple

delay �lter as the o�set operation. We can notice that the procedure takes the form \transform-

�lter-transform" with potentially non-uniform block size. This is exactly the NTDF structure, and

hence can be directly implemented using Eqs. (8){(10).

As an example, we give the solution for the sub-adjacent block problem for the IDCT and Haar

transform pair, when the IDCT block size is 4, the Haar transform block size is 8, and a new block

is formed by a shift of 2 samples. This example can be thought of DCT-domain edge detector. A

shift of 2 samples implies a second order pure delay �lter.

9

M1 = 4 M2 = 8 M = lcm(4; 8) = 8

lcm(M1;M2)

M1
= 2

lcm(M1;M2)

M2
= 1

T 0

IDCT = I2�2
 TIDCT;

T 0

Haar = I1�1
 THaar

Other parameters, including the o�set �lter are given as follows.

H =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

10

W0 =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

W1 =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

Pj � T 0

2WjHT 0

1

Zi =
lX

j=0

PjXi�j

l =
�
10

8

�
= 1

11

The block diagram structure is exactly the same as Figure 1.

Note that the matrix product WjH is operation of partition on �lter matrix H implicitly;

Once an �lter coe�cient set is given, we can explicitly write down the partitioned matrices. At

this moment above expression is more convenient, but we use partitioned matrices expression in

Section 4 since the �lter coe�cient set is �xed.

3 Multirate Transform Domain Filtering

In this section, we generalize NTDF to MTDF in order to consider the case where the input and

output rates are di�erent. We de�ne MTDF as a transform domain �lter which has the same

functionality as a combination of transform, rate change operation, �ltering, rate change operation,

and transform as shown in Figures 3 and 4. Note that this is a general case of NTDF combined with

a decimator and a interpolator. MTDF is applicable to any combination of appropriate transforms,

and also provides arbitrary fractional rate change functionality. In order to obtain an explicit

representation in a form similar to the NTDF and UTDF structures, we divide the de�nition into

two cases, as shown in Figures 3 and 4. We de�ne MTDF Case I as the one where the interpolator

precedes the decimator, and MTDF Case II the one where the decimator precedes the interpolator.

The two possibilities of equal or unequal transform sizes (M1 6= M2 and M1 = M2) are considered

simultaneously.

MTDF Case I

We examine �rst the structure of MTDF Case I. The purpose of our derivation is to obtain the

equivalent structure in the form of a uniform TDF. The �rst step is to exchange the decimator and

the transform T2 in the output. Using the de�nition of decimation (where N � 1 out of N samples

are discarded), we can easily see that we can exchange the decimator and the transform just by

\upsampling" the matrix T2 both horizontally and vertically. In the horizontal direction, the values

of inserted components do not a�ect the system in any way, since their e�ect is eliminated by the

decimation stage that immediately follows. In the vertical direction, inserted rows must have the

value 0 (an example is given below). Consequently, one such valid matrix can be obtained by setting

12

 h(n)T1 T2

 TDF

L N

M1 M2

L N

 h(n)T′ T′21L N

(a)

(b)

(c)

LM1 NM2

Figure 3: De�nition of MTDF (Case I): (a) system model, (b) equivalent MTDF model, (c) equiv-
alent uniform TDF implementation.

13

 h(n)T1 T2

TDF

N L

N L

 h(n)T′ T′21 LN

(a)

(b)

(c)

M1 M2

M1 /N M2 /L

Figure 4: De�nition of MTDF (Case II): (a) system model, (b) equivalent MTDF model, (c)
equivalent uniform TDF implementation.

14

all inserted elements to 0; the expanded matrix ~T2 can then be expressed as:

~T2(M2N�M2N) = T2(M2�M2)
 JN�N (13)

where

JN�N =

0
BBBBBBBBB@

1 0 : :

0 0 : :

: : 0 :

: : : :

1
CCCCCCCCCA

In the second step, we exchange the interpolator and the transform T1 in the input. Again,

using the de�nition of interpolation (where L�1 zero-valued samples are inserted after each original

sample), we can see that we can exchange the interpolator and the transform just by upsampling

the matrix T1 in the horizontal and vertical directions. In this case, the role of inserted rows and

columns is reversed. When upsampling horizontally, inserted values must be 0; when upsampling

vertically, the precise value of inserted components becomes irrelevant. Hence a valid choice is

obtained by setting all inserted elements to 0, in which the expanded matrix ~T1 can be expressed

as:

~T1(M1L�M1L) = T1(M1�M1)
 JL�L; (14)

We can �nally combine the interpolation and decimation exchanges as shown in Figure 3 (c). As

we see, excluding the upsampling and interpolation stages, the end-system has exactly the structure

of a non-uniform TDF. Summarizing, the procedure for the general solution is:

Step 1: Replace M1 ! LM1

Step 2: Replace M2 ! NM2

Step 3: Replace the transform stages by ~T1 and ~T2 as given above.

The non-uniform TDF problem can be converted to a uniform one by expanding to the least

common multiple of LM1 and NM2. The equations describing the TDF components for the MTDF

problem can then be written as follows:

H = [hij](lcm(LM1;NM2)+q�1)�lcm(LM1;NM2) (15)

15

hij =

8>>>>>>>>><
>>>>>>>>>:

h(i� j); j � i < j + q;

i = 0; 1; : : : ; lcm(LM1; NM2) + q � 2;

j = 0; 1; : : : ; lcm(LM1; NM2)� 1;

0; otherwise

(16)

Wj = [wkl]lcm(LM1;NM2)�(lcm(LM1;NM2)+q�1) (17)

wkl =

8>>>>>>>>><
>>>>>>>>>:

1; l = k + j lcm(LM1; NM2);

k = 0; 1; : : : ; lcm(LM1; NM2)� 1;

l = 0; 1; : : : ; lcm(LM1; NM2) + q � 2;

0; otherwise

(18)

P � T 0

2WjHT 0

1 (19)

with

T 0

1 = I lcm(LM1 ;NM2)
LM1

�
lcm(LM1;NM2)

LM1

 ~T1 (20)

and

T 0

2 = I lcm(LM1 ;NM2)
NM2

�
lcm(LM1;NM2)

NM2

 ~T2 (21)

Zi =
lX

j=0

PjXi�j (22)

l =

$
lcm(LM1; NM2) + q � 1

lcm(LM1; NM2)

%
(23)

As shown in Figure 3, the total stucture is given by the combination of the interpolator, the

TDF pipeline structure, and the decimator. As a result, it still has the merits of the conventional

uniform TDF.

16

MTDF Case II

Let us now consider Case II, where the decimator precedes the interpolator. As in Case I, the

purpose of our derivation is to obtain the equivalent structure in terms of conventional TDF. Here

we will follow a reverse procedure: we will start from the equivalent TDF structure, and work our

way back to the MTDF architecture. The reason is that, as we are going to see, the reduction is

not always possible.

First, we assume that we have a transform pair T 0

1; T
0

2 in MTDF Case II as shown in Figure 4 (b).

We then �nd the transforms T1 and T2 as shown in Figure 4 (a), so that we have equivalent

functionality to the one in Figure 4 (b). We assume that M1=N and M2=L in Figure 4 are both

positive integers. In the same way we exchanged the transform operations with the decimator and

interpolator in Case I, we can similarly exchange them in this case as well. One can easily verify

that the form of the exchanged (\upsampled") transform matrices will be given by:

T1 =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

t1
0

0;0 0 0 � � � t1
0

0;1 0 0 � � � t1
0

0;2 0 0 � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

...
...

...
...

...
...

...
...

...

t1
0

1;0 0 0 � � � t1
0

1;1 0 0 � � � t1
0

1;2 0 0 � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

...
...

...
...

...
...

...
...

...

1
CCCCCCCCCCCCCCCCCCCCCCCCCA
M1�M1

(24)

17

and

T2 =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

t2
0

0;0 � � � � � t2
0

0;1 � � � � � t2
0

0;2 � � � � �

0 0 0 � � � 0 0 0 � � � 0 0 0 � � �

0 0 0 � � � 0 0 0 � � � 0 0 0 � � �

...
...

...
...

...
...

...
...

...

t2
0

1;0 � � � � � t2
0

1;1 � � � � � t2
0

1;2 � � � � �

0 0 0 � � � 0 0 0 � � � 0 0 0 � � �

0 0 0 � � � 0 0 0 � � � 0 0 0 � � �

...
...

...
...

...
...

...
...

...

1
CCCCCCCCCCCCCCCCCCCCCCCCCA
M2�M2

(25)

where t1
0

i;j and t2
0

i;j are the elements of T 0

1 and T 0

2 respectively, and \�" denotes \don't care" values.

We see then that the exchange of the interpolator and the decimator is only possible if T1 and

T2 have the speci�c structure shown in Eqs. (24) and (25). This limits the applicability of Case II

in practical situations, but we should note that a con�guration with the interpolator (upsampling)

as the last stage is not typical anyway.

Assuming that we are given an MTDF problem where the transform matrices satisfy the above

requirements, we can convert it into an NTDF problem and subsequently to a uniform TDF one

by following the steps detailed in Section 2. The transform size of the equivalent uniform TDF will

be:

M = lcm(M1=N;M2=L) (26)

The equations describing the various TDF components can be easily obtained from Eqs. (1) through (7),

after the matrices T 0

1 and T 0

2 are expanded according to Eqs. (8) and (9).

1-D Transform Domain Resolution Translation Problem

As a practical application of MTDF, we examine a general solution to the transform domain resolu-

tion translation problem. In this problem, we want to convert the rate (or resolution) of a signal that

is provided in the transform domain. The output signal can have the same or di�erent transform

size, and it can even be represented in a di�erent transform domain. Transform domain resolution

translation is a natural concept for compressed images and video; in this case the transform is DCT,

18

and the transform sizes are typically the same (8) for both the input (inverse) and output (forward)

transforms.

To resample a digital signal we perform two operations: lowpass �ltering and sampling rate

change. For an MTDF-based resolution translation system, and in order to avoid the transform

structure limitations of Case II, we only consider a design that follows Case I. The resolution

translation operation for the general case of fractional rate change involves upsampling and low-pass

�ltering, followed by downsampling. The �lter represents the combination of the two interpolation

and decimation �lters (the ideal �lter would have a cuto� at minf�=L; �=Ng). The MTDF system

block diagram is identical to the one shown in Figure 3. Let us consider, as a speci�c example,

the case where we use an 8-point DCT transform, a decimation factor of 2 (no interpolator), and

a 7-tap lowpass �lter. The parameters of the TDF system shown in Figure 3 can be expressed as

follows.

T1 = C�1 T2 = C

where C is the 8 � 8 DCT matrix,

N = 2 L = 1 q = 7

M1 = 8 M2 = 8 NM2 = 16:

lcm(LM1; NM2) = lcm(8; 16) = 16

H = [hij]22�16

hij =

8>>>>>>>>><
>>>>>>>>>:

h(i� j); j � i < j + 7;

i = 0; 1; : : : ; 21;

j = 0; 1; : : : ; 15;

0; otherwise

19

Wj = [wkl]16�22

wkl =

8>>>>>>>>><
>>>>>>>>>:

1; l = k + j16;

k = 0; 1; : : : ; 15;

l = 0; 1; : : : ; 21;

0; otherwise

Pj = T 0

2WjHT 0

1

T 0

1 = I2�2
 (C�1
 J1�1);

T 0

2 = I(1�1)
 (C
 J2�2);

Zi =
lX

j=0

PjXi�j

l =
�
22

16

�
= 1

4 2-D Transform Domain Resolution Translation

In this section, we apply MTDF in order to �nd a solution for 2-D transform domain resolution

translaion problem. We follow a restriction to generalization procedure; First we obtain the solution

under some constraints, and later we relax the constraints for more generalized expression. The

problem is shown in Figures 5 and we consider only MTDF Case I as a potential solution. We restrict

ourselves in the beginning in following assumptions with little loss of generality. First, sampling

20

 f(m,n)T1 T2

 TDF

Lx,Ly

M1 M2

 f(m,n)T′ T′21

(a)

(b)

(c)

LM1 NM2

Nx,Ny

L,L N,N

N,NL,L

Figure 5: De�nition of 2-D MTDF : (a) system model, (b) equivalent 2-D MTDF model, (c)
equivalent 2-D uniform TDF implementation.

factors for down/up sampled images are same in x and y directions. This means, the output

images are scaled with same ratio in x and y directions. Second, the 2-D digital �lter is separable

(f(m;n) = vmhn) and its length is limited in �r � m;n � r in which r = lcm(LM1; NM2). This

�lter length is still not short, for at least the �lter length of 17 � 17 is guaranteed at r = 8.

We �rst follow same procedures as in MTDF in the previous section. Figure 5 (a) shows up and

down sampling factors as L and N by which both x and y directions are represented. Matrices in

Figure 5 (b) can be represented by:

~T2(M2N�M2N) = T2(M2�M2)
 JN�N (27)

~T1(M1L�M1L) = T1(M1�M1)
 JL�L; (28)

21

T 0

1 = I lcm(LM1 ;NM2)
LM1

�
lcm(LM1;NM2)

LM1

 ~T1 (29)

and

T 0

2 = I lcm(LM1 ;NM2)
NM2

�
lcm(LM1;NM2)

NM2

 ~T2 (30)

Then, we de�ne a virtical and a horizontal �lter in matrix forms. Note that we use now explicit

expressions for �lter matrices V and H since the �lter coe�cient sets are given due to our limitting

�lter length in the second assumption.

V =

0
BBBBBBBBBBBBBBBBBBBBB@

v�r v1�r v2�r : : v�1 v0 : vr�1 vr 0 0 : : 0 0

0 v�r v1�r : : v�2 v�1 : vr�2 vr�1 vr 0 : : 0 0

0 0 v�r : : v�3 v�2 : vr�3 vr�2 vr�1 vr : : 0 0

: : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : 0 0

: : : : : : : : : : : : : : vr 0

0 0 : : : v�r v1�r : v0 v1 v2 v3 : : vr�1 vr

1
CCCCCCCCCCCCCCCCCCCCCA

(31)

and

H =

0
BBBBBBBBBBBBBBBBBBBBB@

h�r h1�r h2�r : : h�1 h0 : hr�1 hr 0 0 : : 0 0

0 h�r h1�r : : h�2 h�1 : hr�2 hr�1 hr 0 : : 0 0

0 0 h�r : : h�3 h�2 : hr�3 hr�2 hr�1 hr : : 0 0

: : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : 0 0

: : : : : : : : : : : : : : hr 0

0 0 : : : h�r h1�r : h0 h1 h2 h3 : : hr�1 hr

1
CCCCCCCCCCCCCCCCCCCCCA

(32)

We partition V and H into [V1; V2; V3] and [H1;H2;H3], where

22

V1 =

0
BBBBBBBBBBBBBBBBBBBBB@

v�r v1�r v2�r : : v�2 v�1

0 v�r v1�r : : v�3 v�2

0 0 v�r : : v�4 v�3

: : : : : : :

: : : : : : :

: : : : : : :

0 0 : : : 0 v�r

1
CCCCCCCCCCCCCCCCCCCCCA

(33)

V2 =

0
BBBBBBBBBBBBBBBBBBBBB@

v0 v1 v2 : : vr�2 vr�1

v�1 v0 v1 : : vr�3 vr�2

v�2 v�1 v0 : : vr�4 vr�3

: : : : : : :

: : : : : : :

: : : : : : :

v1�r v2�r v3�r : : v�1 v0

1
CCCCCCCCCCCCCCCCCCCCCA

(34)

and

V3 =

0
BBBBBBBBBBBBBBBBBBBBB@

vr 0 0 : : 0 0

vr�1 vr 0 : : 0 0

vr�2 vr�1 vr : : 0 0

: : : : : : :

: : : : : 0 0

: : : : : vr 0

v1 v2 v3 : : vr�1 vr

1
CCCCCCCCCCCCCCCCCCCCCA

(35)

with similar de�nitions of H1;H2, and H3.

Now, let x denote a spatial domain input block of size 3r� 3r, subdivided into nine r� r blocks

as follows:

23

x =

0
BBBBB@

x11 x12 x13

x21 x22 x23

x31 x32 x33

1
CCCCCA (36)

The r � r output block y22 that corresponds to the central input block x22 is given by

y22 = V xH t: (37)

y22 =
3X

i=1

3X
j=1

VixijH
t
j (38)

Since 2-D transforms are given by Y22 = Ty22T
t, the second transform domain values are Y22 =

T 0

2y22T
0t
2 .

Y22 =
3X

i=1

3X
j=1

T 0

2VixijH
t
jT

0t
2 (39)

If we de�neXij as the �rst transform domain values, xij = T 0

1XijT
0t
1 . Thus, overall representation

is given by:

Y22 =
3X

i=1

3X
j=1

T 0

2ViT
0

1XijT
0t
1 H

t
jT

0t
2 (40)

If we de�ne P col
i and P row

j by

P col
i � T 0

2ViT
0

1 (41)

and

P row
j � T

0t
1 H

t
jT

0t
2 ; (42)

then

Y22 =
3X
i=1

3X
j=1

P col
i XijP

row
j (43)

24

We now relax the �lter length constrains for more generalized expression. If the �lter length is

over 2r + 1, we can represent the vertical and horizontal �lter matrices with more partitions, not

just 3. How many partions we can get just a�ects the upper limit of summations. For example, if

we get NP as the number of partitions, above equation is rewritten by :

YNP
2 +1;NP2 +1 =

NPX
i=1

NPX
j=1

P col
i XijP

row
j (44)

2-D Transform Domain Resolution Translation Example

Recently, a direct DCT domain implementation technique for image resizing was presented in [1, 2].

We have driven that 2-D MTDF can be used a core part of DCT domain image resizing issue, which

is called 2-D transform domain resolution translation in this paper. The resolution translation

operation for the general case of fractional rate change involves upsampling and low-pass �ltering,

followed by downsampling. The �lter represents the combination of the two interpolation and

decimation �lters (the ideal �lter would have a cuto� at minf�=L; �=Ng). The 2-D MTDF system

block diagram is identical to the one shown in Figure 5. Let us consider, as a speci�c example,

the case where we use an 8-point DCT transform, a decimation factor of 2 (no interpolator), and

a 32-tap lowpass �lter. The parameters of the TDF system shown in Figure 5 can be expressed as

follows.

T1 = C�1 T2 = C

where C is the 8 � 8 DCT matrix,

N = 2 L = 1 q = 33

M1 = 8 M2 = 8 NM2 = 16:

lcm(LM1; NM2) = lcm(8; 16) = 16

25

The pipeline matrices for columns and rows are

P col
i � T 0

2ViT
0

1

P row
j � T

0t
1 H

t
jT

0t
2 ;

where

T 0

1 = I2�2
 (C�1
 J1�1);

T 0

2 = I(1�1)
 (C
 J2�2);

with the same de�nition of Vi and Hj in (31)-(35) at r = 16.

Then,

Y22 =
3X
i=1

3X
j=1

P col
i XijP

row
j

= P col
1 X11P

row
1 + P col

1 X12P
row
2 + P col

1 X13P
row
3

+P col
2 X21P

row
1 + P col

2 X22P
row
2 + P col

2 X23P
row
3

+P col
1 X31P

row
1 + P col

3 X32P
row
2 + P col

3 X33P
row
3

Figure 6 shows the proposed hardware/software structure of 2-D transform domain resolution

translation. We believe that this example shows most practical cases; Eventhough we provide a

generalized expression in (44), we usually don't use very high order �lters in �ltering.

5 Concluding Remarks

In this paper, we de�ned non-uniform transform domain �ltering (NTDF), which is a generalized

version of conventional TDF in terms of allowing di�ering input and output transform sizes (as well

26

N,N

(a) (b)

Y22
X21

X11
X12

X13

X22
X23

X31
X32

X33

P1
col

P2
col

P3
col

P1
row

P2
row

P3
row

STORAGE

Combination of pre/post
matrix multiplications

L,L

Figure 6: Software/Hardware pipelining structure of 2-D transform domain translation : (a) struc-
ture, (b) sub-routine/sub-processor.

27

as di�erent types). We have analyzed the structure of NTDF systems and have shown how they can

be converted to an equivalent TDF one, for which the solution is readily available. We also showed

how to extend NTDF to multirate TDF (MTDF), where the rates of the input and output signals

are di�erent, and follow a rational proportionality relationship (fractional rate change). Here we

distinguished two di�erent cases, depending on if the interpolator precedes the decimator (Case I)

or vice-versa (Case II). We showed that Case I can be converted to an NTDF problem, while for

Case II this is possible if and only if the transform matrices have a particular structure. We should

note that, for both NTDF and MTDF, extensions to multiple dimensions are trivial, as long as the

transform operation is a separable one.

As practical examples of the utility of NTDF and MTDF, we showed how they can be used

to provide general solutions to the sub-adjacent block problem as well as the 1-D/2-D transform

domain resolution translation (conversion) problem. These solutions sidestep all the limitations

of existing approaches in terms of allowable transform type or �lter structure [15] and generalize

the issues in [16, 1, 2] to a combined form of transform domain FBDS and FAUS cases. These two

examples are strongly connected with applications involving coded images and video, since transform

coding is a core component of all standard compression schemes (JPEG, MPEG-1, MPEG-2, H.261,

H.263).

We have shown that the fundamental expression in both NTDF and MTDF is that of the matrix-

vector product, leading to various advantages for a TDF hardware/software implementation. After

the �lter coe�cients are determined, we can pre-calculate the matrix coe�cient blocks that appear

in the TDF analyses; thus all potential arithmetic (�nite precision) errors disappear, except for the

matrix block multiplication. Note that the same accuracy remains after the original data is shifted

in the course of pipelining. That is, the pipelining structure itself gurantees a small and uniformly

distributed arithmetic error which is only due to the individual matrix-vector multiplications.

These results directly generalize those reported in [3]: NTDF eliminates the limitation of regular

TDF in terms of allowing di�erent transform sizes, whereas MTDF eliminates the limitation of

NTDF by allowing di�errent input and output signal rates. These two extensions allow the TDF

architecture to be applied to a large variety of relevant applications such as 2-D image processing

and compression.

28

References

[1] A. Neri, G. Russo, and P. Talone, \Inter-block �ltering and downsampling in DCT domain,"

Signal Processing : Image communication, pp. 303{317, June 1994.

[2] N. Merhav and V. Bhaskaran, \Fast algorithms for DCT-domain image downsampling and for

inverse motion compensation," IEEE Trans. on Circuits and Systems for Video Technology,

vol. 7, pp. 408{476, June 1997.

[3] J. B. Lee and B. G. Lee, \Transform domain �ltering based on pipelining structure," IEEE

Trans. Signal Processing, vol. 40, pp. 2061{2064, Aug. 1992.

[4] S. F. Chang and D. G. Messerschmitt, \Manipulation and compositing of MC-DCT compressed

video," IEEE JSAC, Special Issue on Intelligent Signal Processing, pp. 1{11, Jan. 1995.

[5] N. Ahmed, T. Natarajan, and K. R. Rao, \Discrete cosine transform," IEEE Trans. Compt.,

vol. C-23, pp. 90{93, Jan. 1974.

[6] N. Ahmed and K. R. Rao, Orthogonal Transforms for Digital Signal Processing. New York:

Springer Verlag, 1975.

[7] W. H. Chen and C. H. Smith, \Adaptive coding of monochrome and color images," IEEE

Trans. Commun., vol. COM-25, pp. 1285{1292, Nov. 1977.

[8] S. F. Chang and D. G. Messerschmitt, \A new approach to decoding and compositing motion

compensated DCT-based images," in Proc. of IEEE ICASSP '93 Minneapolis, Minnesota,

pp. V421{V424, Apr. 1993.

[9] A. Eleftheriadis and D. Anastassiou, \Meeting Arbitrary QoS Constraints Using Dynamic Rate

Shaping of Coded Digital Video," in Proceedings, 5th International Workshop on Network and

Operating System Support for Digital Audio and Video, (Durham, New Hampshire), pp. 95{106,

April 1995.

29

[10] A. Eleftheriadis and D. Anastassiou, \Constrained and General Dynamic Rate Shaping of

Compressed Digital Video," in Proceedings, 2nd IEEE International Conference on Image

Processing, (Washington, DC), pp. III.396{399, October 1995.

[11] W. H. Chen and S. C. Fralic, \Image enhancement using cosine transform �ltering," presented

at the Image Sci. Math. Symp. Monterey, CA, Nov. 1976.

[12] B. Chitprasert and K. R. Rao, \Discrete cosine transform �ltering," IEEE Trans. Signal Pro-

cessing, vol. 19, pp. 233{245, 1990.

[13] S. A. Martucci, \Symmetric convolution and discrete sine and cosine transforms," IEEE Trans.

on Signal Processing, vol. 42, pp. 1038{1051, May 1994.

[14] T. Fjallbrant, \A wide-band approach to adaptive transform coding of speech signals a tms

320 signal processor implementation," in Proc. IEEE ISCAP-85(Kyoto Japan), pp. 312{324,

1985.

[15] W. Kou and T. Fjallbrant, \A direct computation of dct coe�cients for a signal block taken

from two adjacent blocks," IEEE Trans. Signal Processing, vol. 39, pp. 1692{1695, July 1991.

[16] W. Kou and T. Fjallbrant, \Fast computation of transform coe�cients for a subadjacent block

for a transform family," IEEE Trans. Signal Processing, vol. 39, pp. 1695{1699, July 1991.

[17] W. Kou and Z. Hu, \Several methods of constructing discrete orthogonal transforms," Acta

Electron. Sinica, vol. 14, pp. 95{102, May 1986.

30

