

bandwidth
utility functions scaling profiles

 utility-fair

I. INTRODUCTION

The emerging MPEG-4 video-coding standard [5] is
suitable for a wide range of applications (e.g., storage and
communication applications). The most distinctive feature
of MPEG-4 is its ability to independently encode video
objects appearing in a scene. Object-based treatment of
video sequences enables exploration of a new type of media
scaling called content-based scalability. It is widely agreed
that the performance of distributed multimedia content
(e.g., video streams) can be improved by exploiting the
intrinsic scalability of content through rate control
techniques coupled with effective media scaling and
periodic bandwidth renegotiation. This can result in a
significant increase in the utilization of network capacity
[1]. These techniques are well suited toward transporting
and scaling video content in response to time-varying
bandwidth availability typically found in the Internet and
more characteristically in wireless and mobile networks.

Bandwidth utility functions [9] can be used to
characterize an application’s capability to adapt over a range
of available bandwidth. For video applications utility takes
the form of a video quality metric. Studies of video quality
measurement have placed emphasis on the design of
accurate perceptual metrics [15] [7]. However, little

* Corresponding author.

attention has been paid to the generation of these perceptual
quality metrics. In network economics research, utility
functions are used as a theoretical abstraction of application
demands for network pricing [14] and the optimization of
resource allocation in wireline [13] and wireless [8] [9]
networks. Recently, we have developed an approach for the
dynamic generation of utility functions [10] [2]. In this
paper, we build on this work and design a utility-based
network adaptation system enabling content-aware
adaptation for MEPG-4 video delivery.

The utility-based adaptation framework comprises three
modules as illustrated in Figure 1: a content scaler, a
bandwidth allocator and a utility generator. The content
scaler performs content-based rate control interacting with
the bandwidth allocator to realize utility-based bandwidth
allocation [10] [13] in the network. The utility generator
dynamically creates bandwidth utility functions on-demand
for the content scaler and bandwidth allocator modules. The
utility generator can be located at the video server to gain
access to MPEG-4 video object information without
additional transcoding overhead or at any server in the
network or at its edges. Typically, the content scaler would
be placed close to or at the network bottleneck. For
example, in the case of time-varying wireless networks the
content scaler could be installed at base station to
dynamically scale downlink media. Being able to program
and locate the components of the architecture has a number
of benefits. Base-to-mobile scaling can react to time-
varying bandwidth over faster time-scales and in a more
scalable in comparison to end-to-end adaptation approaches
[16].

The structure of the paper is as follows. In Section II we
present a system architecture that addresses a number of
technical barriers facing the design of utility-based
adaptation systems. In Section III we introduce the concept
of scaling profiles that characterize the scaling actions that
can be applied to the transmission of multiple MPEG-4
video objects in the same session. Following this, in Section
IV we discuss an approach to increase the speed of utility
generation using content classification techniques. In
Section V, we present an adaptive prediction technique that
keeps generated utility functions meaningful over network
adaptation time-scales. Next, in Section VI, we discuss our
experiment results and finally, in Section VII, we conclude
with some remarks.

Utility-based Network Adaptation for MPEG-4 Systems

Paul Bocheck, Andrew T. Campbell, Shih-Fu Chang and Raymond R.-F. Liao*

Dept. of Electrical Engineering,
Columbia University

{bocheck, campbell, sfchang, liao }@ee.columbia.edu

II. SYSTEM ARCHITECTURE

The design of utility-based network adaptation systems
is dependent on a number of systems issues including
encoding techniques, video content and user preferences.
Therefore, a single generic design solution to these issues is
unlikely. Rather, a solution capable of accommodating a
range of system considerations through programmability is
more likely to succeed.

A. Challenges

A number of technical challenges motivate the design of
our utility-based MPEG-4 system. First, with the
emergence of MPEG-4 technology, one single packet
stream can contain a number of elementary streams
corresponding to different media objects with distinct
adaptation needs. Scaling techniques applied to each
individual media object can vary with video content
changes. Therefore any model characterizing MPEG-4
media scalability should take into account at least two

B. System Architecture

allocator
bandwidth

scaler
content

utility
generator

BW allocation

scaled video streamvideo stream

decoded utility function

utility
function

Figure 1: Utility-based Adaptation Framework

Scaler

Content-based
Utility Function

Estimator

Scaling Profile

utility generation trigger

Long-range
Utility Function

Predictor
Selector

MPEG-4 video stream

utility function

user preferences

content scaler

Utility Generator

video stream

scaling
profile

Utility-based Bandwidth

Allocation

utility function
bandwidth
assigned

scaled video
stream

network node

scaling
profile

MUX

network

Figure 2: System Architecture

Figure 2.
By applying machine learning techniques to video

content classification [2] the utility estimator uses content
features to classify incoming video objects. Instead of
generating a new utility function for each video object, the
estimator reuses utility functions generated for a class
containing a particular video object thereby significantly
increasing the performance of the overall utility generator.

The long-range utility function predictor resolves any

III. FORMULATING SCALING PROFILES

• spatial resolution scaling

• temporal domain scaling
• quality scaling

• content-based scaling

for example, as dropping chrominance,
dropping background objects and reducing the frame rate of
foreground objects.

A. Single Video Objects

ui , Ri set
Si,

Ri ui

Si {Si}

Si

A3

A2(30)
A1

A2(100)

S4

A3

S4 = {A3}

S3 = {A3, A2(30)}

S2 = {A3, A2(30), A1}

S1 = {A3, A1, A2(100)}

A2(x): DRS on luminance

A3: drop chrominance

A1: drop B frames

up to x%

Media Scaling Toolkits
at Server

URL

1

utility (MOS scale)

S4

S2

S1

R R R R2 3 4 5

2

3

4

5

S3

Utility Function
bandwidth

1 R

Scaling Pattern

Figure 3: Scaling Pattern of Single Video Object

scaling pattern S3, which comprises two scaling actions:
drop chrominance (A3) and drop up to 30% of DCT
coefficients using DRS (A2(30)).

B. Aggregated Objects

In MPEG-4, a number of elementary streams
corresponding to different video objects can be multiplexed
into the same network session at the FlexMux and
TransMux layers [5]. Utility functions constructed for
single video objects therefore need to be aggregated
together into a form suitable for network-wide utility-based
bandwidth allocation. By associating a priority with a video
object we can define a scaling order for different video
objects in the case of aggregation. A lower priority video
object could be dropped before a higher priority object is
scaled down. In this respect an aggregated utility curve will
have a shape representing a concatenation of two utility
curves for video objects with high and low priority objects.
The resulting curve is normalized over a 5-level mean-
opinion-score (MOS) scale [6]. Objects that have the same
priority are scaled proportionally according to a utility-fair
algorithm [9]. In this case, the aggregated utility curve is
calculated based on the utility-fair algorithm.

Utility functions and scaling profiles are dynamically
created by the utility generator and dispatched to the
content scaler as illustrated in Figure 2. The content scaler
forwards utility functions to the bandwidth allocator to
make resource reservations. Since the generation of utility
curves and scaling profiles can occur frequently, an
efficient signaling scheme is required to ensure the timely
delivery of scaling information to distributed algorithms
(e.g., the content scaler). We use the MPEG-4 Object
Extension Descriptor component [5] for signaling this
information across the network. We define a Scaling
Extension Descriptor that contains (i) a utility function for
each elementary stream; (ii) an aggregated utility function;
and (iii) a scaling profile comprising the scaling pattern and
the aggregation priority associated with all active video
objects. The utility function is represented by a vector of
discontinuity points (ui , Ri). The scaling pattern takes the
form of an array of URLs that point to the location of a

specific media scaling implementation. The structure of the
Scaling Extension Descriptor is similar to the Elementary
Stream Descriptor that carries URLs and stream priority
[5].

IV. THE CONTENT-BASED UTILITY FUNCTION ESTIMATOR

The dynamic generation of bandwidth utility functions
requires large amount of processing power. Given the
current state-of-the-art, generation of utility functions on a
frame-by-frame basis is difficult to achieve in real-time
[10]. In what follows, we describe a technique for content-
based utility function estimation that accelerates the
generation of utility functions.

A. Model

The proposed technique does not rely on the explicit
generation of utility functions for each video object. Rather,
it uses video content and machine learning techniques to
determine the utility class of an object. Because video
content can be dynamically extracted from compressed
video streams, this technique is suitable for real-time

an adaptive content
classification loop real-time estimation path

utility class
characteristic utility function

V
O

 fe
at

ur
es

Pool

Training

features
content

Utility Selector

Tree
Decision

Generator

utility

Content-based Utility Function Estimator

Utility Clustering
Module

Adaptive Content Classification Loop

content features utility function

characteristic
utility function

scaling profile

MPEG-4 stream

Real-time Estimation Path

decision tree
classifier

Content Analyzer

VO selection

Utility Generator

Per-frame
utility
function

functions

utility classes

utility classes

Figure 4: Architecture of Content-based Utility Estimator

decision tree parameters used by the utility selector.
Explicit computation of the utility function is performed at
this point for the selected video objects. In this manner, the
architectural model decouples the adaptation loop
processing that is computationally intensive from the real-
time estimation path. The system operate in real-time by
avoiding explicit per-object generation of utility functions.

B. Real-time Estimation Path

The real-time estimation path illustrated in Figure 4
supports the estimation of utility functions on a frame-by-
frame basis where estimation is based on the content
features extracted by the content analyzer. Incoming
MPEG-4 video streams are demultiplexed and individual
video object streams dynamically extracted by the content
analyzer. The analyzer processes individual video object
streams extracting video content information in real-time
[11]. Content information comprises visual features and
encoder-specific features. Visual features describe video
object characteristics (e.g., video object size, speed, etc.)
that do not change if an alternative encoding technique is
applied. In contrast, encoder-related features are sensitive
to specific encoding technique and encoder parameters
(e.g., frame type, DCT values, number of bits for various
encoder-specific stream components, etc.). Most content
features can be extracted directly from compressed video
streams (e.g., object size, picture type). However, some
encoder-related features can be only obtained from the
encoder itself (e.g., PSNR). Therefore, the extraction of
content features is somewhat dependent on the location of
the content analyzer in the system (e.g., at the video server
or base station). When content analyzer is not co-located
with at the video server additional information not readily
available in the network can be carried in the extension
fields of the MPEG-4 Object Descriptor. In this case, the
content analyzer will be able to extract this information

C. Adaptive Content Classification Loop

video object’s content feature. This operation is performed
by the utility selector, which uses the decision tree to
estimate the utility function.

V. THE LONG-RANGE UTILITY FUNCTION PREDICTOR

Utility functions are not generated once and expected to
remain valid over the lifetime of a video stream. Rather,
they are time varying due to their sensitivity to changes in
the stream. Typically, network adaptation operates over
much longer time-scale, potentially in the order of hundreds
of milliseconds to tens of seconds and is conditioned by the
signaling/control system capacity, traffic load and the round
trip delay between a source encoder and receiving decoder.
There is a need to reconcile the mismatch between these
two distinct time-scales. We propose to push the utility
function generation interval as close to the network
adaptation time-scale thereby attempting to keep the

expanding factor e

 utility
duration T

T
T

Rk

Ravg

Ravg Ravg (1-) Rk
T

Ravg e
T

e
edec e

Ravg

einc

T

VI. EVALUATION

A. Experiment Setup

In comparison to continuous-rate scaling methods,

Rmax Rmin

Rmin Rmax

1

1

The bandwidth utility function u(r) is defined as: u(r) = 1 - err2(r) /
sig2, where sig2 = i=1, N Xi

2 / N and err2(r) = i=1, N (Xi - Yi (r))2 / N. The
sig2 component is the mean energy each pixel has in the original picture

investigation of more sophisticated objective utility metrics
incorporating human vision systems is the subject of on-
going research.

B. Content-based Utility Estimation Experiment

In what follows, we discuss the implementation issues
associated with the content-based utility function estimator.
In our experiments, we have used an MPEG-2 video stream

1) Implementation
We have simulated the operation of all the functional

modules within the content-based utility estimator as
illustrated in Figure 4. In our simulation experiments, one
set of video objects was used for training the utility
clustering module and the generation of a decision-tree. A
second set of video objects was used to obtain the
classification results used by the utility selector. We
randomly select half of the video objects and placed them in
the training pool thus bypassing the video object selection
algorithm discussed in Section V. We have implemented an
MPEG-2 content analyzer that extracts content features in
the compressed domain. The content analyzer was
implemented using the Columbia University MPEG-2
software decoder and broadly operates as follows. First the
content analyzer conducts video scene detection then video
object detection and finally, content feature extraction.
Because the analyzer operates in the compressed domain,
the original MPEG-2 decoder was simplified to contain
only parts necessary for scene detection, video object
detection and visual feature estimation. In particular, the
computationally intensive inverse DCT function was fully
omitted. This simplification results in real-time
performance on a general-purpose workstation. For
example, on SUN SPARCstation 5 it is possible to analyze
the content of each video frame in less than 10 ms (i.e.,
before the next frame needs to be processed).

and err2 the mean square error between the distorted image and the original
image. N represents the number of pixels in the picture, Xi and Yi are the
ith DCT coefficients in the original and distorted images, respectively. The
metric is then normalized into the range of 1 to 5 to correspond to the
MOS 5-level quality index.

2) Results

that is to say, among the total 734 video objects, 91 % of
them were classified correctly using content features. This
high level of classification accuracy demonstrates the
viability of the approach.

C. Long-range Utility Predictor Experiment

In what follows, we present the evaluation of the utility
predictor that keeps generated utility functions meaningful
over longer time-scales. The experiments used two MPEG-
2 video traces notably the Chef (1 minute TV interview)
and TrueLies (3.5 minutes action movie excerpt) video
clips, where the Chef video sequence has relatively slow
scene changes and TrueLies relatively fast changes. The
prediction algorithm is designed to operate over the
quantized instantaneous utility functions. We quantize the
instantaneous utility functions easing the processing and
reducing the number of states required since quantization
reduces the number of rate samples representing a utility
function.

In this experiment, we use the 5-level MOS quantization
scale [6]. Utility levels 0, 1, . . ., 4 are mapped into discrete
utility values 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. Let rk

denote the rate value corresponding to the kth utility level.
rk is calculated via linear interpolation to locate the rate that
causes u(R) to cross the kth discrete utility value. The
resulting 5 sample points (r0 , 0), (r1 , 1), (r2 , 2), (r3 , 3),

and (r4 , 4), together with two end points (Rmin , 0) and (Rmax

, 4), support the construction of a piecewise-linear utility
function whose utility range is [0, 4].

1) Adaptive Prediction Algorithm
We apply the prediction algorithm to both traces, with an

 = 0.8 and an initial expanding factor e0 = 1.2. In addition,
we set einc = 0.1 and edec = 0.01 so that the expanding factor
slowly decreases when there is no violation and quickly
increased when violations occur. Figure 7 illustrates the
generated utility functions for T = 30 seconds. Once

0

0.5

1
0 (68)

0

0.5

1
1 (66)

0

0.5

1
2 (63)

0

0.5

1
3 (60)

0

0.5

1
4 (58)

0

0.5

1
5 (57)

0

0.5

1
6 (52)

0

0.5

1
7 (49)

0

0.5

1
8 (41)

0

0.5

1
9 (38)

0

0.5

1
10 (31)

0

0.5

1
11 (28)

0

0.5

1
12 (28)

0

0.5

1
13 (27)

0

0.5

1
14 (26)

0

0.5

1
15 (26)

0

0.5

1
16 (16)

Figure 5: Utility Classification Result

Table 1: Decision Tree Accuracy

Class 1 2 3 4 5 6 7 8 9
Accuracy 100% 100% 93.88% 90.00% 93.10% 100% 100% 98.08% 92.65%
Class 10 11 12 13 14 15 16 17
Accuracy 93.65% 92.59% 92.42% 90.32% 81.58% 53.57% 76.92% 78.57%

a non-step function once again.
The total number of violations observed during the

experiment is shown in Table 2. The data was collected for
experiments with e set at 1.1 to 1.3 with a timeout interval T
ranging from 10 to 50 seconds. The algorithm generally
performs well because the number of violations remains
small. This is due to adaptive nature of the prediction
algorithm, which dynamically increase or decrease the

2) Prediction Error Analysis

u*(R)
uj(R)

err+

err-

u*(R)
uj(R)

err+ = i = 0, ... , 4 u*-1(i) - uj
-1(i) , 0 / Rmax

u*(R) uj(R)
err- = i = 0, ... , 4 u*-1(i) - uj

-1(i) , 0 / Rmax

u*-1(.) u*(.)

Rmax

T

0

0.5

1
0 (67)

0

0.5

1
1 (65)

0

0.5

1
2 (74)

0

0.5

1
3 (55)

0

0.5

1
4 (60)

0

0.5

1
5 (62)

0

0.5

1
6 (55)

0

0.5

1
7 (48)

0

0.5

1
8 (39)

0

0.5

1
9 (37)

0

0.5

1
10 (34)

0

0.5

1
11 (16)

0

0.5

1
12 (24)

0

0.5

1
13 (28)

0

0.5

1
14 (26)

0

0.5

1
15 (27)

0

0.5

1
16 (17)

Figure 6: Content Classification Result

Table 2: Number of Violations in Adaptive Prediction Algorithm

Chef Clip TrueLies Clip
T=10 T=20 T=30 T=40 T=50 T=10 T=20 T=30 T=40 T=50

e=1.1 4 2 2 2 2 4 5 5 5 5
e=1.2 2 3 0 2 0 2 1 1 1 1
e=1.3 0 0 0 0 0 1 0 0 0 0

estimation error mostly remains zero and generates a
negative spike of less than -3% only when there are
violations.

We performed utility prediction offline to determine the
best possible performance achievable. The offline utility
predictor stores all the instantaneous utility functions
generated during a target utility duration to accurately
derive the predicted utility function. The resulting system
becomes noncausal as it uses posteriori data to generate
predicted utility functions. Figure 9 illustrates the best
estimation error achieved by the offline algorithm for the
TrueLies video clip with a utility duration of 50 seconds.
The under-estimation error is constantly zero. The over-
estimation error has a similar shape to Figure 8 but is
shifted to the range of 0% and 15%. In this case the over-
estimation error is predominantly caused by the intrinsic
scene changes of the video content and not by the utility
generation procedure.

 After comparing the over-estimation errors in both
Figure 9 and 8, we observe that: (i) the two over-estimation
curves in Figure 8 are of similar shape indicating that the
proposed prediction algorithm is not sensitive to the length
of the utility duration; and (ii) the over-estimation error in
Figure 9 is of the similar shape to Figure 8 but is smaller by
an amount of 5%. This 5% is caused by the difference
between the 20% expanding factor and the 15% peak error
shown in Figure 9. We argue that the proposed prediction

algorithm performs well in tracking the intrinsic scalability
of video streams. The extra degree of over-estimation (e.g.,
5% in Figure 8) is necessary for a causal system and
represents a tradeoff between the tightness of utility
estimation and stability of utility duration.

VII. CONCLUSION

In this paper, we have proposed a utility-based network
adaptation framework that enables content-aware adaptive
MPEG-4 video delivery over time-varying networks. The
design of the scaling profile exploits MPEG-4 object-level
scalability and is closely coupled with the media scaling
techniques employed by network adaptation mechanisms.
The utility generator employs a video content classification
algorithm to speedup processing and an adaptive prediction
algorithm to keep dynamically generated utility functions
meaningful over network adaptation time-scales. Our
experimental results demonstrate that the proposed
framework represents a viable approach to delivering
scalable MPEG-4 media over time-varying networks.

For future work, we plan to complete the integration of
the utility generation, content scaling and bandwidth
renegotiation mechanisms into the MPEG-4 system and its
DMIF transport. Once we are satisfied with the broader
performance of the system we plan to port it to our
programmable mobile networking environment [17] to
manage scaling of media from the base-to-mobile. Also, we
plan to investigate the introduction of more sophisticated
utility metrics that consider human vision systems capturing
perceptual visual.

ACKNOWLEDGEMENTS

Andrew T. Campbell would like to thank the National
Science Foundation (under CAREER Award ANI-
9876299) and the Intel Corporation for supporting this
research in part. In addition, we would like to thank our
colleagues Stephen Jacobs and Alexandros Eleftheriadis,
Columbia University, for providing the dynamic rate
shaping source code and for taking time to answer our
numerous questions.

Figure 8: Utility Estimation Error (e0 =1.2, TrueLies Clip)

Figure 7: Predicted Utility Function with e0 =1.2

REFERENCES

[1] P. Bocheck and S

, Proc. of the IEEE/IFIP
International Workshop on Quality of Service
(IWQoS’98),

Proc. of PacketVideo’99,

Proc. 2nd IEEE

Intl. Conf. on Image Processing

Proc. of IS&T/SPIE

Proc. of ACM Mobicom’95

Proc. of ACM Mobicom’98

Proc. of PacketVideo’99

Proc. of SPIE

Conference on Storage and Retrieval for Image and
Video Database

Journal of

Artificial Intelligence Research

Proc. of Intl. Workshop on Audio-Visual

Services over Packet Networks (AVSPN’97)

IEEE Journal on Selected Areas in

Communications

SPIE Human Vision, Visual
Processing, and Digital Display IV

IEEE Journal on Selected Areas in
Communications,

Computer Networks

and ISDN Systems

Proc. Seventh International Workshop on
Network and Operating System Support for Digital
Audio and Video

