
AUTOMATIC GENERATION OF ENTROPY CODING
PROGRAMS USING FLAVOR

Yihan Fang and Alexandros Eleftheriadis

Dept. of Electrical Engineering, 500 W. 120th Street, MC 4712
Columbia University, New York, NY 10027, USA

Abstract - Flavor (Formal Language for Audio-Visual Object Representation) is a
new programming language for media-intensive applications. It extends the typing
system of C++ and Java to incorporate bitstream representation semantics. This allows
describing in a single place both the in-memory representation of data as well as their
bitstream-level (compressed) representation as well. In this paper, we present our
approach of hybrid variable length segmentation in code generation for parsing
entropy-coded data from the bitstream. We also show that this approach produces a
very good tradeoff between space (memory required) and time (decoding speed).

1. INTRODUCTION

Multimedia applications are being developed intensively to provide richer
features and more functionalities for end-users. In order to facilitate this process, it
is essential to simplify and speed up the development of software that processes
coded multimedia information. This includes audio and video encoders/decoders,
as well as applications that manipulate such information (e.g., for editing, content
creation, multimedia indexing and searching [7], [8]). Such information is
invariably encoded in a highly efficient form, to minimize the cost of storage and
transmission. This source coding Error! Reference source not found. operation is
almost always performed in a bitstream-oriented fashion: the data to be represented
is converted to a sequence of binary values of arbitrary (and typically variable)
lengths, according to a specified syntax. The syntax itself can have various degrees
of sophistication and is not easily decoded using general-purpose programming
languages.

Flavor is a novel programming language specifically designed to formally describe
the bitstream syntax for multimedia applications. Flavor can be used to describe
the bitstream of any multimedia standards or specification, including GIF, JPEG,
and MPEG-1 or MPEG-2 6[2]. Currently, Flavor is used in the MPEG-4
standardization effort for the description of the bitstream syntax [3], [4][6].
Emerging multimedia representation techniques can directly use Flavor to
represent bitstream syntax in their specifications. This would bring the advantage
of direct access to compressed multimedia information by application developers
with essentially zero programming using a software tool that processes Flavor code
and generates regular C++ or Java code. Another advantage is that such software
tools can automatically generate optimized code for Huffman encoding/decoding, a
very common tool in media representation.

2. OVERVIEW OF FLAVOR

Flavor provides a formal way to specify how data is laid out in a serialized
bitstream. It is based on a principal of separation between bitstream parsing
operations and encoding, decoding and other operations. This separation
acknowledges the fact that the same syntax can be utilized by different tools, but
also that the same tool can work unchanged with a different bitstream syntax.

Flavor was designed to be an intuitive and natural extension of the typing system
of object-oriented languages like C++ and Java, anticipating an audiovisual world
comprised of audiovisual objects, both synthetic and natural, and combining it with
well-established paradigms for software design and implementation.

Flavor has been explicitly designed to follow (as much as possible) a declarative
approach to bitstream syntax specification. Developers specify how the data is laid
out on the bitstream, and do not detail a step-by-step procedure that parses it.

In the following we briefly go through a few features of Flavor that differ from
traditional programming languages. For a complete description of Flavor, see [5],
[9] or visit the Flavor web site at http://www.ee.columbia.edu/flavor.

• Parsable Variable Declarations

Parsable variables are the core of Flavor’s design; it is the proper definition of
these variables that defines the bitstream syntax. Parsable variables include a parse
length specification immediately after their type declaration (e.g., ‘int(3) a;’).

• Flow Control Constructs

Flavor provides a wide range of facilities to define sophisticated bitstreams,
including if-else, switch, for, and while constructs. In contrast with regular
C++ or Java, these are all included in the data declaration part of the class. This is
in line with the declarative nature of Flavor, where the focus is on defining the
structure of the data, not operations on them.

• Classes

Flavor classes are the fundamental type structure, as in other object-oriented
programming languages. The parsable objects defined in a class will be present in
the bitstream in the same order they are declared. A class is considered parsable if
it contains at least one variable that is parsable. Flavor classes are able to access
external information by using parameter types. These act the same way as formal
arguments in function or method declarations do. Flavor supports polymorphism
for parsable classes by introducing the concept of object identifier, which is a
unique parsable variable associated with each class.

• Maps

A wide variety of representation schemes, rely heavily on entropy coding, and
in particular Huffman codes Error! Reference source not found.. These are
variable length codes (VLCs) which are uniquely decodable (no codeword is the
prefix of another). Flavor provides extensive support for variable length coding
through the use of maps, which are declarations of tables in which the

correspondence between codewords and values is described. The following is a
simple example of a map declaration.

map A(int) {
 0b0, 1, // Note: 0b0 is a bit string of length 1
 0b10, 2,
 0b11, int(5) // escape: read 5 more bits to get value
}

Figure 1: A simple map declaration.

The map keyword indicates the declaration of a map. A map contains a series of
entries, each starts with a bit string that declares the codeword of the entry
followed by the value to be assigned to this codeword. A map can assign value(s)
to a fundamental type, a class type, or an array. Flavor maps also support “escape
codes,” which are useful when the alphabet encoded using the Huffman codewords
is too large to be able to assign a codeword to every source symbol. In this case,
instead of a value, one (or more) of the bit strings is associated with a parsable type
specification (e.g., int(5)) rather than a specific. Figure 1 defines a map named A
with return type int. After the map is properly declared, we can define parsable
variables that use it by indicating the name of the map where we would put the
parse size expression. For example, we can define a parsable integer ‘i’ whose
value is obtained from the bitstream according to map A simply by: int(A) i;

3. THE FLAVOR TRANSLATOR

We have developed a translator that evolved concurrently with the design of the
language. It translates Flavor source to regular C++ or Java code.

The translator reads a Flavor source file and generates a set of C++ or Java file(s)
that contain declarations of all Flavor classes. The translator also generates for
each class a put() and a get() method. The get() method is responsible for
reading a bitstream and loading the class variables with their appropriate values,
while the put() method does the reverse. For parsing operations, the only task
required by the programmer is to declare an object of the class type at hand, and
then call its get() method with an appropriate bitstream. While the same is also
true for the put()operation, the application developer must also load all class
member variables with their appropriate values before the call is made.

4. MAP PROCESSING: VLC PARSER GENERATION

Map processing is one of the most useful features of Flavor, as hand-coding
variable length code tables is tedious and error prone. By using the Flavor
translator, optimization of parsing VLCs is performed at zero cost. Maps can also
be used for fixed-length code mappings just by making all codewords have the
same length. As a result, one can very easily switch between fixed and variable-
length mappings when designing a new representation format.

Traditional ways of parsing entropy codes normally follow one of two techniques
(or a mix thereof). The first is to use a binary tree. Assume that the length of the
longest codeword is N bits. The tree is traversed one bit at a time. Obviously, this
approach—although conceptually simple—is extremely slow, requiring N stages of

bitstream input and lookup. This is shown in Figure 2(b), where the variable length
coding table is defined in Figure 2(a).

Figure 2: Two decoding schemes: (a) VLC map definition (b) single-bit binary tree

(N stages, 1 bit per stage), (c) single lookup table (1 stage, N bits per stage).

On the other end of the spectrum, the fastest possible decoding approach is
obtained by using a single lookup table. The size of the table is 2N, where N is the
length of the longest codeword. Each row of the table contains two entries: the
value associated with that codeword (if any), and the length of the codeword. As
some codewords may have length M smaller than N, we consider a row as
corresponding to a codeword depending on if the first M bits of its index match the
M bits of the codeword. As a result, a codeword is associated with 2N-M entrie(s).
This scenario is shown in Figure 2(c). The cost of decoding would be a single
look-ahead read of the input bitstream using N bits and then a lookup in the table
using the input value as the index to the table and finally skipping number of bits
of the matched code length.

The drawback of the single-stage approach is, of course, the big memory
requirements for the lookup table. For example, MPEG-1 and MPEG-2 variable-
length code tables have a maximum codeword length of 32 bits. This would
require a table with 232 entries, which is impractical. The majority of the entries
would be duplicates, due to the unique decodability requirements of a table. For
example, the presence of a single-bit codeword would mean that half of the table’s
entries—those starting with the same bit value—would all be associated with the
same entry.

A compromise between these two extremes is a combination of smaller lookup
tables, organized in a hierarchical fashion. However, it is impossible to find an
optimal partitioning strategy for a map, so that the number of steps is minimized
while the total memory requirements are kept within a given bound, unless we do
an exhaustive search (it is easy to construct counterexamples that demonstrate that
incremental optimization is not possible). One approach is to use fixed-length
multi-bit lookup tables, with a fixed step length. This combines the efficiency of
multi-bit lookups, and the lower memory requirements of a hierarchical lookup

map Example(int) {
 0b1, 7,
 0b01, 8,
 0b001, 9,
 0b000, 10

}

0 1

0 1

0 1

7

8

910

Index Length Value
000 3 10
001 3 9
010 2 8
011 2 8
100 1 7
101 1 7
110 1 7
111 1 7

(a) (b) (c)

scheme. However, there can still be substantial penalty in terms of wasted lookup
space, since the tables are not customized for each map.

We adopt a hybrid approach, that maintains the space efficiency of binary tree
decoding, and most of the speed associated with lookup tables. In particular,
instead of using lookup tables we use nested switch statements. Each time the
read-ahead size is determined by the maximum of a fixed step size and the size of
the next shortest code. The fixed step size is used to avoid degeneration of the
algorithm into binary tree decoding. The benefit of this approach is that only
complete matches require case statements, while all partial matches can be
grouped into a single default statement (that, in turn, introduces another switch
statement).

The space requirements consist of storage of the case values and the comparison
code generated by the compiler (this code consists of just 2 instructions on typical
CISC systems, e.g., a Pentium). While slightly larger than a simple binary tree
decoder, this overhead still grows linearly with the number of code entries (rather
than exponentially with their length). This is further facilitated by the selection of
the step size. When the incremental code size is small, multiple case statements
may be assigned to the same codeword, thus increasing the space requirements.

We compared the performance of various techniques, including binary tree
parsing, fixed step full lookups with different step sizes and our hybrid switch
statement approach. The results are shown in Table 1. The experiments are
performed on an Ultra 2 Sparc Workstation. The time shown is the time of parsing
a file of 100,000 variable length codes taken from two different VLC tables in the
MPEG-2 video international standard (ITU-T H.262) [11].

VLC table for macroblock_
address_increment

VLC table for
coded_block_pattern

Number of codewords 34 64

File size (K bytes) 30 60

Binary tree 0.20 sec 0.36 sec

Fixed step 2 bits 0.15 sec 0.22 sec

Fixed step 3 bits 0.13 sec 0.17 sec

Fixed step 5 bits 0.12 sec 0.13 sec

Hybrid switch 0.06 sec 0.06 sec

Table 1. Performance Comparison of binary tree, fixed step sizes and our hybrid
approach using switch statement

In terms of time, the technique is faster than a hierarchical full-lookup approach
with identical step sizes. The speed is 2 times faster as using the fixed step size 5
which is used in the public domain MPEG-2 decoder. This is because switching
consumes no time comparing with fixed-step’s function lookups. Furthermore, it is
optimized by ordering the case statements in terms of the length of their
codeword. As shorter lengths correspond to higher probabilities, this minimizes the
average number of comparisons per codeword. We can further optimize our
implementation. For example in our current implementation there are a lot of
performance-wise redundant function calls for the purpose of maintainability
serving as research prototypes.

When processing a map, the translator first checks that it is uniquely decodable,
i.e., that no codeword is the prefix of another. It then constructs two methods for
each map: get() and put(). The get() method is responsible for decoding a
map entry and returning the decoded value, while the put()method is responsible
for the output of the corresponding codeword. Note that these two methods are
specifically generated and customized for each map, instead of using a generic
(and thus less efficient) parsing algorithm.

5. CONCLUDING REMARKS

Flavor can provide significant benefits in the area of media representation and
multimedia application development. With appropriate translation software, and a
bitstream representation written in Flavor, obtaining access to such content is as
simple as cutting and pasting the Flavor source code from the specification into an
ASCII file, and running the translator. With Flavor’s translation tool, customized
code for each specific VLC table is automatically generated that achieves a very
good tradeoff between computational and memory requirements.

6. REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, 1991.
[2] Graphics Interchange Format, CompuServe Inc., 1987, 1989.
[3] B. G. Haskell, A. Puri, and A. N. Netravali, Digital Video: An Introduction to

MPEG-2, Chapman and Hall, 1997.
[4] ISO/IEC JTC1/SC29/WG11 N2201, Final Text of ISO/IEC FCD 14496-1

Systems, May 1998.
[5] Eleftheriadis, “A Syntactic Description Language for MPEG-4,” Contribution

ISO/IEC JTC1/SC29/WG11 M546, Dallas, November 1995.
[6] Y. Fang and A. Eleftheriadis, “A Syntactic Framework for Bitstream-Level

Representation of Audio-Visual Objects,” Proc., 3rd IEEE Int’l Conf. on
Image Processing, Lausanne, September 1996, pp. II.429–II.432.

[7] O. Avaro, P. Chou, A. Eleftheriadis, C. Herpel, and C. Reader, “The MPEG-4
System and Description Languages: A Way Ahead in Audio Visual
Information Representation,” Signal Processing: Image Communication,
Special Issue on MPEG-4, Vol. 9, No. 4, May 1997, pp. 385–431.

[8] S. W. Smoliar and H. Zhang, “Content-Based Video Indexing and Retrieval,”
IEEE Multimedia Magazine, Summer 1994.

[9] J. R. Smith and S.-F. Chang, "Visually Searching the Web for Content," IEEE
Multimedia Magazine, Vol. 4 No. 3, Summer 1997, pp.12-20.

[10] A. Eleftheriadis, "Flavor: A Language for Media Representation",
Proceedings, ACM Multimedia ’97 Conference, Seattle, WA, November
1997.

[11] ISO/IEC Recommendation ITU-T H.262, MPEG-2 Video International
Standard, 1995.

