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Abstract

The rapidity with which digital information, particularly video, is being gener-
ated, has necessitated the development of tools for efficient search of these media.
Content based visual queries have been primarily focused on stillimage retrieval.
In this paper, we propose a novel, interactive system on the Web, based on the
visual paradigm, with spatio-temporal attributes playing a key role in video re-
trieval. We have developed innovative algorithms for automated video object seg-
mentation and tracking and use real-time video editing techniques while respond-
ing to user queries. The resulting system called VideisGhe first on-line video
search engine supporting automatic object based indexing and spatio-temporal
gueries. The system performs well, with the user being able to retrieve complex
video clips such as those of skiers, baseball players, with ease.

1Demo available at http://www.ctr.columbia.edu/VideoQ/; A shorter version of this paper ap-
peared at the ACM Conference on MultiMedia, Seattle, Nov. 11-13 1997.



1. Introduction

The ease of capture and encoding of digital images has caused a massive
amount of visual information to be produced and disseminated rapidly. Hence
efficient tools and systems for searching and retrieving visual information are
needed. While there are efficient search engines for text documents today, there
are no satisfactory systems for retrieving visual information.

Content-based visual queries (CBVQ) has emerged as a challenging research
area in the past few years [Chang 97], [Gupta 97]. While there has been substan-
tial progress with the presence of systems such as QBIC [Flickner 95], PhotoBook
[Pentland 96], Virage [Hamrapur 97] and VisualSEEK [Smith 96] most systems
only support retrieval of still images. CBVQ research on video databases has not
been fully explored yet. Our system, VideoQ , is an advanced content-based video
search system , with the following unique features:

Automatic video object segmentation and tracking.

A rich visual feature library including color, texture, shape and motion.

Query with multiple objects.

Spatio-temporal constraints on the query.

Interactive querying and browsing over the World-Wide Web.

Compressed-domain video manipulation.

Specifically, we present a novel video search system which allows users to
search video based on a rich set of visual features and spatio-temporal relation-
ships. Our objective is to investigate the full potential of visual cues in object-
oriented content-based video search. We also support a keyword based search,
where the keywords have been manually generated. While the search on video
databases ought to necessarily incorporate the diversity of the media (video, au-
dio, text captions) our present work will integrate well into any such effort.

We will present the the visual search paradigm in section 2, elaborate on the
system overview in section 3, describe video objects and our automatic video anal-
ysis techniques in sections 4-5, discuss the matching criteria and query resolution
in sections 7-8 and finally present some preliminary evaluation results in section
9.



2. The Visual Paradigm

The fundamental paradigm under which VideoQ operates is the visual one.
This implies that the query is principally formulated in terms of elements having
visual attributes. VideoQ also supports search using keywords; these keywords
have been generated manually and can be used to “filter” the returned results. The
visual features that are stored in the database are generated from an automatic
analysis of the video stream. Many retrieval systems such as PhotoBook, Visu-
alSEEk and Virage share this paradigm, but only support still image retrieval.

Video retrieval systems should evolve towards a systematic integration of all
available media such as audio, video and captions. While video engines such
as [Hauptmann 95], [Hamrapur 97], [Shahraray 95], [Mohan 96] attempt at such
an integration, much research on the representation and analysis of each of these
different media remains to be done. Those that concentrate on the visual media
alone fall into two distinct categories:

e Query by example (QBE)
¢ Visual sketches

In the context of image retrieval, examples of QBE systems include QBIC,
PhotoBook, VisualSEEKk, Virage and FourEyes [Minka 96]. Examples of sketch
based image retrieval systems include QBIC, VisualSEEK, [Jacobs 95], [Hirata 92]
and [Del Bimbo 97]. These two different ways of visually searching image databases
may also be accompanied by learning and user feedback [Minka 96].

Query by example systems work under the realization that since the “correct”
match must lie within the database, one can begin the search with an element of the
database itself. With the hope that one can guide the user towards the image that he
likes over a succession of query examples. In QBE, one can use space partitioning
schemes to precompute hierarchical groupings, which can speed up the database
search [Minka 96]. While the search speeds up, the groupings are static and need
recomputation every time a new video is inserted into the database. QBE in princi-
ple, is easily extensible to video databases as well, but there are some drawbacks.
Video shots generally contain a large number of objects, each of whom are de-
scribed by a complex multi-dimensional feature vector. The complexity arises
partly due to the problem of describing shape and motion characteristics.

Sketch based query systems such as [Hirata 92] compute the correlation be-
tween the sketch and the the edge map of each of the images in the database, while
in [Del Bimbo 97], the authors minimize an energy functional to achieve a match.
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Figure 1. The visual interface of VideoQ. The figure shows an example query to retrieve
video shots of all high jump sequences in the database. Note that the keywords “track
and field” are used to filter the returned results. The results are shown in Figure 2.
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Figure 2. The results: The displayed retrieved shots which include four excellent
matches (the first, the third, the fourth and the fifth), indicate the importance of the
motion attribute in video shot retrieval.



In [Jacobs 95], the authors compute a distance between the wavelet signatures of
the sketch and each of the images in the database.

What makes VideoQ powerful is the novel idea of an animated sketch to for-
mulate the query. In an animated sketch, motion and temporal duration are the key
attributes assigned to each object in the sketch in addition to the usual attributes
such as shape, color and texture. Using the visual pallette, we sketch out a scene
by drawing a collection of video objects. It is the spatio-temporal relationships
between these objects that fully define a scene. An example query is illustrated in
Figure 1.

While we shall extensively employ this paradigm, some important observa-
tions are to be kept in mind. The visual paradigm works best when there are only
a few dominant objects in the video with simply segmented backgréuhasill
not work well if the user is interested in video sequences that are simple to de-
scribe, but are hard to sketch out. For example, a video shot of a group of soldiers
marching, shots of a crowd on the beach etc. It will also not work well when the
user is interested in a particular semantic class of shots: he might be interested in
retrieving that news segment containing the anchor person, when the news anchor
is talking about Bosnia. For these these examples it is far more useful to search in
conjunction with keywords.

3. The VideoQ System Overview

VideoQ is a Web based video search system, where the user queries the sys-
tem using animated sketches. The system, which resides on the Web, incorporates
a client-server architecture. The client (a java applet) is loaded up into a web
browser where the user formulates (sketches) a query scene as a collection of
objects with different attributes. Attributes include motion, spatio-temporal or-
dering, shape and the the more familiar attributes of color and texture.

The query server contains several feature databases, one for each of the indi-
vidual features that the system indexes on. Since we index on motion, shape, as
well as color and texture, we have databases for each of these features. The source
video shot database is stored as a compressed MPEG stream.

Once the user is done formulating the query, the client sends it over the net-
work to the query server. There, the features of each object specified in the query
are matched against the features of the objects in the database. Then, lists of

°Note, even if the background shows a crowd, due to aggressive region merging, they may be
merged into one single region.



candidate video shots are generated for each object specified in the query. The
candidate lists for each object are then merged to form a single video shot list.
Now, for each of these video shots in the merged list, key-frames are dynamically
extracted from the video shot database and returned to the client over the network.
The matched objects are highlighted in the returned key-frame.

The user can interactively view these matched video shots over the network
by simply clicking on the the key-frame. Then, in the backend, the video shot
corresponding to that key frame is extracted in real time from the video database
by “cutting” out that video shot from the database. The video shots are extracted
from the video database using basic video editing schemes [Meng 96] in the com-
pressed domain. The user needs an MPEG player in order to view the returned
video stream.

Since the query as formulated by the user in the VideoQ system comprises of
a collection of objects having spatio-temporal attributes, we need to formalize the
definition of a video object.

4. What is a Video Object?

We define a region to be a contiguous set of pixels that is homogeneous in
the the features that we are interested in (i.e texture, color, motion and shape). A
video object is defined as a collection of video regions which have been grouped
together under some criteria across several frames. Namely, a video object is a
collection of regions exhibiting consistericgcross several frames in at least one
feature. For example a shot of a person (the person is the “object” here) walking
would be segmented into a collection of adjoining regions differing in criteria such
as shape, color and texture, but all the regions may exhibit consistency in their
motion attribute. As shown in Figure 4, the objects themselves may be grouped
into higher semantic classes.

The grouping problem of regions is an area of ongoing research and for the
purposes of this paper, we restrict our attention to regions only. Regions may be
assigned several attributes, such as color, texture, shape and motion.

3If two regions exhibit consistency in all features, then they will be merged into one region.
Regions which exhibito consistency at all in any feature, would probably not belong to the same
object



4.1. Color, Texture, Shape

In the query interface of VideoQ, the set of allowable colors is obtained by
uniformly quantizing the HSV color space. The Brodatz texture set is used for
assigning the textural attributes to the various objects. The shape of the video
object can be an arbitrary polygon along with ovals of arbitrary shape and size.
The visual palette allows the user to sketch out an arbitrary polygon with the help
of the cursor, other well known shapes such as circles, ellipses and rectangles are
pre-defined and are easily inserted and manipulated.

4.2. Motion, Time

Motion is thekey object attribute in VideoQ. The interface allows the user
to specify an arbitrary polygonal trajectory for the query object. The temporal
attribute which defines the overall duration of the object, which can either be
intuitive (long, medium or short) or absolute (in seconds).

Since VideoQ allows users to frame multiple object queries, the user has the
flexibility of specifying the overall scene temporal order by specifying the “ar-
rival” order of the various objects in the scene. The death order (or the order in
which they disappear from the video) depends on the duration of each object).

Another attribute related to time is the scalirigctor, or the rate at which the
size of the object changes over the duration of the objects existence. Additional
global scene attributes include the specification of the (perceived) camera motion
like panning or zooming.

4.3. Weighting the Attributes

Prior to the actual query, the various features need to be weighted in order
to reflect their relative importance in the query (refer to Figure 1). The feature
weighting is global to the entire animated sketch; for example, the attribute color,
will have the same weight across all objects. The final ranking of the video shots
that are returned by the system is affected by the weights that the user has assigned
to various attributes.

4This is the factor by which an object changes its size over its duration on the shot. This change
could either be induced by camera motion or by the objects intrinsic motion.
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5. Automatic Video Shot Analysis

The entire video database is processed off-line. The individual videos are de-
composed into separate shots, and then within each shot, video objects are tracked
across frames.

5.1. Scene Cut Detection

Prior to any video object analysis, the video must be split up into “chunks” or
video shots. Video shot separation is achieved by scene change detection. Scene
change are either abrupt scene changes or transitional (e.g. dissolve, fade in/out,
wipe). [Meng 95] describes an efficient scene change detection algorithm that
operates on compressed MPEG streams.

It uses the motion vectors and Discrete Cosine Transform coefficients from
the MPEG stream to compute statistical measures. These measurements are then
used to verify the heuristic models of abrupt or transitional scene changes. For
example, when a scene change occurs before a B frame in the MPEG stream,
most of the motion vectors in that frame will point to future reference frame. The
real-time algorithm operates directly on the compressed MPEG stream, without
complete decoding.

5.2. Global Video Shot Attributes

The global motion (i.e. background motion) of the dominant background
scene is automatically estimated using the six parameter affine model [Sawhney 95].
A hierarchical pixel-domain motion estimation method [Bierling 88] is used to
extract the optical flow. The affine model of the global motion is used to compen-
sate the global motion component of all objects in the stefike six parameter
model:

Az = a,+ax + agy, (1)
Ay = a3+ asx + asy, (2)

where,a; are the affine parameters,y are the pixel coordinates, anx, Ay are
the pixel displacements at each pixel.

5Global motion compensation is not needed if users prefer to search videos based on perceived
motion.
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Classification of global camera motion into modes such as zooming or panning
is based on the global affine estimation. In order to detect panning, a global motion
velocity histogram is computed along eight directions. If there is dominant motion
along a particular direction, then the shot is labeled as a panning shot along that
direction.

In order to detect zooming, we need to first check if the average magnitude of
the global motion velocity field and two affine model scaling parametgrargd
as) satisfy certain threshold criteria. When there is sufficient motion,carahd
as are both positive, then the shot is labeled as a “zoom-in” shot and if they are
both negative then the shot is labeled as a “zoom-out”.

5.3. A Brief Review of Video Object Segmentation

Common video object segmentation and tracking are techniques based on se-
lective features such as motion, color and edges as well as the consistency of their
properties over space and time. In [Gu 96], morphological segmentation algo-
rithms are used for intraframe and interframe segmentation of coherent motion
regions from successive motion vector fields. To obtain accurate motion bound-
ary, color based spatial segmentations are used to refine the motion segmentation
results. In [Wang 94], moving images are decomposed into sets of overlapping
layers using block based affine motion analysis and k-means clustering algorithm.
Each layer corresponds to the motion, shape and intensity of a moving region.
Due to the complexity of object motion in general videos (e.g. a moving object
may stop), these pure motion based algorithms cannot be used to automatically
segment and track regions through image sequences.

In the field of image segmentation, color (or gray-level) and edges are two
major features been widely used. As both of them have limitations, fusion of
color and edge information is proposed in [Saber 97b] to obtain more “meaningful
regions”. Here, the color segmentation results are further splitand merged in order
to ensure consistency with the edge map.

5.4. Tracking Objects: Motion, Color and Edges

Our algorithm for segmentation and tracking of image regions based on the
fusion of color, edge and motion information in the video shot. The basic region
segmentation and tracking procedure is shown in Figure 5. The projection and
segmentation module is the module where different features are fused for region
segmentation and tracking.

12



Color is chosen as the major segmentation feature because of its consistency
under varying conditions. As boundaries of color regions may not be accurate
due to noise, each frame of the video shot is filtered before color region merging
is done. Edge information is also incorporated into the segmentation process to
improve the accuracy. Optical flow is utilized to project and track color regions
through a video sequence.

The optical flow of current frame is derived from frame andn+1 in the mo-
tion estimation module using a hierarchical block matching method [Bierling 88].
Given color regions and optical flow generated from above two processes, a linear
regression algorithm is used to estimate the affine motion for each region. Now,
color regions with affine motion parameters are generated for framwéich will
the be tracked in the segmentation process of frameé. The projection and seg-
mentation module is discussed in greater detail in [Zhong 97]. Figure 6 presents
a brief overview.

Figure 7 shows segmentation results with two sequences. In both cases, the top
row shows original sequence and the second row shows a subset of automatically
segmented regions being tracked. Tracked regions are shown with their represen-
tative (i.e. average) colors. Experiments show that our algorithm is robust for the
tracking of salient color regions under different circumstances, such as multiple
objects, fast or slow motion and instances of regions being covered and uncovered

6. Building the Visual Feature Library

Once each object in the video shot has been segmented and tracked, we then
compute the different features of the object and store them in our feature library.
For each object we store the following features:

Color The representative color in the quantized CIE-LUV space. It is impor-
tant to bear in mind that the quantization is not static, and the quantization
palette changes with each video shot. The quantization is calculated anew
for each sequence with the help of a self organizing map.

Texture Three Tamura [Tamura 78] texture measures, coarseness, contrast and
orientation, are computed as a measure of the textural content of the object.

Motion The motion of the video object is stored as a list/éf— 1 vectors
(where the number of frames in the videao\N3. Each vector is the average

13



translation of the centroid of the object between successive ffaafts

global motion compensation [Sawhney 95]. Along with this information,
we also store the frame rate of the video shot sequence hence establishing
the “speed” of the object as well as its duration.

Shape For each object, we first determine the principal components of the shape
by doing a simple eigenvalue analysis [Saber 97a]. At the same time we
generate first and second order moments of the region. Two other new fea-
tures, the normalized argaand the the percentage dteae calculated. We
then determine if the region can be well approximated by an ellipse and
label it so if that is indeed the case. We chose not to store the best fit poly-
gon to the object because of reasons of computational complexity. The
computational complexity of matching two arbitraiy vertex polygons is
O(N?log N) [Arkin 91].

The resulting library is a simple database havingatribute, valué pair for
each object. Creating a relational database will obviously allow for more complex
queries to be performed over the system as well as decrease the overall search
time. The issue of the structure of the database is an important one, but was not a
priority in the current implementation of VideoQ.

7. Feature Space Metrics

The nature of the metric, plays a key role in any image or video retrieval
system. Designing good metrics is a challenging problem as it often involves a
tradeoff between computational complexity of the metric and the quality of the
match. For it is not enough to be able to locate images or videos that are close
under a metric, they must be perceptually close to the query.

While we employ well accepted metrics for color, texture and shape, we have
designed new metrics to exploit the spatio-temporal information in the video.

5We could have also stored the the successive affine transformations, but that would have in-
creased the complexity of the search. Also, it is worth keeping in mind that the users will not have
“exact” idea of the trajectory of the object that they wish to retrieve.

’the ratio of the area of the object to the area of the circumscribing circle. Note that this feature
is invariant to scale.

8this is the percentage of the area of the video shot that is occupied by the object
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7.1. Matching Motion Trails

A motion trail is defined to be the three dimensional trajectory of a video
object. It is represented by a sequekeé], y[i|}, i € {1,..N}, the three dimen-
sions comprising of the two spatial dimensiang and the temporal dimensian
(normalized to the frame number. The frame rate provides us with the true time
information). Prior techniques to match motion [Dimitrova 94], have used simple
chain codes or a B-spline to represent the trajectory, without completely capturing
the spatio-temporal characteristic of the motion trail.

The user sketches out the trajectory as a sequence of vertices:in ghaane.

In order for him to specify motion trail completely he must specify the duration
of the object in the video shot. The duration is quantized (in terms of the frame
rat€) into three levels: long, medium and short. We compute the entire trail by
uniformly sampling the motion trajectory based on the frame rate.

We develop two major modes of matching trails:

Spatial In the spatial mode, we simply project the motion trail onto the y
plane. This projection results in an ordered contour. The metric is then
measures distances between the query contour and the corresponding con-
tour for each object in the database. This kind of matching provides a “time-
scale invariance”. This is useful when the user is unsure of the time taken
by an object to execute the trajecttty

Spatio-Temporal In the spatio-temporal mode, we simply use the entire motion
trail to compute the distance. We use the following distance metric:

> ((@qli] = 2ili)* + (yali] = wiliD)?), 3)

i

where, the subscripigandt refer to the query and the target trajectories
respectively and the indexruns over the the frame numbés Since in
general, the duration of the query object will differ from that of the objects
in the database, there are some further refinements possible.

SWe quantify it in terms of (frame rate)/(unit distance). Where the distance refers to the length
of the motion trajectory in pixels. We assume a canonical frame rate of 30 frames/sec.

10A immediate benefit of using this method is when one is matching against a database of sports
shots, then “slow-motion” replays as well as “normal-speed” shots will be retrieved as they both
execute the samey contour.

IAlternately, the index could run over the set of subsampled points
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e When the durations differ, we could simply match the two trajec-
tories up till the shorter of the two durations (i.e the indemuns
up til min (query duration, database object duration) and ignore the
“tail”).

e We could also normalize the the two durations to a canonical duration
and then perform the match.

7.2. Matching Other Features

Let us briefly describe the distance metrics used in computing the distances in
the other feature spaces.

Color The color of the query object is matched with the mean color of a candidate
tracked object in the database as follows:

Cd = \/(Lq - Lt)2 + 4(Uq o Ut)2 + 4(‘/:1 - W)Z’ (4)

where,C, is the weighted Euclidean color distance in the CIE-LUV space
and the subscriptgandt refer to the query and the target respectively.

Texture In our system, we compute three Tamura [Tamura 78] texture parameters
(coarseness, contrast and orientation) for each tracked object. The distance
metric is simply the Euclidean distance weighted along each texture feature
with the variances along each channel:

T, = \l (qu ; Oét)2 (ﬂq _2515)2 + (QSL] _2¢t)2’ (5)

+
2
93 T

[0}

where,a, 3 and ¢ refer to the coarseness, contrast and the orientation re-
spectively and the various, s , refer to the variances in the corresponding
features.

Shape In the current implementation, the metric only involves the principal com-
ponents of the shape:

) (6)

where,\, and )\, are the eigenvalues along the principal axes of the object
(their ratio is the aspect ratio).

16



Size This is simply implemented as a distance on the arealfatio

) min(A,, A;)
= _— 7
Sia max(Ay, A;)’ 0

where, A, ,; refer to the percentage areas of the query and target respectively.

The total distance is simply the weighted sum of these distances, after the
dynamic range of each metric has been normalized to i@ iyj. i.e

Dg — Z wiD’ia (8)

i€{features}

wherew; is the weight assigned to the particular feature ands the distance in
that feature space.

8. Query Resolution

Using these feature space metrics and the composite distance function, we
compute the composite distance of each object in the database with the each object
in the query. Let us now examine how we generate candidate video shots, given
a single and multiple objects as queries. An example of an single object query
along with the results (the candidate result) is shown in Figure 1.

8.1. Single Object Query

The search along each feature of the video object produces a candidate list of
matched objects and the associated video shots. Each candidate list can be merged
by a rank threshold or a feature distance threshold. Then, we merge the candidate
lists, keeping only those that appear on the candidate list for each feature. Next,
we compute the global weighted distan@g, and then sort the merged list based
on this distance. A global threshold is computed (based on the individual thresh-
olds and additionally modified by the weights) which is then used to prune the
object list. This is schematically shown is Figure 8. Since there is a video shot
associated with each of the objects in the list, we return the key-frames of the
corresponding video shots to the user.

12This is the area of the object divided by the area of the entire shot.
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8.2. Querying Multiple Objects

When the query contains multiple video objects, we need to merge the results
of the individual video object queries. The final result is simply an logical in-
tersection of all the results of the individual query objects. When we perform a
multiple object query in the the present implementation, we do not use the rela-
tive ordering of the video objects in space as well in time. These additional con-
straints could be imposed on the result by using the idea of 2D strings [Chang 87],
[Shearer 97], [Smith 96] (discussed in 10.3).

9. How does VideoQ perform?

Evaluating the performance of video retrieval systems is still very much an
open research issue [Chang 97]. There does not exist a standard video test set to
measure retrieval performance nor standard benchmarks to measure system per-
formance. This is partly due to the emerging status of this field. To evaluate
VideoQ, we use two different approaches. First, we extend the standard precision-
recall metrics in information retrieval. Although we acknowledge several draw-
backs of this classical metric, we include it here simply as a reference. Another
type of metric measures the effort and cost required to locate a particular video
clip that a user has in mind or one that the user may have previously browsed in
the database.

9.1. Precision-Recall Type Metrics

In our experimental setup, we have a collection of 200 video shots, categorized
into sports, science, nature, and history. By applying object segmentation and
tracking algorithms to the video shots, we generated a database of more than 2000
salient video objects and their related visual features.

To evaluate our system, precision-recall metrics are computed. Formally, pre-
cision and recall are defined as follows:

Retrieved and relevant
11 =
Reca All relevant in the database ©)

Retrieved and relevant
Precision = - (10)
Number retrieved

where, the relevant video shots are predefined by the ground truth database.
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Using Figure 9:

|AN B
Recall = (11)
| B
Precision = |A|2|B| (12)

where thg | operator returns the size of the set.

Before each sample query, the user establishes a ground truth by manually
choosing a set of relevant or “desired” video shots from the database. For each
sample query shown in Figure 10, a ground truth is established by choosing all
the relevant video shots in the database that have corresponding features. The
sample query returns a list of candidate video shots, and precision-recall values are
calculated according to equations 9, 10. The precision-recall curve is generated by
increasing the size of the return list and computing the corresponding precision-
recall values. Clearly, the precision-recall curve is a parametric function of the set
size.

While the VideoQ system comprises many parts such as scene cut detection,
object segmentation and tracking, feature selection and matching, precision-recall
metrics measure how well the system performs as a whole. Performance is based
solely on proximity of the returned results with the ground truth.

Four sample queries were performed as shown Figure 10. The first sample
query specifies a skin-colored, medium-sized object that follows a motion trajec-
tory arcing to the left. The ground truth consisted of nine video shots of various
high jumpers in action and brown horses in full gallop. The return size is increased
from 1 to 20 video shots, and a precision-recall curve is plotted in Figure 11 (a).

An overlay of the four precision-recall curves is plotted in Figure 11. For
normal systems, the precision-recall curve remains relatively flat up to a certain
recall value, after which the curve slopes downward. This can be readily visu-
alized using Figure 9. The precision-recall cureves of Figure 11 are averaged to
yield the expected system performance (Figure 12). The “knee” of the this curve
determines the optimal size of the returned set. A look at Figure 12 indicates that
the optimal size for these queries should lie between 6-8 shots.

9.2. Time and Cost to Find a Particular Video Shot

Two benchmarks are used to evaluate how efficiently the system uses its re-
sources to find the correct video shot: Query frequency and bandwidth. While the
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former measures the number of separate queries needed to get a particular video
shot in the return list, the latter measures the number of different false alarms that
are returned before obtaining the correct video shot in the return list.

A randomly generated target video shot, shown in Figure 13 (b), is chosen
from the database. In order to find this video shot, we query the system, selecting a
combination of objects, features, and feature weights. The total number of queries
to get this video shotis recorded. By varying the size of the return list, we generate
the query frequency curve.

Each query returns a list of video shots from an HP 9000 server over the net-
work to a client. The video shot is represented by a keyframe, a 88x72 pixel
image. In many cases, a series of queries were needed to reach a particular video
shot. The number of key frames that were returned are totaled. Repeat frames are
subtracted from this total since they are stored in the cache and not retransmitted
over the network. Conceptually bandwidth is proportional to the total number of
key frames transmitted. Therefore the bandwidth is recorded and by varying the
size of the return list, the bandwidth curve is generated.

Twenty target video shots, similar to those in Figure 13, are randomly selected.
For each target video shot, sample queries are performed, and query frequency
and bandwidth curves are generated by varying the return size from 3 to 18 video
shots. The query frequency curve in Figure 14 shows that a greater number of
queries are needed for small return sizes. On average for a return size of 14, only
two queries are needed to reach the desired video shot.

Figure 15 shows how the average bandwidth varies with increasing set size.
The figure also shows an optimal “dip” in the curve indicating the presence of a
optimal return set size. This is observed to be around nine shots. For small return
sizes, many times ten or more queries failed to place the video shot within the
return list. In Figure 15, we compensate for these failed queries by applying a
heuristic to penalize the returned videos.

It was observed that the system performed better when it was provided with
more information. Multiple object queries proved more effective than single ob-
ject queries. Also, objects with a greater number of features, such as color, mo-
tion, size, and shape, performed better than those with just a few features. It is
also important to emphasize that certain features proved more effective than oth-
ers. For example, motion was the most effective, followed by color, size, shape
and texture.
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10. Research Issues in VideoQ

While the results section (Section 9) demonstrates that VideoQ works well,
there are other issues that need to be addressed. This section contains a brief
overview of the issues that we are currently working on.

10.1. Region Grouping

Automatic region grouping, is an open problem in computer vision, and in
spite of decades of research, we are still far from completely a automated tech-
nigue that works well on unconstrained data. Nevertheless, the segmented re-
sults, need to be further grouped in order for us to prune the search as well
search at a higher semantic level. Also good region grouping is needed avoid
over-segmentation of the video shot.

10.2. Shape

One of the biggest challenges with using shape as a feature is to be able to
represent the object while retaining a computationally efficient metric to com-
pare two shapes. The complexity of matching two arbitrsrpoint polygons is
O(N?log N) [Arkin 91].

One approach is to use geometric invariants to represent shape [Mundy 92],
[Karen 94], [Lei 95]. These are invariants on the coefficients of the implicit poly-
nomial used to represent the shape of the object. However, these coefficients need
to be very accurately calculated as the representation (that of implicit polynomi-
als) is very sensitive to perturbations. Additionally, generating these coefficients
is a computationally intensive task.

10.3. Spatio-Temporal Search

We are currently extending the work done on VisualSEEK [Smith 96] on 2-D
strings [Chang 87] in order to effectively constrain the query results. There has
been work using modified 2-D strings as a spatial index into videos [Arndt 89],
[Shearer 97].

For video, 2-D strings can be extended to a sequence of 2D-strings or a 2D-
string followed by a sequence of change edits [Shearer 97]. Building on these
observations we propose two efficient methods for indexing spatio-temporal struc-
tures of segmented video objects.
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¢ Inthe first method, only frames with significant changes of spatial structures
need to be explicitly indexed (by 2D strings of those image frames). Given
such a representation, users will be able to search video objects or events
of interest (e.g., two objects swap locations, birth or death of objects) by
specifying temporal instances or changes of spatial structures. A simplified
representation is to include the 2D strings at the beginning frame, the ending
frame, and several sampled frames in between.

e The second method extends the 2D-string based query to 3D-strings. Video
objects may be projected i0y and time dimensions to index their absolute
centroid position, 3-dimensional support, and relative relationships. More
sophisticated variations of 3D strings can be used to handle complex rela-
tionships such as adjacency, containment, overlap.

11. Conclusions

Video search in large archives is an emerging research area. Although integra-
tion of the diverse multimedia components is essential in achieving a fully func-
tional system, we focus on exploiting visual cues in this paper. Using the visual
paradigm, our experiments with VideoQ show considerable success in retrieving
diverse video clips such as soccer players, high jumpers and skiers. Indexing
video objects with motion attributes and developing good spatio-temporal metrics
have been the key issues in this paradigm.

The other interesting and unique contributions include developing a fully au-
tomated video analysis algorithm for object segmentation and feature extraction,
a java-based interactive query interface for specifying multi-object queries, and
the content-based visual matching of spatio-temporal attributes.

Extensive content analysis is used to obtain accurate video object information.
Global motion of the background scene is estimated to classify the video shots as
well as to obtain the local object motion. A comprehensive visual feature library
is built to incorporate most useful visual features such as color, texture, shape,
size, and motion. To support the on-line Web implementation, our prior results
in compressed-domain video shot segmentation and editing are used. Matched
video clips are dynamically “cut” out from the MPEG stream containing the clip
without full decoding of the whole stream.

As described earlier, our current work includes region grouping, object clas-
sification, more accurate shape representation, and support of relative spatio-
temporal relationships. An orthogonal direction addresses the integration of the
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video object library with the natural language features to fill the gap between low-
level visual domain and the high-level semantic classes.

12. Acknowledgments

This work was supported by Intel Research Council, the National Science
Foundation under a CAREER award (IRI-9501266), IBM under a 1995 Research
Partnership (Faculty Development) Award and by sponsors the ADVENT project
at Columbia University.

References

[Arkin 91] E.M. Arkin, L.P. Chew, D.P. Huttenlocher, K. Kadem, J.S.B. Mitchhatl Efficiently
Computable Metric for Comparing Polygonal ShapeEE Trans. on PAMI, Vol. 13, No. 3,
209-216, Mar. 91.

[Arndt 89] T. Arndt, S.K. Changimage Sequence Compression by Iconic IndexlBgE Work-
shop on Visual Languages, 177-182, IEEE Computer Society, 1989.

[Bierling 88] M. Bierling, Displacement Estimation by Hierarchical Block Matchi&g|E Visual
Communications and Image Processing, Vol. 1001, 1988.

[Del Bimbo 97] A. Del Bimbo, P. Pald/isual Image Retrieval by Elastic Matching of User
SketchedEEE Trans. on PAMI, Vol. 19, No. 2, 121-132, Feb. 1997.

[Borshukov 97] G.D. Borshukov, G. Bozdagi, Y. Altunbasak, A.M. Tek®ption segmentation
by multi-stage affine classificatipto appear in IEEE Trans. Image Processing.

[Brown 96] M.G. Brown, J.T. Foote, G.J.F. Jones, K.S. Jones, S.J. YdDpgn-Vocabulary
Speech Indexing for Voice and Video Mail Retrie®CM Multimedia Conference, Boston,
Nov. 1996.

[Chang 97] S.F. Chang, J.R. Smith, H.J. Meng, H. Wang, D. Zh&ingling Images/Video in
Large ArchivesCNRI Digital Library Magazine, Feb. 1997.

[Chang 87] S.K. Chang, Q.Y. Shi, S.Y. Yaltonic Indexing by 2-D StringslEEE Trans. on
PAMI, Vol. 9, No. 3, 413-428, May 1987.

[Dimitrova 94] N. Dimitrova, F. GolshaniR, for Semantic Video Database RetrievAICM
Multimedia Conference, 219-226, San Francisco, Oct. 1994.

[Faloutsos 93] C. Faloutsos, M. Flickner, W. Niblack, D. Petkovic, W. Equitz, R. BaEfér,
cient and Effective Querying by Image ConteRésearch Report #RJ 9203 (81511), IBM
Almaden Research Center, San Jose, Aug. 1993.

[Flickner 95] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J.
Hafner, D. Lee, D. Petkovic, D. Steele, P. Yankguery by Image and Video Content: The
QBIC SystemEEE Computer Magazine, Vol. 28, No. 9, pp. 23-32, Sep. 1995.

23



[Gu 96] C. Gu, T. Ebrahimi, M. Kunt, “Morphological Moving Object Segmentation and Track-
ing for Content-based Video Coding”, Multimedia Communication and Video Coding,
Plenum Press, New York, 1996.

[Gupta 97] A. Gupta, R. Jain/isual Information RetrievalCommunications of ACM, Vol. 40,
No. 5, 70-79, May 1997.

[Hamrapur 97] A. Hamrapur, A. Gupta, B. Horowitz, C.F. Shu, C. Fuller, J. Bach, M. Gorkani, R.
Jain,Virage Video Engin&PIE Proceedings on Storage and Retrieval for Image and Video
Databases V, 188-97, San Jose, Feb. 97.

[Hauptmann 95] A.G. Hauptmann, M. Smithext, Speech and Vision for Video Segmentation:
The Informedia Proje¢ctAAAI Fall Symposium, Computational Models for Integrating Lan-
guage and Vision, Boston, Nov. 1995.

[Hirata 92] K. Hirata, T. KatoQuery by Visual Example, Content Based Image Retrjea
vances in Database Technology - EDBT 92, A. Pirotte, C. Delobel, G. Gottlob, eds., Lecture
Notes on Computer Science, Vol. 580.

[Jacobs 95] C.E. Jacobs, A. Finkelstein, D.H. Saldsist Miltiresolution Image Queryindro-
ceedings of SIGGRAPH, 277-286, Los Angeles, Aug. 1995.

[Jones 81] K.S. Jonemformation Retrieval ExperimenButterworth and Co., Boston, 1981.

[Karen 94] D. Karen, D. Cooper, J. Subrahmoridescribing Complicated Objects by Implicit
Polynomials IEEE Trans. on PAMI, Vol. 16, No. 1, 38-53, Jan. 1994.

[Lei 95] Z. Lei, D. Karen, D. CooperComputationally Fast Bayesian Recognition of Complex
Objects Based on Mutual Algebraic Invarian®oc. IEEE International Conference on Im-
age Processing, Vol. 2, 635-638, Oct. 1995.

[Meng 95] J. Meng, Y. Juan, S.F. Chai8rene Change Detection in a MPEG Compressed Video
SequenceSPIE Symposium on Electronic Imaging: Science and Technology - Digital Video
Compression: Algorithms and Technologies, SPIE Vol. 2419, San Jose, Feb. 1995.

[Meng 96] J. Meng, S.F. Chan@VEPS: A Compressed Video Editing and Parsing Sy,
Multimedia Conference, Boston, Nov. 199fitp://www.ctr.columbia.edu/webclip

[Minka 96] T. Minka, An Image Database Browser that Learns from User Interacibim Me-
dia Laboratory Perceptual Computing Section, TR #365, 1996.

[Mohan 96] R. MohanJText Based Search of TV News StariBIE Photonics East, International
Conference on Digital Image Storage and Archiving Systems, Boston, Nov. 1996.

[MPEGA4 96] Description of MPEG-4 ISO/IEC JTC1/SC29/WG11 N1410, MPEG document
N1410 Oct. 1996.

[Mundy 92] J.L. Mundy, A. Zisserman, ed&eometric Invariance in Computer VisioMIT
Press, 1992.

[Pentland 96] A. Pentland, R.W. Picard, and S. Sclam@fptobook: Content-Based Manipu-
lation of Image Databases$nternational Journal of Computer Vision, Vol. 18, No. 3, pp.
233-254, 1996.

24



[Saber 97a] E. Saber, A.M. TekalRegion-based affine shape matching for automatic image
annotation and query-by-exampte appear in Visual Comm. and Image Representation.

[Saber 97b] E. Saber, A.M. Tekalp, G. Bozddgision of Color and Edge Information for Im-
proved Segmentation and Linkirtg appear in Image and Vision Computing.

[Sawhney 95] H.S. Sawhney, S. Ayer, M. GorkalMpdel-based 2D & 3D Dominant Motion
Estimation for Mosaicing and Video Representatimiernational Conference on Computer
Vision, 583-590, Boston, Jun. 1995.

[Shahraray 95] B. Shahraray and D.C. GibbAntomatic Generation of Pictorial Transcript of
Video ProgramsSPIE Vol. 2417, 512-518, 1995.

[Shearer 97] K. Shearer, S. Venkatesh, D. KieronSitial Indexing for Video DatabaseBo
appear in Journal of Visual Communication and Image Representation, Vol. 8, No. 3, Sep.
1997.

[Smith 96] J.R. Smith, S.F. ChangvisualSEEk: A Fully Automated Content-Based Im-
age Query System ACM Multimedia Conference, Boston, 87-98, Nov. 1996.
http://www.ctr.columbia.edu/VisualSEEk

[Smoliar 94] S.W. Smoliar, H.J. Zhan@;ontent-Based Video Indexing and Retrigi8EE Mul-
timedia Magazine, Summer 1994.

[Tamura 78] H. Tamura, S. MoriTextural Features Corresponding to Visual PercepfitBEE
Trans. on Systems, Man, and Cybernetics, Vol. 8, No. 6, Jun. 1978.

[Wang 94] J.Y.A. Wang, E.H. AdelsoiiRepresenting Moving Images with Layek$lT Media
Laboratory Perceptual Computing Section, TR #279.

[Yeung 97] M.M. Yeung, B.L. YeoVideo Content Characterization and Compaction for Digital
Library Applications SPIE, Storage and Retrieval for Still Image and Video Databases V,
SPIE Vol. No. 3022, 45-58, San Jose, Feb. 1997.

[Zhong 97] D. Zhong and S.F. Changdeo Object Model and Segmentation for Content-Based
Video Indexing IEEE International Conference on Circuits and Systems, Jun. 1997, Hong
Kong. (special session on Networked Multimedia Technology and Applications)

25



Coerd+ - > G >
segmentation

on-line
/ \
- query
o>+ G = Gad+
- -4—p | video archive

Figure 3. The VideoQ system where the queries are in the form of animated sketches.
Both the animated sketch and the browsing modes support search with conjunction
with keywords.
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Figure 4. The feature classification tree.
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Figure 7. Region segmentation on QCIF sequences, using feature fusion. The top rows

show the original sequence while the corresponding bottom rows show the segmented
regions.
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Figure 8. Generating the candidate video shot list for a single object query. The first
column of features shows the features of the query, while the second column shows
the features across all objects in the database.

Figure 9. The set A is the set that is obtained from the search while the set B refers to
the ground truth. Precision and recall are defined using these two sets.
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Figure 10. Four sample queries used in the precision-recall experiments. (a-b) High-
lights motion, color and size. (c) Highlights motion and size. (d) Highlights multiple
objects in addition to motion and size.
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Figure 11. The precision-recall curves corresponding to the sample queries of Figure
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Figure 12. The precision-recall curve averaged over the four precision-recall curves of
Figure 11
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(e) ®

Figure 13. Three sample queries used in system benchmarks. The left column shows
the final sketch to successfully retrieve the video. (a) A Skier (b) Two soccer players
(c) A baseball query. In the baseball video clip, the catcher moves to the left. Also note
the strong match of the sky-like texture to the sky. Video courtesy of Hot Shots Cool
Cuts Inc. and Action Adventure Inc.
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Figure 14. Average number of queries needed to reach a video shot.
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