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Abstract
We present a statistical model-based video segmen-

tation algorithm for typical videophone and videocon-
ference applications. This algorithm makes use of on-
line information and tries to build statistical models
for both background and foreground and update the
models on the 
y. A hierarchical system structure
is designed and segmentation is combined with track-
ing. Two possible applications are discussed: to gen-
erate VOP for MPEG-4 and to introduce subjective
rate control for DCT-based algorithms. A R-D based
rate control algorithm for H.263 is proposed and im-
plemented as an example.

1 Introduction
In current multimedia and coding research, more

and more focus is directed to the area of computer vi-
sion, especially segmentation. E�orts are made to get
semantic or partial semantic information from video
signals and combine them with traditional coder de-
signs. Such examples include \region based coding"
[5], \model assisted coding" [8], \model based cod-
ing" [4], and most of all, the upcoming MPEG-4 stan-
dard. Obviously, general-purpose image segmentation
has long been a di�cult problem. How to generate se-
mantically meaningful VOPs is a critical problem for
MPEG4.

In this paper, we propose a simple but interest-
ing and e�ective online video segmentation algorithm,
which uses an inexpensive videoconference quality
camera and runs on a Pentium PC in real time. The
application we have in mind is mainly \head-and-
shoulders" type videoconference, but the same prin-
ciple may also apply to other applications. This work
is motivated by the human-body tracking work of
\P�nder" [3]. We use similar statistical models but
develop their idea from tracking to video object seg-
mentation. A hierarchical architecture is designed to
enable real time performance on a PC and spatial and
temporal �lters are designed to improve the boundary
quality.

Applications of this segmentation system include
creating MPEG-4 VOPs and improving the quantiza-
tion and rate control mechanism for traditional coder
like H.263. It may also be applied to model based cod-
ing. The factor here is how much semantic knowledge
is used in the encoder. In this work we use segmen-
tation knowledge to guide the rate control for H.263.

This part is in some degree motivated by the work of
[8],[9],[10], but as our segmentation is improved com-
pared with theirs, we can design better spatial and
temporal adaptivity in our algorithm. In addition, we
design an integrated distortion model which includes
both subjective and objective factors and try to opti-
mize the rate control in a rate-distortion sense.

2 Statistical Model Based Video Seg-
mentation

2.1 Statistical Modeling
We model the segmentation as a MAP classi�cation

problem as in [3]. The straightforward idea is to create
a statistical model for the background when there is no
foreground in the scene. Then, when the foreground
enters, create another model for the foreground and
classify the pixels between the statistical models. The
only assumption is that the camera is static and the
background is not changing rapidly.

In the videophone case, the foreground is \head-
and-shoulders". We use two \blob"s to represent the
head and shoulders separately. Here we use the same
de�nition of "blob" as [3], i.e., each blob has a spa-
tial (x; y) and chromatic (Y; U; V ) gaussian distribu-
tion and a support map which indicates whether a
pixel is a member of a blob. This is showed in Fig-
ure 1: the left image illustrates two blobs, the middle
image shows a support map and the right image is a
foreground map. In this model, each pixel is repre-
sented by a vector (x; y; Y; U; V ) and all the pixels in
blob k have gaussian distribution with mean mk and
covariance matrixCk. The idea behind blob modeling
is that it represents an object that has chromatic and
spatial similarity.

We model the background as a texture map that
varies over time. In common videophone cases, we
assume the camera is static and there is no major
background change. We model each pixel in the back-
ground model as a gaussian distribution in a vector
space (Y; U; V ) with mean m0 and covariance C0.
During the segmentation loop, both foreground and
background models are updated on the 
y. Note that
unlike the foreground model, each pixel of background
is modeled individually. This can accommodate all
kinds of complex backgrounds without limiting them
to �t to a structure like \head- and-shoulders" for fore-
ground.



Figure 1: Left:blob representation, middle:support
map, right:foreground map

With above modeling work, it is straightforward
to classify pixels into di�erent regions by their prob-
ability. In our work, we have two foreground classes
(head and shoulders; k = 1; 2) and one background
class (k = 0). This can be expressed as:

dk = �(ŷ�mk)
TC�1k (ŷ�mk)�ln (det(C)); (k = 0; 1; 2)

(1)
Each pixel is labeled in support map as:

l(x; y) = argmaxk(dk(x; y)) (2)

2.2 Segmentation System
In P�nder[3], the purpose of the system is to track

the spatial positions of the blobs. The requirement
for segmentation is not so strict and some noise is
acceptable because segmentation is used as an \obser-
vation input" for a Kalman �lter to track the blobs.
But in our system the emphasis is segmentation, while
tracking is used as a means to improve the segmenta-
tion quality. To get an accurate and re�ned segmenta-
tion boundary is much more computationally expen-
sive than [3].

Based on this consideration, we design a hierar-
chical system. Each input frame is �rst subsampled.
Blob tracking is carried out in the lower resolution
frame. Boundary re�nement is then done in the full
resolution frame. In this way, tracking and segmen-
tation requirements are addressed di�erently and e�-
ciently (when spatial position of each blob is tracked
in the lower resolution, only the boundary blocks in
the full resolution are further processed to get re�ned
boundary). In addition with a hierarchical structure
it is easy to o�er scalable output for di�erent applica-
tions.

The processing steps in the lower resolution frame
include:

1. The spatial position of each blob is predicted from
current system status with a Kalman �lter.

2. For each pixel, a MAP criterion is used to classify
it into di�erent regions.

3. Morphology �lters are used to convert pixel-by-
pixel classi�cation into a simple connected sup-
port map for each blob.

4. The statistical model for each blob is updated ac-
cording to the new segmentation result.

            

Figure 2: Segmentation results at di�erent resolutions

The processing steps in the full resolution frame
include:

1. Pixel-by-pixel classi�cation of those pixels located
in the boundary blocks derived from the low res-
olution segmentation.

2. Morphology �lters are used to convert the pixel-
by-pixel classi�cation into a simple connected
support map.

3. Spatial relaxation is used to re�ne the boundary.

4. A temporal median �lter is used to suppress the
temporal high frequency on the boundary.

5. The statistical model for each blob is updated ac-
cording to the new segmentation result.

Due to space limitations, we do not discuss these
steps in detail.

This system is implemented on a 150MHz Pen-
tium with an Intel videoconference camera and cap-
ture card. The performance is 9 frames per second for
a full resolution (160 � 120) and 25 frames per sec-
ond for a subsampled resolution (40 � 30) only. Fig-
ure 2 shows two segmentation results in the lower(left)
and the full(right) resolution. Notice that in the right
image the gray region labels the tracked head region
while in the left image gray region is not used to enable
better observation.

From the experimented results, we believe this seg-
mentation approach can be used in some cases to gen-
erate MPEG-4 VOPs with a feasible limitation. In
addition, it may also be applied to H.263 type en-
coder rate control so as to improve the subjective qual-
ity of videoconference, i.e., we can allocate more bits
to head region macroblock(MB)s. Because of its real
time feature, it is feasible to have a combined real
time segmentation and encoding system to be used in
a videophone application.

3 Region based bit allocation and rate
control

In this work, we try to incorporate subjective fac-
tors obtained by the previous segmentation, into tra-
ditional R-D model and design an optimal H.263 com-
patible encoder in this sense.

Early relevant research can be found in [8],[9] and
[10]. Our approach improves over theirs by introduc-
ing an integrated bit allocation algorithm that com-
bines the subjective factor and rate distortion crite-
rion. In this paper we call the new encoder \region
based encoder".



In general this work is based on Telenor's imple-
mentation of H.263[11]. But its rate control part is
improved to be region-adaptive. Our contribution can
be summed in three aspects: bit allocation, temporal
adaptivity and adaptive quantization.

3.1 Bit allocation
There are two steps in bit allocation, one is to allo-

cate bits to frames and the other is to allocate bits to
macroblocks. In H.263, there are only I and P frames
and no B frames. Because of H.263's real time fea-
ture, P frames are the major frame in an H.263 stream
and I frames are only inserted to compensate channel
error. It is not possible to segment an input video
beforehand into frame groups and assign bits to each
I and P frames according to their relative complex-
ity measures as in [6]. We allocate bits uniformly to
each frame as TM5 does while concentrating on the
bit allocation to di�erent macroblocks.

Problem: The problem can be expressed as fol-
lows. Given the bit budget �B for each frame, �nd
the optimal bit allocation B̂i to M macroblocks (i =
1; 2; � � � ;M ) that minimizes the frame distortion in the
R- D sense.

Distortion Model: In H.263, all the DCT coef-
�cients within one macroblock are quantized with
one quantizer Q. Assuming DCT coe�cients have a
uniform distribution, the quantization error for mac-
roblock i is

Di =
X

�t =
X

�f = k �Q2
i (3)

As in [7], we use Xi = Qi � Bi to represent the mac-
roblock complexity, we then have

Di = k
X2
i

B2
i

(4)

We further include a subjective importance factor �l(i)
where l(i) is the region label of macroblock i,(l(i) =
background; head; or shoulders). The �nal distortion
equation is

Di =
�l(i)X

2
i

B2
i

(5)

R-D optimization: With distortion model eq.(5),
it is easy to solve the R-D optimization problem with
the Lagrange multipliers method:

S = D + �B =
MX

i=1

Di + �

MX

i=1

Bi (6)

Setting @S
@Bi

= 0, we have

k
�l(i)X

2
i

B3
i

= � (7)

Now we use the quantizationmodel for MPEG encoder
in [6]:

Bi = aP;imadiQ
bP;i
i (8)

Bi = aI;i�iQ
bI;i
i (9)

where madi is the motion predicted mean absolute dif-
ference for P frame MB i, and �i is the mean absolute
di�erence for I frame MB i. For H.263, we adapt its
P frame equation and assume madi is linear to block
complexity factor Xi:

Bi = aimadiQ
bi
i (10)

madi = k �Xi = k �Qi �Bi (11)

where the parameters ai and bi are MB dependent.
Substituting (10),(11) into (7) yields

kai
�2

bi �l(i)B
2

bi
�1

i mad
�2

bi = � (12)

According to [6], the empirical value for bi is �1:5,
then the equation becomes

ai
4

7 �l(i)
3

7mad
4

7

Bi

= �=k
3

7 (13)

This equation shows that the bit allocation Bi is pro-
portional (general sense) to the subjective importance
�l(i) and the objective complexity madi. Let

wi = ai
4

7 �l(i)
3

7mad
4

7 (14)

the optimal bit allocation to each MB can be expressed

B̂i =
wiPM

k=1wk

�B (15)

where �B is the average bits for each frame and B̂i is
the adaptive allocated bits to MB i. Note this opti-
mization is based on the empirical quantization equa-
tion (10) and (11). So it is not an ultimate optimal
solution. Di�erent approach based on operational R-
D optimization is discussed extensively in [14]. Their
solution is computationally expensive and is intended
for benchmarking rather than real time implementa-
tion. In our case, e�orts are made to �t the empirical
equations (10) and (11) to actual video source in an
adaptive way (see eq.(19),(20)). Under this empirical
model assumption, we claim that equation (15) ap-
proximates the optimal solution.

3.2 Temporal adaptivity
In the bit allocation weight equation (14), a subjec-

tive factor �l(i) is used to control the bit allocation so
as to introduce spatial adaptivity. In most videocon-
ference cases, the background is relative static and it
is reasonable to reduce its temporal refresh rate while
maintain good visual quality. Under this considera-
tion, we classify the P frames in H.263 into PO and
PF frames. In PO frames only the foreground object
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Figure 3: PF and PO frames illustration

MBs are coded, while in PF frames all the MBs in the
frame are coded. PF frames work as anchors for PO
frames and their temporal relation is illustrated in Fig-
ure 3 where possible I frames are also included. The
parameter TPF (time between two PF frames) should
be adjusted according to an estimate of background
motion. In this work we set TPF to be the number of
PO frames between two PF frames. Also notice that
PO and PF control can be easily integrated into the bit
allocation equation (15) by assigning �background = 0
for PO and �background 6= 0 for PF.

3.3 Adaptive quantization
In the above discussion, we derived an optimal bit

allocation to each MB but how to choose proper quan-
tizers to achieve this allocation remains a problem.
Actually, there is no clear theoretical function like
Q = f(B) or B = f(Q). In this work, we use a feed
back control to realize the bit allocation budget. In
addition, the modeling parameter ai is also estimated
online in a feed back way.

In general, we adapt Telenor's feed back rate con-
trol scheme, which is expressed as:

Qt;i = �Qt�1;l(i)(1 + �G +�L) (16)

where

�G = (Bt�1 � �B)=(2 �B) (17)

�L = 4(
i�1X

k=0

Bt;k �

i�1X

k=0

B̂t;k)=R (18)

Compared with Telenor's scheme, we maintain di�er-
ent average quantizer �Qt�1;l(i) for di�erent labeled re-
gion l(i). The idea is that a quantizer is similar be-
tween temporal neighboring frames for the same re-
gion type. In addition, region adaptive cumulative

rate target
Pi�1

k=0 B̂t;k is used to generate local adap-

tive factor �L (MB level). In eq. (18),
Pi�1

k=0Bt;k is
the actual bit consumption for the �rst i�1 MBs thus
far,
Pi�1

k=0 B̂t;k is the cumulative target rate. Note B̂t;k

is obtained through eq. (15). But the global adaptive
factor �G (frame level) remains the same because we
allocate bits uniformly to each frame.

For parameter ai, we try to classify the MBs into
di�erent groups according to their mad:

g(i) =
madi

gthreshold
(19)

And get the average ai for each group �at�1;g(i) (in
frame t-1). So we have

a(t; i) = at;g(i) = �at�1;g(i) (20)

Note that in quantization model eq.(10) we set bi to
be �1:5, and only ai is used to account for input adap-
tivity. By grouping the MBs according to their com-
plexity, we can better control the performance of this
empirical model.

3.4 Experimental results
We implement our algorithm on a PC with the

hardware system described in 2.2. Because of the on-
line feature of our segmentation algorithm, we can not
use standard video sequences in our testing. Instead
we captured a testing sequence with our videoconfer-
ence system. The sequence is 500 frames in length,
15fps, one person with considerable motion before a
static background. Because the hardware system uses
a frame format of 160x120, we pad it to QCIF format.

First we compare our algorithm with Telenor's
TM5. Their latest software version is TMN2.0 [12].
Both algorithms use the baseline mode. The target
frame rate is 10fps, and the bit rate is 32kps. The pa-
rameters used in our algorithm are gthreshold = 250,
TPA = 30. The subjective factors used are: �head =
4; �shoulders = 1; �background = 0 for PF frames and
�head = 1; �shoulders = 1; �background = 1 for PA
frames.

Figure 5 shows the bit allocation of a typical PF
frame by our region based algorithm. We number the
images from left to right and top to bottom. (a) is the
origin frame, (b) is mad, (c) is bit allocation budget
and (d) is the actual achieved bit allocation by adap-
tive quantization. Note that (d) is not strictly equal
to (c) due to the model error and the feed back nature
of the control mechanism.

In Figure 6 we see that our algorithm improves the
head region SNR by about 1 DB at the expense of
dropping the overall SNR about the same amount in
Figure 7. This change is desirable because comparing
Figure 6 and Figure 7, TM5's overall SNR curve is al-
ways higher than its head region SNR curve while our
algorithm have head region SNR higher than overall
SNR. Figure 8 shows the stream bit rate of two al-
gorithms. Because of PO and PF alternation in our
region-based algorithm, it exhibits higher bit rate 
uc-
tuation than TM5. This 
uctuation depends on the
changing of background and is di�cult to overcome in
real time implementations. In general we can see that
the feed back rate control scheme works well.

Figure 4 compares two reconstructed frames by the
region based algorithm(left) and TM5(right). The re-
gion based algorithm exhibits better subjective qual-
ity in the head and facial region. In addition, the
PO and PF alternation maintains good background
quality and the overall trade o� yields good subjec-
tive quality.
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Figure 5: Bit allocation to macro blocks
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Figure 6: Head region snr vs. frame number
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Figure 7: Overall snr vs. frame number
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Figure 8: Bits consumption vs. frame number


