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Abstract
A general framework for data compression, in which

computational resource bounds are introduced at both
the encoding and decoding end, is presented. We move
away from Shannon's traditional communication sys-
tem by introducing some structure at the decoder and
model it by a Turing machine with �nite computational
resources. Information is measured using the resource
bounded Kolmogorov complexity. In this setting, we
investigate the design of e�cient lossy encoders.

1 Introduction

The problems of quantifying representing and trans-
mitting information have been addressed in 1948 by
C. E. Shannon [10] in a pure communication setting.
The result of this work is Information Theory (IT),
a mathematical basis formalizing the communication
problem between a sender and a receiver. In this
framework, the meaning of the message is irrelevant
and completely ignored. The main question is to �nd
an e�cient representation of the output of a stochastic
information source. This representation must be short
enough to �t in the channel capacity, robust enough to
survive the corruption of noise and accurate enough to
provide a good approximation of the original message
at the receiving end. This theory is based on probabil-
ity theory. The notion of information commonly called
entropy, is an ensemble one measuring the number of
possible choices to make in order to select a message.
Ignoring the e�ect of noise, optimality is then syn-
onymous to compression which is achieved by assign-
ing shorter codes to messages with higher probability.
Targeted applications involved vertical designs such as
telegraphy, telephony, facsimile, videoconferencing, or
even digital television.

Today's picture of the communicationworld is how-
ever much broader. The ever increasing power of mod-
ern computers has transformed them into very ca-
pable platforms for audiovisual content creation and
manipulation. Users today can easily capture com-
pressed audio, images, or video, using a wide array
of consumer electronic products. (e.g., digital image
and video cameras as well as PC boards that produce
JPEG and MPEG-1 content directly). It is quickly re-
alized that the traditional objective of e�ciency may
con
ict with other applications requirements (ease
of editing, processing, indexing and searching, etc).

There is an increasing need to develop systems able
to understand information content in individual mes-
sages and it is not natural to add this new component
in Shannon's framework where semantics are ignored.
In 1965, in an attempt to measure the amount of
randomness in individual objects, Kolmogorov intro-
duced another informationmeasure based on length of
descriptions1 [8]. In this case, entropy is a lack of com-
pressibility measured individually by the length of the
shortest computer program able to generate the ob-
ject to represent. As shown in �gure 1, this approach
is a deterministic dual to Shannon's theory. Clearly,
the understanding question is better addressed in this
individualistic framework. It is important to note that
short descriptions are desired here not only for trans-
mission through a channel with limited capacity. Ob-
jects with long descriptions are patternless and intu-
itively random. Furthermore, following the Occam's
razor principle, short descriptions are desired because
they are simple and more likely to be good explana-
tions for the object to describe. These descriptions
are computer programs formalized using the theory of
recursive functions [7]. The structure of the decoding
device is �xed. It is a computer modeled by a Tur-
ing machine (TM). Interestingly, and in contrast with
traditional IT, computational resource bounds can be
introduced naturally at the decoding end by limiting
the computational resources of the decoding TM. The
result is a formalization of the practical problem of
coding �nite objects with only a �nite amount of com-
putational resources.

In this paper, we investigate the lossy representa-
tion of information in Kolmogorov's setting with com-
putational resource bounds at both the decoding and
encoding end. We start in section 2, with a brief ex-
position of de�nitions and notations used throughout
this work. In section 3, we show the duality between
this deterministic approach and Shannon's stochastic
approach. This section will highlight the main simi-
larities and di�erences between these two theories and
will give the motivation for the use of Kolmogorov's

1Solomono� and Chaitin also introduced independently the
same notion, respectively in 1964 and 1966 with di�erent mo-
tivations. Solomono� formalized the notion of Occam's razor
for inductive inference. Chaitin measured the complexity of a
string by the smallest number of states a Turing machine needs
to output the string.
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Figure 1: Duality between Shannon and Kolmogorov
information measures.

approach to the coding of �nite objects. In section 4,
we discuss the design of universal codec systems for
�nite objects with a �nite amount of computational
resources. A general method based on evolutionary
programming techniques is presented.

2 Notations and De�nitions
Without any loss of generality we focus here on bi-

nary sequences. Let B0 = f0; 1g, Bn
0 = B0 � � � � �B0

n times and B =
S1
n=1B

n
0 . B1 denotes the set of

all in�nite binary sequences (the continuum). The
empty string is denoted by �. Let n and m be two
elements of N and x 2 B, we de�ne l as being a func-
tion from B to N mapping each element x of B to its
length. xm denotes the mth symbol x. xmn will denote
(xn; xn+1; � � � ; xm) if m > n.

2.1 Kolmogorov Complexity
The concept of Kolmogorov complexity is formal-

ized using the theory of recursive functions. A func-
tion f mapping elements of B to B is recursive if there
is a Turing machine able to take any element x of B
on one of its input tapes and map it to f(x) 2 B by
having f(x) on its output tape2.

De�nition 1 [8] Let F be an arbitrary partial recur-
sive function with a pre�x domain3. Then the pre�x
conditional complexity of the sequence x 2 B given the
knowledge of another sequence y with respect to F is:

KF (x j y) =

�
minfl(p) : F (p; y) = xg;
1 if 8p 2 B F (p; y) 6= x

KF (x) = KF (x j �)

Theorem 1 There exists a partial recursive function
F0 (called optimal) such that for any other partial re-
cursive function G,

KF0(x j y) � KG(x j y) + O(1) (1)

2See [7] for a complete discussion on this concept.
3A pre�x domain is a set of sequences where no sequence is

the proper pre�x of another.

Proof: See [8].
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The optimal function is also called the universal func-
tion. The intuition behind this theorem is the ex-
istence of a universal computer able to simulate the
actions of any other computer. As a result, we will
drop the subscript referring to the partial recursive
function and use K(x) = KF1

0

(x) as a notation for the
complexity of sequence x.

Theorem 2 K is not partial recursive.

Proof: See [5], [9].

2

Theorem 2 is known as the NoncomputabilityTheo-
rem. It is a negative results since it proves that any at-
tempt to compress maximally any sequence cannot be
performed on a TM. It is a manifestation of the Halt-
ing problem but fortunately, the next theorem states
that it is possible to approximate K.

Theorem 3 There is a total recursive function
�(t; x), monotonic decreasing in t, such that

lim
t!1

�(t; x) = K(x)

Proof: This theorem is due to Kolmogorov (accord-
ing to [9]). Its proof can be found in [9] and [5]. Since
the proof hints at how computational resource bounds
at the decoding end remove the Halting problem, we
reproduce it here. For each value of t, it is possi-
ble to construct a pre�x Turing machine that runs
the reference Turing machine �xed in theorem 1 for
no more than t steps on each program with length at
most l(x)+c. We de�ne 	(t; �) as the partial recursive
function computed by this Turing machine. If for some
input programs p, the computation halts with output
x, then we de�ne �(t; x) = minfl(p) : 	(t; p) = xg.
Else, �(t; x) = l(x) + c. Clearly, �(t; x) is recursive,
total4, and nonincreasing with t. Also, the limit exists
since for each x, there is a t such that the reference
Turing machine halts and outputs x after t steps start-
ing with input p with5 l(p) = K(x).

2

Theorem 3 will play a major role in this paper. Al-
though we can approximate K(x) from above, it does
not mean that we can decide whether �(t; x) = K(x)
or not. In more intuitive words, the approximation
gets closer and closer toK but it is impossible to know
how close it gets. The proof of this theorem motivates
the following de�nition.

De�nition 2 [5] Let �t;s be a partial recursive func-
tion computed by a Turing machine such that for any
x 2 B, the computation of �t;s(x) requires less than t

4Every �nite x has a value assigned to it by �.
5Since objects are �nite, there is a value t� corresponding to

the number of steps the optimal description for x (with length
equal to K(x)) takes when it is placed in input on the reference
Turing machine.
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steps (time) and uses less than s tape cells (memory).
The resource-bounded Kolmogorov complexity K

t;s
� of

x, conditional to � and y (y 2 B), is de�ned by

K
t;s
� (x j y) = min

�
l(p) : �t;s(p; y) = x

	
(2)

Theorem 1 can be extended to the resource-bounded
Kolmogorov complexity. As a consequence, we can
drop the subscript � and denote this complexity by
Kt;s.

2.2 Complexity Distortion Function
The Kolmogorov complexity has been extended to

the lossy case in [12] and [11]. In this section, we go
one step further and put some resource bounds on the
decoding Turing machine. To do so, we �rst generalize
the optimal quantization procedure proposed in [11].

De�nition 3 Let D be a distortion measure accord-
ing to a single letter �delity criterion6 d(�; �). On a
given object xn1 , with D as a constrain, we introduce
distortion in order to minimize the resource-bounded
complexity of the resulting object yn1 . If we have more
than one object yn1 with the same optimal complex-
ity, we select the closest to xn1 . If many objects yn1 are
equidistant to xn1 , we arbitrarily select one of them and
map it to xn1 . This way, we de�ne a function from the
set of source objects xn1 to the set of distorted objects
y. We denote this function Qt;s

D and call it the optimal
quantization procedure7.

Qt;s
D (xn1 ) = arg min

yn
1
2Bn :d(xn

1
;yn
1
)�D

Kt;s(yn1 )

De�nition 4 The resource-bounded complexity dis-
tortion function is a mapping from B to R+ asso-
ciating elements xn1 2 B to:

C
t;s
D (xn1 ) =

K(Qt;s
D (xn1 ))

n
(3)

The complexity distortion function CD(�) is de�ned by:

CD(x
n
1 ) = lim

s;t!1
C
t;s
D (xn1 ) (4)

From theorem 3, CD(�) is well de�ned.

3 Duality between CD(�) and R(D)
To claim that Shannon and Kolmogorov's ap-

proaches are dual to each other, it is imperative �nd
some relationships between these information mea-
sures. This closes the circle of media representation
techniques shown in �gure 2. These equivalences are
well known in the lossless case [5],[9]. The lossy case
is discussed in [11],[12].

6See [3]
7For simplicity, we assume that the range of Qt;s

D
is also B.

The results still holds for the more general ranges for Qt;s

D
, with

the de�nition of the minimum amount of achievable distortion.
See [3].

Theorem 4 [11] For any stationary ergodic source
with a recursive probability measure �, let R(D) be the
rate distortion function associated with a single letter
distortion measure, then,

lim
n!1

CD(x
n
1 ) = R(D); xn1 2 Bn (5)

�-almost surely.

Proof Outline: To prove theorem 4, �rst we use
Markov types and the code construction proposed in
[6] to establish an upper bound on CD(�). The Markov
k-type of xn1 , denoted by p̂k(xn1 ), is a measure of
the empirical distribution of xn1 , assuming a k-order
Markov model. The type class Tk(x

n
1 ) of x

n
1 is the set

of all sequences of length n with Markov k-type equal
to p̂k(xn1 ). We represent xn1 with a two part code.
The �rst part of the code represents the Markov k-
type of xn1 . To do so, an index of the Markov k-type
of xn1 in the class of all possible Markov k-types is
transmitted. We call this part the model of the rep-
resentation. The second part of the code is called the
data part.To compute it, we �rst partition Tk(xn1 ) into
distortion classes. Each of these classses is composed
of sequences distant from each other by less than D.
The partition is done in order to minimize the total
number of distortion classes needed to cover Tk(x

n
1 ).

The second part of the code is then an index to the
distortion class that contains8 xn1 . It can be shown
that this code is pre�x free and can be understood by
a pre�x TM. Its coding rate converges almost surely
to R(D) [6]. In the second step of the proof, we use
the incompressibility of almost all in�nite sequences
(using integral randomness tests9) to show that most
sequences have their Kolmogorov complexity close to
their Shannon entropy. More formally, in a lossless
context, let the set of typical sequences, Styp, be de-
�ned as:

Styp =

�
x 2 B1 : lim inf

n!1

� log2 �(x
n
1 )�K(xn1 )

n
= 0

�

If � is recursive then,

�(Styp) = 1 (6)

Note that this result coupled with the Shannon-
McMillan-Breiman theorem shows that for a station-
ary ergodic source, the ratio complexity length con-
verges to the entropy rate. In the lossy case, we use
de�nition 3 and equation 6 to argue that the mutual
information between the source and the output of the
optimal quantizer (de�ned by Qt;s

D (�)) is almost surely
equal to the rate distortion function10. It remains to
show that this rate is almost surely equal to the com-
plexity distortion function and this can be done using
the de�nition of the mutual information (as a Radon-
Nikodym derivative [3]) and equation 6 again.

8We assume that the output of the optimal quantizer belongs
to B.

9See [5] chap 4.
10This statement is a direct consequence of the optimality of

Q
t;s

D
and the almost surely equivalence between complexities

and logarithmic of probabilities.
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Figure 2: The circle of media representation Theories.
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There are two interesting point to make from this
outline. First, restricting the decoding function to
be recursive does not reduce the performances if the
source has a recursive probability measure. In fact the
Church-Turing thesis guarantees that any coding al-
gorithm belongs to the set of recursive functions, from
traditional entropy coding techniques to model-based
coding methods. The result is a uni�cation of all cod-
ing algorithms under a single framework. Second, the
equivalence was made possible by using limits show-
ing that Shannon's information measure assumes the
availability of an in�nite amount of computational re-
sources at the decoding end. Futhermore, due to its
ensemble nature, this informationmeasure requires in-
�nite observations which may not be available in prac-
tice. Its dual part, the Kolmogorov complexity, is not
suitable for the prediction of compression rates when
computational resources are unbounded as shown in
theorem 2 (where Shannon's approach works well) but
in contrast with Shannon's measure, it predicts recur-
sive compression rates for the coding of �nite indi-
vidual objects with a �nite amount of computational
resources.

4 Codec Design
As we saw in section 3, convergence between com-

plexity distortion function and rate distortion function
is due to the existence of types or relative frequen-
cies. Classical coding techniques use this property
and are only asymptotically optimal. The existence
of the limit is guaranteed by the assumption that the
source is stationary and ergodic. In a sense, the class
of ergodic sources contains the most general depen-
dent source for which the law of large numbers holds.
In this section we propose a coding system that do not
rely on statistical properties of the source. Instead, a
complexity approach is used. We will argue that this
coding system yields performances arbitrary close to
the resource bounded complexity distortion function.

4.1 The Decoder
The key component of the complexity distortion ap-

proach is the substitution of the decoder in Shannon's
classical communication system by a Turing machine

completely de�ned by its language. Designing this lan-
guage delimits the space of possible representations
that we call the program search space. With a Tur-
ing complete language, optimal representations yield-
ing compression rates close to the complexity distor-
tion function belongs to the search space. But such
a complete space could be too wide and ine�cient for
a particular application. Prior knowledge on the ap-
plication, can be used to limit the dimensions of the
search space and speed up the encoding procedure.
To simplify the discussion, we assumed that our lan-
guage is Turing complete. Also, without loss of gen-
erality, we represent programs using either symbolic
expressions11 or parse trees,

4.2 The Encoder
With the program space speci�ed by the structure

of the decoder, the encoder has to explore this space
and �nd an e�cient representation for the source ob-
ject to be coded. An interesting way to perform this
search is to use evolutionary programming techniques,
like genetic programming. The idea is to perform a
beam search which is a compromise between exhaus-
tive and hill climbing techniques[2]. An evaluation
metric, commonly called a �tness measure, is used to
measure the e�ciency of each point in the program
space. This number is a measure of how well the
corresponding program represents the source object.
When lossy compression with resource bounds at the
decoder is the main problem, the �tness has to be
a function of the amount of distortion introduced by
the representation and the length of the representa-
tion. The �tness is used to select out a certain num-
ber of the most promissing solutions for further trans-
formation. The genetic programming method starts
by generating randomly an initial population of pro-
grams, also called a generation. These programs are
then run for less than t steps and using less than s
memory cells to determine their �tness. Using these
�tness numbers for this population, and following the
Darwin principle of survival of the �ttest, a new gen-
eration of programs is obtained by performing genetic
operations. The most common operations are the
crossover, the mutation and the reproduction. In the
crossover operation, two parent programs belonging
to the initial generation are chosen. Subtrees of these
programs are randomly chosen and swap to give birth
to two o�springs in the new generation. Parents with
high �tness have a higher probability to participate
in crossover operations. The mutation operation sim-
ply changes randomly some nodes in the parse trees of
individuals of the new generation. The reproduction
copies good programs in the new generation. Details
of these operations can be found in [2]. What is in-
teresting here is that under general conditions (to be
mentioned below), when this process is repeated, the
probability to have an element with maximum �tness
in the population converges to 1 [4]. To see this, note
that the dynamic of this algorithm can be modeled

11Any computer program can be seen as a composition of
functions. In fact compilers use this fact and �rst translate
the code into a parse tree before translating it to machine code
instructions.
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by a Markov chain. Populations have �xed size, each
possible one corresponding to a state in the Markov
chain. Since the object that has to be coded is �nite
in length, the number of possible states in this process
is �nite12. The convergence of the genetic process de-
pends on the structure of the transition matrix Q of
this Markov chain. As shown in [4], optimality can be
reached almost surely in polynomial time if the follow-
ing two points are satis�ed:

1. The second largest eigenvalue13 of Q, denoted
�max, is suitably bounded away from 1 so that
the Markov chain is rapidly mixing.

2. The stationary distribution � gives probability
greater than �, where 1

�
is polynomial in the prob-

lem parameter, to the set of states that contains
individuals of best �tness.

The �rst property requires that Q is irreducible with
non negative entries which will always be the case if
we have a strictly positive mutation probablity forcing
ergodicity. The second property is more di�cult to
satisfy. It can be ensured by a good design of the
decoder. Assuming that it also holds, the following
algorithm can be used at the encoder:

1. From a start state, evolve through a polynomial
number of generations;

2. From the �nal population vector, select the �ttest
individual.

3. Repeat step 1 and 2 a polynomial number of
times.

The third step of the algorithm is used to boost the
convergence probability. Almost surely discovery of
an individual with optimal �tness is guaranteed. This
procedure, although polynomial time, is computation-
ally expensive in practice. A similar version of it has
been implemented for the coding of sounds and im-
ages in [1] using binary machine code to reduce the
computational burden at the encoder. The use of ma-
chine code does in fact speed up the �tness evaluations
during the encoding, which is the bottle neck of the
algorithm. More work will done in this direction.

5 Concluding Remarks
In this paper, we have substitute the decoder

in Shannon's classical communication system by a
Turing machine. It allows us to place computa-
tional resource bounds at the decoding end. Infor-
mation is measured using the resource bounded Kol-
mogorov complexity, which is asymptotically equiva-
lent to Shannon's entropy. It shows the duality be-
tween Kolomogorov complexity theory and Shannon's
theory of communication, which assumes the availabil-
ity of an in�nite amount of computational resources

12Formally, there is a constant c such that for all xn
1
2 Bn

0
,

K(xn
1
) � n+ c. Therefore, the cardinal of the program space is

bounded.
13The largest eigenvalueofQ is 1 if the chain is irreducible. Its

associated left eigenvector is then �, the stationary distribution.

at the decoder. Finally, we have discussed the design
of optimal codec systems for �nite objects with lim-
ited decoding power using evolutionary programming
methods.
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