AMOS: An Active System For MPEG-4 Video Object Segmentation

Di Zhong and Shih-Fu Chang
Department of Electrical Engineering
Columbia University, New York, NY 10027, USA
{dzhong, sfchang}@ee.columbia.edu

Abstract have been reported in [2,3]. In [2], based on an active
contour model (shake), an energy-minimizing elastic

Object segmentation and tracking is a fundamental stefontour model was used to track the moving contour of
for many digital video applications. In this paper, we he object. An elastlc. con_tour in the previous .frame is
present an active systenANIOS) which combines low moved and deformeq iteratively to the best'posmon in the
level automatic region segmentation with an activeCU'Tent frame according to the energy function. In [3], Gu
method for defining and tracking high-level semantic2"d L€€ proposed a semantic object tracking system using
video objects. The system contains two stages: an initia athematical morphology and perspective motion. Their

object segmentation stage where user input in the starting stem uses a modified _morphologlcal water_shet_:l
. : L . grocedure to segment uncertain areas between the interior
frame is used to create a semantic object; and an obje

. . ) “and exterior outlines. Flooding seeds are sampled on both
tracking stage where underlying regions of the semantigyerior and exterior outlines. Regions growing from

object are tracked and grouped through successiVeyerior seeds define the segmented object boundary. In
frames. Experiments with different types of videos shoye first frame, the interior outline is defined by users, and
very good performance. the exterior outline is obtained by dilation of the interior
one. For the subsequent frames, the interior and exterior
) outlines are created by erosion and dilation of motion
1. Introduction projected boundaries from the previous frame.
Satisfactory results from the aforementioned work were
Recent progress in content-based video indexing arreéported for certain types of video conteng, those with
audiovisual object-based coding (MPEG-4) has shownmigid objects and simple motion. However, these
great potential for many new applications, such as contentechniques track a single contour or video object, ignoring
based image/video retrieval [1], content-based scalabline complex components and associated motions within
video transmission, and object-based video editingthe semantic object. In general video sources, a semantic
However, there is still a lack of robust techniques forobject usually contains several parts with different
segmenting video objects. State of the art work has shownotions (sometimes with rapid changes and non-rigid). In
success in decomposing video into regions with unifornsuch cases, one single motion model is not adequate to
features [4,7]. Segmenting video into meaningful object¢rack a semantic object over time. In addition, these
(such as people, car) still remains a challenging issue. techniques tend to ignore the background content in
this paper, we refer to this type of meaningful objects agracking the foreground object. This may cause problems
“MPEG-4 video objects” or “semantic video objects” in tracking regions near the boundary of the object (as will
interchangeably. be illustrated later).
Due to the semantic ambiguity and content complexity, We have developed an active system for MPEG-4
fully automatic segmentation of semantic objects so favideo object segmentation callelAMOS. AMOS
can only be developed for constrained domains. Fotombines low level automatic region segmentation and
general video sources, object definition usually cometracking [6,7] with the active method for defining and
from user manual input. Users identify semantic objects itracking video objects at a higher level. At the low region
the first frame by using tracing interfacesg, mouse or level, image frames are decomposed into a set of non-
optical pen). Given the initial objects, the segmentatioroverlapping regions with homogeneous visual features
system tracks the movement of objects in subsequestich as color, texture and motion. At the object level,
frames. We call this type of system an activesemantic objects are obtained by aggregation of
segmentation (in the sense that “active” user input i®lomogenous regions. The aggregation process uses the
required). optimal combination of user input in the first frame, joint
Similar approaches using active segmentation methodereground and background simultaneous tracking, and



new region classification based on visual featurds applied before motion segmentation. Motion is used as
similarity.  Region-level segmentation is contexta secondary feature due to the noisy nature of the motion
independent and can be fully automated. Application ofield. This is important for the following aggregation
our automated region segmentation has been demonstraig@cedure, where homogeneous regions are classified as
successfully in our video search system, VideoQ [1]. Thigither foreground or background to form the semantic
paper presents new methods for combining the automatighiect with an accurate boundary. Region aggregation is
region segmentation methods with the active methods fQ§55ed on the coverage of each region by the initial object
defining and tracking video objects in a higher level. mask: regions that are covered more than a certain

This paper is organized as follows. We first give anyercentage are grouped into the foreground object. The
overview of the system in Section 2. Section 3 present§,| contour of the semantic object is computed from
static region segmentation and object aggregation in th@eqround regions. Foreground regions belonging to the
starting frame.  The automatic region based objeChyiect and background regions are all stored and will be
tracking schema is discussed in Section 4. Experimentgl,-xed over time in the successive frames.

results are analyzed in section 5. Section 6 includes Tracking at both the region and object levels is the main

conclusion and discussion of future work. task in the second stage. As showfigare 1, segmented
. regions from the previous frame are first projected to the
2. AMOS Overview current frame using their individual affine motion

models[6]. An expanded bounding box including all
In the AMOS system, a semantic object is representegojected foreground regions is computed. Then the area
as a set of underlying homogeneous regions. The goal ffsige the bounding box is split to homogeneous color and
the system is to construct a semantic object accordmg Wotion regions following a region tracking process.
user input in the starting frame and then track the object ifyjie in other existing approaches, projected regions are
,TI\E/}I OSSUC((;:?)iSSIi\;?S fr(?fmet\?vobasstae\gesoninltssefr?:;trletri?: roegj:);ﬁot used directly as the new segmgntation, but as s_eeds_ in
segmentatiorfigure 1) a_no_ther color b_ased region growing process, _whlch is
' similar to the fusing algorithm in the first stage. Pixels that

Object Definition can not be tracked from any old regions are labeled as new
(User Input) regions. Thus the resulting homogeneous regions are
; tagged either foreground (meaning tracked from a
(Stage l) starting | |
frame foreground region), dbackground(meaning tracked from

a background region), onew (meaning not tracked).
They are then passed to an aggregation process and
classified as either belonging to the foreground object or
uccessive | Tracking the background. Here instead of the user input, the
(stage 2F rames approximated object boundary is obtained from projected
t Motion | <] _Region foreground_reg?ons. Furthermore, to h_andle possibl_e
Projection Aggregation motion estimation errors, the aggregation process Is
carried out iteratively. Finally, the object contour is

— p| Region
Segmentatioj
Homogeneous
Regions

Region

Figure 1. General Structure Of AMOS computed from foreground regions and all regions are
he fi definiti ; ic obi advanced to the tracking process for the next frame.
In the first stage, definition of a semantic objext( A detailed explanation of the above two stages is

rough outlines) is provided by users in the starting framegiven in the following two sections.

A snake algorithm[5] is provided as an option to refine the
user input. Then the semantic object is generated throu@ Initial Semantic Object Segmentation

a region segmentation and aggregation process. Effective

re_gion segmentation is z_ipplied to the area inside__the Semantic object segmentation at the starting frame
sllghtly expande_d bounding box of the user-spemfledconsists of several major processes as shovigure 2.
obj_ect. It e_ffectlvely fuses color and edge features in a First, users identify a semantic object by using tracing
region-growing process that produces_ homogeneous COl%terfaces ¢.9. mouse). The input is a polygon whose
Leglons with a_lccur:_;lteb rk:ounldarles(.j To extracl,enices and edges are roughly along the desired object
Omogeneous bregn:jns n gt color an rfnol':jlop, mOt('jOTJoundary. To tolerate user-input error, a snake algorithm
segmentation based on a dense motion field Is used 185 ysed to align the user-specified polygon to the actual
further split the color regions. As color segmentation i bject boundary. The snake algorithm is based on
more robust and gives more accurate region bounda”es'rﬂinimizing a specific energy function associated with



detection algorithm. Motion field is generated by a

Object Affine - Object& hierarchical block matching algorithm [8]. We adopted a
Definition Estimation Regions 3-level hierarchy as suggested in [8].
: _ + The intra-frame segmentation module is developed
rough 0““'“* object based on our previous work on automatic region
boundary [ Region segmentation algorithm using color and edge [6,7]. As
Snake ———®| Aggregation gmen 9 g c ge 15.71.
stated in [6,7], color-based region segmentation can be
bounding b<¢< homogeneous greatly improved by fusion with edge information. Color
framer — ©+ — A regions based region merging process works well on quantized
n edge maj and smoothed images. On the contrary, edge detection
Diggciionj—> Region captures high-frequency details in an image. In AMOS, to
I | Segmentation further improve the accuracy, a motion-based
| QuantizatiolCOlor map Fusing: segmentation process using the optical f|0W is f'ipplied to
| | - coIo?- segmente_d c_olo_r regions to check the uniformity of the
| motion edge motion distribution.  Although the complete process
Motion field : utilizing color, edge, and motion is not trivial, the
(o Estimation > motion computational complexity is greatly reduced by applying
e —

the above region segmentation process only inside the
bounding box of the snake object instead of the whole
frame.

edge pixels [5]. Users may also choose to skip the snake The region aggregation module takes homogeneous
module if a relatively accurate outline is already provided. regions from the segmentation and the initial object
After the object definition, users can start the trackingbourw|ary from the snake (or user input directly).
process by specifying a set of thresholds. — Thespggregation at the starting frame is relatively simple
thresholds include a color merging threshold, weights ORompared with that for the subsequent frames, as all
three color channels (i.e. L*u*v*), a motion merging regions are newly generated (not tracked) and the initial
threshold and a tracking buffer size (see followinggytiine is usually not far from the real object boundary. A
sections for their usage). These thresholds can be chosgiyion is classified as foreground if more than a certain
based on the characteristic of a given video shot a”ﬂercentage g.g. 90%) of the region is included in the
experimental results. For example, for a video shot whergitial object. On the other hand, if less than a certain
foreground objects have similar luminance Withpercentage gg. 30%) of a region is covered, it is
background regions, users may put a lower weight on thgynsidered as background. Regions between the low and
luminance channel. Users can start the tracking procegggh thresholds are split into foreground and background

for a few frames with the default thresholds which ar&egions according to the intersection with the initial object
automatically generated by the system, and then adjust thgssk.

thresholds based on the segmentation and tracking results. . . )
Our system also allows a user to stop the tracking process = Finally, affine motion parameters of all regions,
at any frame, modify the object boundary that is bein ncluding both foreground and background, are estimated

tracked and then restart the tracking process from theY & multivariate linear regression process over the dense
modified frame. optical flow inside each region. In our system, a 2-D

Given the initial object boundary from users (or theafﬁne model with 6 parameters is used. These affine

snake module), a slightly extended (~15 pixels) boundin?EOdels will be used to help trgck the_ regions and opject in
box surrounding the arbitrarily shaped object is e future frames, as we will discuss in the next section.

computed. Within the bounding box, three feature maps . . .
edge map, color map and motion field, are created frorft- Semantic Object Tracking
the original images. Color map is the major feature map

in the following segmentation module. It is generated by Given the object with homogeneous regions constructed
first converting the original image into the CIE L*u*v* at the starting frame, tracking in the successive frames is

color space and then quantizing pixels to a limite?chieved by motion proje%tion and S.n _inter-fr?mﬁ
number of colorsd.g. 32 or 16 bins) using a clustering segmentation process. The main objectives of the

based €.g. K-Means) method. The edge map is a binar;}raCking process are to avoid losing foreground regions

mask where edge pixels are set to 1 and non-edge-pixeefg,]d to avoid _mcludmg false background regions. It
contains following stepdigure 3).

are set to 0. It is generated by applying the Canny edge First, segmented regions from the previous frame,

n+1
Figure 2. Object segmentation at the starting frame



region aggregation process.

object& regions Affine Object& The region aggregation module takes two inputs: the
(previous frame) Estimation [ ™ Regions homogeneous region and the estimated object boundary.
estimated * The object boundary is estimated from projected
object . foreground regions. Foreground regions from the previous
Motion bo“”da.ry Region frame are projected independently and the combination of
Projection Aggregatiory projected regions forms the mask of the estimated object.
The mask is refined with a morphological closing
. ; homogeneous . . . . ) .
projected regio regions operation (i.e. dilation followed by erosion) with a size of
several pixels in order to close tiny holes and smooth
edge map . . . . :
Region boundaries. To tolerate motion estimation error which
Tracking may cause the loss of foreground regions around object
color map _ boundary, the mask is further dilated with the tracking
Fusing: buffer size, which is specified by users at the beginning of
color :
, the tracking.
motion edge . . . .
field : The region aggregation module implements a region
B> | motion grouping and boundary alignment algorithm based on the

) ) o _ estimated object boundary as well as the edge and motion
Figure 3. Automatic semantic object tracking features of the region. Background regions are first

including both foreground and background, are projecte§*cluded from the semantic object. For eviengground
onto the current frame (virtually) using their individual Of N€W region, compute intersection ratio of the region
affine motion models. Projected regions keep their label®ith the object mask. Then if:

and original classifications. For video shots with static or o

homogeneous background (i.e. only one moving objectjL)-the region igoreground

users can choose not to project background regions to save !f it is covered by the object mask by more than 80%, it
time. belongs to the semantic object. Otherwise, the region is

Generation of the three feature maps (color, edge aﬁ'ﬂtersec;ed WiFh the_ob_ject mask and split :
a) split regions inside the object mask are kept as

motion) utilizes the same methods as we described in tq’greground
previous section. The _on_ly difference is that in the b) split regions outside the object mask are taggeeéws
quantization step, the existing color palette computed aé)

: C i the region isiew
the starting frame is directly used to quantize the current ¢ &5 covered by the object mask by less than 30%

frame. Using a consistent quantization palette enhancep(%ep it as new; Else if the region is covered by the object
the color consistency of segmented regions betweemask by more than 80%, classify it dereground
successive frames, and thus improves the performance @knherwise:

region based tracking. As object tracking is limited to a) Compute numbers of edge pixels (using the edge map)
single video shots, in which there is no abrupt scengetween this region and the currebackground and
change, using one color palette is generally validforeground regions. Compute differences between the
Certainly, a new quantization palette can be generatagiean motion vector of this region with those of its
automatically when a large quantization error isneighbouring regions and find the neighbour with the most
encountered. similar motion.

In the tracking module (i.e. inter-frame segmentation), P) If the region is separated frdmckgroundregions by
regions are classified intéoreground backgroundand ~M°'® edge pixels tharegroundregions (or if this region

new regions.Foreground or backgroundregions tracked IS not connected_ to anjz_wackground reglqns)_and its
from the previous frame are allowed to be merged Witﬁjos_eSt motion neighbour |sfa_regroundreg|on, Intersect
regions of the same class, but merging across differetlﬁ\"”th the ObJ_eCt ”?as_k and Spl't.' -
classes is forbidden.New regions can be merged with - split regions inside the object mask are classified as
each other or merged withforeground/background foregrqund . . .

regions. When aew region is merged with a tracked ~ split regions outside the OpJeCt mask are taggeews
region, the merging result inherits its label and ¢) Otherwise, keep the regionrasu

classification from the tracked region. In  motion
segmentation, split regions remain in their original
classes. After this inter-frame tracking process, we obtai
a list of regions temporarily tagged as eitf@eground
background or new They are then passed to an iterative

Compared with the aggregation process in section 3, a

latively lower ratio (80%) is used to include a
oreground or new region. This is to handle motion
projection errors. As it is possible to have multiple layers



Figure 3. Semantic object tracking results of two sequences (from left to right, frame# 1, 10, 20, 30, 40)

of new regions emerge between the foreground and tt@., Conclusions

background, the above aggregation and boundary
alignment process is iterated multiple times. We have

Semantic object segmentation is important for content

found this step useful in correcting errors caused by rapifased video representation. In this paper we presented an
motions. At the end of the last iteration, all remaining NeWphiect segmentation system, AMOS, based on an innovative

regions are classified into background regions.

Finally, affine models of all regions, including both
foreground and background, are estimated. As describ
before, these affine models are used to project regions on
the future frame in the motion projection module.

5. Experimental Results

Segmentation and tracking results of semantic objects

method integrating low-level region tracking and high level
oé)ject segmentation. Fusion of color, edge, and motion fea-
dres is proven very effective for region-level segmentation,
wchile the iterative boundary alignment process is effective
in maintaining object boundary accuracy over time. Our
experiments have shown very good results. On-going study
includes
objects.

complexity analysis and tracking of multiple

(human) for two test sequences (CIF size) are shown at ﬁ‘ﬁeferences

frames (frame 1, 10, 20, 30 and 40)igure 3. Tracked
object boundaries are highlighted with white pixels. Th
first sequence consists of simple motion while the secon
sequence includes a rapid object with multiple distinctive
moving regions.

In the objective evaluation, we manually extracted object®]
for the two sequences (with the help of the snake algo-
rithm), and then computed the average numbers of missing
and false pixels over the 40 frames. The average numbgrs
of missing and false pixels and the average size of objects
are show irtable 1L Considering inherent errors caused by
boundary smoothness (especially for the second MPEG;lJ{il
sequences with fast motion) as well as by manual segmen 1
tion, the tracking results are very good. This can be also
confirmed by the satisfactory subjective evaluation a$]
shown infigure 3.

]

; - 6
Missed False Object Size [6]
seql 241 126 37224

p [7]
seq4 351 447 13023

Table 1. Average missing and false pixels
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