
 Abstract

    Object segmentation and tracking is a fundamental step
for many digital video applications.  In this paper, we
present an active system (AMOS) which combines low
level automatic region segmentation with an active
method for defining and tracking high-level semantic
video objects.  The system contains two stages: an initial
object segmentation stage where user input in the starting
frame is used to create a semantic object; and an object
tracking stage where underlying regions of the semantic
object are tracked and grouped through successive
frames.  Experiments with different types of videos show
very good performance.

1. Introduction

    Recent progress in content-based video indexing and
audiovisual object-based coding (MPEG-4) has shown
great potential for many new applications, such as content-
based image/video retrieval [1], content-based scalable
video transmission, and object-based video editing.
However, there is still a lack of robust techniques for
segmenting video objects. State of the art work has shown
success in decomposing video into regions with uniform
features [4,7]. Segmenting video into meaningful objects
(such as people, car) still remains a challenging issue. In
this paper, we refer to this type of meaningful objects as
“MPEG-4 video objects” or “semantic video objects”
interchangeably.
     Due to the semantic ambiguity and content complexity,
fully automatic segmentation of semantic objects so far
can only be developed for constrained domains.  For
general video sources, object definition usually comes
from user manual input. Users identify semantic objects in
the first frame by using tracing interfaces (e.g., mouse or
optical pen). Given the initial objects, the segmentation
system tracks the movement of objects in subsequent
frames. We call this type of  system an active
segmentation (in the sense that “active” user input is
required).
   Similar approaches using active segmentation methods

have been reported in [2,3]. In [2], based on an active
contour model (snake), an energy-minimizing elastic
contour model was used to track the moving contour of
the object. An elastic contour in the previous frame is
moved and deformed iteratively to the best position in the
current frame according to the energy function.  In [3], Gu
and Lee proposed a semantic object tracking system using
mathematical morphology and perspective motion.  Their
system uses a modified morphological watershed
procedure to segment uncertain areas between the interior
and exterior outlines. Flooding seeds are sampled on both
interior and exterior outlines. Regions growing from
interior seeds define the segmented object boundary.  In
the first frame, the interior outline is defined by users, and
the exterior outline is obtained by dilation of the interior
one.  For the subsequent frames, the interior and exterior
outlines are created by erosion and dilation of motion
projected boundaries from the previous frame.
   Satisfactory results from the aforementioned work were
reported for certain types of video content,e.g., those with
rigid objects and simple motion.   However, these
techniques track a single contour or video object, ignoring
the complex components and associated motions within
the semantic object. In general video sources, a semantic
object usually contains several parts with different
motions (sometimes with rapid changes and non-rigid).  In
such cases, one single motion model is not adequate to
track a semantic object over time.  In addition, these
techniques tend to ignore the background content in
tracking the foreground object. This may cause problems
in tracking regions near the boundary of the object (as will
be illustrated later).
      We have developed an active system for MPEG-4
video object segmentation calledAMOS. AMOS
combines low level automatic region segmentation and
tracking [6,7] with the active method for defining and
tracking video objects at a higher level. At the low region
level, image frames are decomposed into a set of non-
overlapping regions with homogeneous visual features
such as color, texture and motion. At the object level,
semantic objects are obtained by aggregation of
homogenous regions. The aggregation process uses the
optimal combination of user input in the first frame, joint
foreground and background simultaneous tracking, and
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new region classification based on visual feature
similarity. Region-level segmentation is context
independent and can be fully automated.  Application of
our automated region segmentation has been demonstrated
successfully in our video search system, VideoQ [1].  This
paper presents new methods for combining the automatic
region segmentation methods with the active methods for
defining and tracking video objects in a higher level.
    This paper is organized as follows. We first give an
overview of the system in Section 2.  Section 3 presents
static region segmentation and object aggregation in the
starting frame.  The automatic region based object
tracking schema is discussed in Section 4.  Experimental
results are analyzed in section 5.  Section 6 includes
conclusion and discussion of future work.

2. AMOS Overview

    In the AMOS system, a semantic object is represented
as a set of underlying homogeneous regions.  The goal of
the system is to construct a semantic object according to
user input in the starting frame and then track the object in
the successive frames based on its feature regions.
AMOS consists of two stages in semantic object
segmentation (figure 1).

   In the first stage, definition of a semantic object (e.g.
rough outlines) is provided by users in the starting frame.
A snake algorithm[5] is provided as an option to refine the
user input.  Then the semantic object is generated through
a region segmentation and aggregation process.  Effective
region segmentation is applied to the area inside the
slightly expanded bounding box of the user-specified
object.  It effectively fuses color and edge features in a
region-growing process that produces homogeneous color
regions with accurate boundaries. To extract
homogeneous regions in both color and motion, motion
segmentation based on a dense motion field is used to
further split the color regions.  As color segmentation is
more robust and gives more accurate region boundaries, it

is applied before motion segmentation.  Motion is used as
a secondary feature due to the noisy nature of the motion
field.  This is important for the following aggregation
procedure, where homogeneous regions are classified as
either foreground or background to form the semantic
object with an accurate boundary.  Region aggregation is
based on the coverage of each region by the initial object
mask: regions that are covered more than a certain
percentage are grouped into the foreground object.  The
final contour of the semantic object is computed from
foreground regions.  Foreground regions belonging to the
object and background regions are all stored and will be
tracked over time in the successive frames.
    Tracking at both the region and object levels is the main
task in the second stage.  As shown infigure 1, segmented
regions from the previous frame are first projected to the
current frame using their individual affine motion
models[6]. An expanded bounding box including all
projected foreground regions is computed.  Then the area
inside the bounding box is split to homogeneous color and
motion regions following a region tracking process.
Unlike in other existing approaches, projected regions are
not used directly as the new segmentation, but as seeds in
another color based region growing process, which is
similar to the fusing algorithm in the first stage. Pixels that
can not be tracked from any old regions are labeled as new
regions.  Thus the resulting homogeneous regions are
tagged either foreground (meaning tracked from a
foreground region), orbackground (meaning tracked from
a background region), ornew (meaning not tracked).
They are then passed to an aggregation process and
classified as either belonging to the foreground object or
the background.  Here instead of the user input, the
approximated object boundary is obtained from projected
foreground regions.  Furthermore, to handle possible
motion estimation errors, the aggregation process is
carried out iteratively.  Finally, the object contour is
computed from foreground regions and all regions are
advanced to the tracking process for the next frame.
      A detailed explanation of the above two stages is
given in the following two sections.

3. Initial Semantic Object Segmentation

  Semantic object segmentation at the starting frame
consists of several major processes as shown infigure 2.
    First, users identify a semantic object by using tracing
interfaces (e.g. mouse).  The input is a polygon whose
vertices and edges are roughly along the desired object
boundary.  To tolerate user-input error, a snake algorithm
[5] is used to align the user-specified polygon to the actual
object boundary.  The snake algorithm is based on
minimizing a specific energy function associated with

Figure 1. General Structure Of AMOS
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edge pixels [5].  Users may also choose to skip the snake
module if a relatively accurate outline is already provided.
    After the object definition, users can start the tracking
process by specifying a set of thresholds.  These
thresholds include a color merging threshold, weights on
three color channels (i.e. L*u*v*), a motion merging
threshold and a tracking buffer size (see following
sections for their usage).  These thresholds can be chosen
based on the characteristic of a given video shot and
experimental results. For example, for a video shot where
foreground objects have similar luminance with
background regions, users may put a lower weight on the
luminance channel.  Users can start the tracking process
for a few frames with the default thresholds which are
automatically generated by the system, and then adjust the
thresholds based on the segmentation and tracking results.
Our system also allows a user to stop the tracking process
at any frame, modify the object boundary that is being
tracked and then restart the tracking process from the
modified frame.
   Given the initial object boundary from users (or the
snake module), a slightly extended (~15 pixels) bounding
box surrounding the arbitrarily shaped object is
computed.  Within the bounding box, three feature maps,
edge map, color map and motion field, are created from
the original images.  Color map is the major feature map
in the following segmentation module.  It is generated by
first converting the original image into the CIE L*u*v*
color space and  then  quantizing pixels to a limited
number of colors (e.g. 32 or 16 bins) using a clustering
based (e.g. K-Means) method.  The edge map is a binary
mask where edge pixels are set to 1 and non-edge-pixels
are set to 0.  It is generated by applying the Canny edge

detection algorithm.  Motion field is generated by a
hierarchical block matching algorithm [8].  We adopted a
3-level hierarchy as suggested in [8].
   The intra-frame segmentation module is developed
based on our previous work on automatic region
segmentation algorithm using color and edge [6,7].  As
stated in [6,7], color-based region segmentation can be
greatly improved by fusion with edge information. Color
based region merging process works well on quantized
and smoothed images.  On the contrary, edge detection
captures high-frequency details in an image.  In AMOS, to
further improve the accuracy, a motion-based
segmentation process using the optical flow is applied to
segmented color regions to check the uniformity of the
motion distribution.  Although the complete process
utilizing color, edge, and motion is not trivial, the
computational complexity is greatly reduced by applying
the above region segmentation process only inside the
bounding box of the snake object instead of the whole
frame.

   The region aggregation module takes homogeneous
regions from the segmentation and the initial object
boundary from the snake (or user input directly).
Aggregation at the starting frame is relatively simple
compared with that for the subsequent frames, as all
regions are newly generated (not tracked) and the initial
outline is usually not far from the real object boundary.  A
region is classified as foreground if more than a certain
percentage (e.g. 90%) of the region is included in the
initial object.  On the other hand, if less than a certain
percentage (e.g. 30%) of a region is covered, it is
considered as background.  Regions between the low and
high thresholds are split into foreground and background
regions according to the intersection with the initial object
mask.

   Finally, affine motion parameters of all regions,
including both foreground and background, are estimated
by a multivariate linear regression process over the dense
optical flow inside each region.  In our system, a 2-D
affine model with 6 parameters is used.  These affine
models will be used to help track the regions and object in
the future frames, as we will discuss in the next section.

4. Semantic Object Tracking

    Given the object with homogeneous regions constructed
at the starting frame, tracking in the successive frames is
achieved by motion projection and an inter-frame
segmentation process.   The main objectives of the
tracking process are to avoid losing foreground regions
and to avoid including false background regions.  It
contains following steps (figure 3).
    First, segmented regions from the previous frame,
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Figure 2. Object segmentation at the starting frame
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including both foreground and background, are projected
onto the current frame (virtually) using their individual
affine motion models.  Projected regions keep their labels
and original classifications.  For video shots with static or
homogeneous background (i.e. only one moving object),
users can choose not to project background regions to save
time.
   Generation of the three feature maps (color, edge and

motion) utilizes the same methods as we described in the
previous section.  The only difference is that in the
quantization step, the existing color palette computed at
the starting frame is directly used to quantize the current
frame.  Using a consistent quantization palette enhances
the color consistency of segmented regions between
successive frames, and thus improves the performance of
region based tracking.  As object tracking is limited to
single video shots, in which there is no abrupt scene
change, using one color palette is generally valid.
Certainly, a new quantization palette can be generated
automatically when a large quantization error is
encountered.

In the tracking module (i.e. inter-frame segmentation),
regions are classified intoforeground, background and
new regions.Foreground or background regions tracked
from the previous frame are allowed to be merged with
regions of the same class, but merging across different
classes is forbidden.New regions can be merged with
each other or merged withforeground/background
regions.  When anew region is merged with a tracked
region, the merging result inherits its label and
classification from the tracked region.  In motion
segmentation, split regions remain in their original
classes.  After this inter-frame tracking process, we obtain
a list of regions temporarily tagged as eitherforeground,
background, or new.  They are then passed to an iterative

region aggregation process.
  The region aggregation module takes two inputs: the
homogeneous region and the estimated object boundary.
The object boundary is estimated from projected
foreground regions.  Foreground regions from the previous
frame are projected independently and the combination of
projected regions forms the mask of the estimated object.
The mask is refined with a morphological closing
operation (i.e. dilation followed by erosion) with a size of
several pixels in order to close tiny holes and smooth
boundaries.  To tolerate motion estimation error which
may cause the loss of foreground regions around object
boundary, the mask is further dilated with the tracking
buffer size, which is specified by users at the beginning of
the tracking.
   The region aggregation module implements a region
grouping and boundary alignment algorithm based on the
estimated object boundary as well as the edge and motion
features of the region. Background regions are first
excluded from the semantic object.  For everyforeground
or new region, compute intersection ratio of the region
with the object mask.  Then if:

1) the region isforeground
    If it is covered by the object mask by more than 80%, it
belongs to the semantic object.   Otherwise, the region is
intersected with the object mask and split :
 a) split regions inside the object mask are kept as
foreground
   b) split regions outside the object mask are tagged asnew
2) the region isnew
    If it is covered by the object mask by less than 30%,
keep it as new;  Else if the region is covered by the object
mask by more than 80%, classify it asforeground.
Otherwise:
  a) Compute numbers of edge pixels (using the edge map)
between this region and the currentbackground and
foreground regions. Compute differences between the
mean motion vector of this region with those of its
neighbouring regions and find the neighbour with the most
similar motion.
   b) If the region is separated frombackground regions by
more edge pixels thanforeground regions (or if this region
is not connected to anybackground regions) and its
closest motion neighbour is aforeground region, intersect
it with the object mask and split :
   - split regions inside the object mask are classified as
foreground
    - split regions outside the object mask are tagged asnew
     c) Otherwise, keep the region asnew.

   Compared with the aggregation process in section 3, a
relatively lower ratio (80%) is used to include a
foreground or new region.  This is to handle motion
projection errors.  As it is possible to have multiple layers

Figure 3. Automatic semantic object tracking
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of new regions emerge between the foreground and the
background, the above aggregation and boundary
alignment process is iterated multiple times.  We have
found this step useful in correcting errors caused by rapid
motions.  At the end of the last iteration, all remaining new
regions are classified into background regions.
   Finally, affine models of all regions, including both
foreground and background, are estimated.  As described
before, these affine models are used to project regions onto
the future frame in the motion projection module.

5. Experimental Results

    Segmentation and tracking results of semantic objects
(human) for two test sequences (CIF size) are shown at five
frames (frame 1, 10, 20, 30 and 40) infigure 3.   Tracked
object boundaries are highlighted with white pixels.  The
first sequence consists of simple motion while the second
sequence includes a rapid object with multiple distinctive
moving regions.
    In the objective evaluation, we manually extracted objects
for the two sequences (with the help of the snake algo-
rithm), and then computed the average numbers of missing
and false pixels over the 40 frames.  The average numbers
of missing and false pixels and the average size of objects
are show intable 1.  Considering inherent errors caused by
boundary smoothness (especially for the second MPEG-1
sequences with fast motion) as well as by manual segmenta-
tion, the tracking results are very good. This can be also
confirmed by the satisfactory subjective evaluation as
shown infigure 3.

6. Conclusions

    Semantic object segmentation is important for content
based video representation.  In this paper we presented an
object segmentation system, AMOS, based on an innovative
method integrating low-level region tracking and high level
object segmentation.  Fusion of color, edge, and motion fea-
tures is proven very effective for region-level segmentation,
while the iterative boundary alignment process is effective
in maintaining object boundary accuracy  over time. Our
experiments  have shown very good results.  On-going study
includes   complexity analysis and tracking of multiple
objects.
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Table 1. Average missing and false pixels

seq1

seq2

Missed False Object Size

241 126 37224

351 447 13023

Figure 3. Semantic object  tracking results of two sequences (from left to right, frame# 1, 10, 20, 30, 40)


