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ABSTRACT

We develop a new method for building a representa-
tion of an image from a library of basis elements that
is facilitated by a joint adaptive space and frequency
(JASF) graph. The JASF graph combines partition-
able frequency expansion and spatial segmentation of
the image, symmetrically. We demonstrate by using a
rate-distortion framework for basis selection that the
JASF graph improves compression performance over
recent wavelet packet and double-tree methods by of-
fering exponentially more bases in which to represent
the images.

1. INTRODUCTION

In this paper, we present a method for the jointly-
adaptive, space and frequency selection of an image
basis. The joint adaptive space and frequency (JASF)
graph provides a symmetric decomposition of the image
into a library of spatially and frequency localized basis
elements. By performing the frequency expansions in a
partitionable-form, the JASF graph provides a commu-
tativity in the frequency and spatial operations which
allows the basis elements to be more e�ciently indexed
by a graph.

1.1. Adaptive image decomposition

Recent methods have been developed for adaptively
compressing images using space- or frequency-based
image decompositions that involve tree structured ba-
sis selection methods [1, 3, 2]. The objective is to de-
rive a segmentation or �lter bank that is customized
to the image. The two extreme approaches decompose
the images either by frequency, such as wavelet pack-
ets (WP) [1], or spatially, such as quad-tree (QT) seg-
mentation. Hybrid approaches such as the double-tree
(DT) incorporate both segmentation and frequency ex-
pansion, but do so asymmetrically [2].
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The JASF graph, illustrated in Figure 1, treats
the space and frequency operations symmetrically in
a graph structured cascade [4]. The WP-tree, QT and
DT are embedded within the JASF graph. Since the
JASF graph provides a more complete decomposition
of the image and generates a larger number of alterna-
tive bases, the JASF graph improves image compres-
sion performance over these methods.
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Figure 1: The JASF graph generates a joint space and
frequency decomposition of the image.

In general, the tree- and graph-based decomposi-
tions generate libraries of basis elements. A basis el-
ement consists of a set of basis functions that is gen-
erated and coded as a group; each basis element cor-
responds to one node in the tree or graph. The ob-
jective of the search for the best basis is to select the
set of basis elements that have the least total coding
cost and provide a \complete" set of basis functions.
The completeness requirement guarantees perfect re-
construction in the absence of quantization.

1.2. Outline

We present the JASF graph and the JASF basis gener-
ation and selection system. We present the framework



for partitionable frequency expansions, which are fun-
damental to the JASF graph. We show that by using
partitionable expansions, the generation of the basis el-
ements and the reconstruction of the image may follow
a number of equivalent paths. We demonstrate exam-
ples of image coding by extending the fast minimum
rate-distortion cost basis selection method developed
in [3]. We demonstrate that the JASF graph provides
approximately 1020 more bases than the DT which gen-
erates a basis element library the same size as the JASF
graph and improves compression by 0.5 to 0.9dB.

2. PARTITIONABLE EXPANSIONS

In order to provide commutativity in the frequency
and segmentation operations in the JASF graph, the
frequency expansions are performed in a partitionable
form. In general, any orthonormal expansion produced
by �lter banks is not partitionable but may be made
partitionable as we explain shortly. Producing the JASF
graph expansion of depth M , requires frequency analy-
sis matrices H0 and H1 that are at least (M � 1)-
partitionable.

2.1. 1-partitionable expansion

We de�ne the 1-partitionable frequency expansion (1-
PFE) as follows:

De�nition 1 A frequency expansion matrix H is 1-
partitionable if and only if it has only zeros in the upper
right and lower left quadrants.

If the frequency expansion matrix set fH0;H1g gener-
ates a 1-PFE then the expansion is comprised of sepa-
rate expansions over the two half-length signals, which
we now illustrate. First, observe that for QMF �lter
banks the �nite-signal frequency expansion matrices
Hi, i 2 f0; 1g, can be written in the following form [4]:
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We construct the 1-PFE from Hi by Hi = Ha
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as follows, note that for a length N signal, this corre-
sponds to circular convolution of period N=2:
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We now state the following useful results and de�ni-
tion: if the original frequency expansion set fH0;H1g
satis�es the condition of perfect reconstruction and or-
thonormality, that isHT

0H0+HT
1H1 = IN , then the 1-

PFE set fH
(1)
0 ;H

(1)
1 g is orthonormal and the set fH0;H1g

generates an orthonormal expansion of length N=2.

De�nition 2 The 1-partitionable frequency expansion

(1-PFE) matrix set fH
(1)
0 ;H

(1)
1 g, as constructed above

is 1-partitionable and orthonormal if and only if fH0;H1g
satis�es the perfect reconstruction condition. For proof,
see [4].

The 1-PFE and segmentation are combined into a joint
space and frequency expansion using a graph of depth
= 2 as follows: in each of the four decomposition and
reconstruction paths depicted in Figure 2: start from
x, generate vij's, and resynthesize x, we have perfect
reconstruction of x. That is,

vij = S
N=2
j H

(1)
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(1)
i SNj x; and
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where Gi = HT
i , and SN is an N � N segmentation

matrix [4].
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Figure 2: JASF graph of depth = 2: 1-partitionable
frequency expansions (1-PFE) (Hi; i 2 f0; 1g) and seg-
mentations (Sj ; j 2 f0; 1g).

2.2. M -partitionable expansion

In order to construct the JASF graph of depth � 2, we
generalize the 1-PFE to the M -partitionable frequency
expansion (M-PFE) as follows:

De�nition 3 A frequency expansion matrix Hi is M -
partitionable if and only if the upper left and lower right
quadrants are (M � 1)-partitionable.

The M-PFE analysis transform matrices H
(M)
i for i 2

f0; 1g are described recursively as follows:

H
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As a result, we have that, in general, H
(M)
i are block

diagonal with 2M partitions, as follows:
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De�nition 4 The M-PFE matrix set fH(M)
0 ;H

(M)
1 g

is M -partitionable and orthonormal if and only if the
matrix set fH0;H1g satis�es the perfect reconstruction
condition (follows from Eq 4 and proof in [4] for 1-PFE
case).

3. TREE AND GRAPH EXPANSIONS

The tree- and graph-based decompositions di�er in the
sizes of their basis element libraries and/or the number
of bases they provide. The results are summarized in
Table 1 for a depth = 6 image decomposition. Exam-
ples of bases from the WP, QT, DT and JASF graph
image decompositions are illustrated in Figure 3.

QT WP DT JASF RSFT
# basis elements 1365 1365 7737 7737 37449
# bases 1078 1078 10127 10147 10147

expansion factor 6 6 21 21 1365

Table 1: Comparison of image decompositions of depth
= 6 using QT, WP, DT, JASF and RSFT.

3.1. Single-trees

The WP and spatial QT image decompositions utilize
single-trees. Each generates a library of Ns basis el-
ements from which may be chosen Bs bases to rep-
resent the image. For a single-tree of depth=D with
splitting factor � (for both quad-tree segmentation and
four-band subband decomposition of images, � = 4),
Ns is given recursively by Ns(D) = 1 + �Ns(D � 1)
and Bs is given by Bs(D) = 1 + Bs(D � 1)� , where
Ns(0) = Bs(0) = 0. For D = 6 the single-trees gener-
ate Bs(6) � 1078 bases.

3.2. Double-tree (DT)

The DT generates a separate WP-tree for each spatial
node in the spatial QT. The DT increases the number
of basis elements and number of bases. The DT gener-
ates Nd(D) = Ns(D)+ �Nd(D� 1) basis elements and
Bd(D) = 1 + Bs(D � 1)� + Bd(D � 1)� bases, where
Nd(0) = Bd(0) = 0. For D = 6 the DT generates
Bd(6) � 10127 bases.

(a) QT (b) WP

(c) DT (d) JASF graph

Figure 3: Example QT, WP, DT and JASF graph im-
age bases. Each rectangle (node) corresponds to a se-
lected basis element. (a) The QT nodes are image seg-
ments. (b) The WP nodes are image subbands. (c)
The DT nodes are image-segment subbands. (d) The
JASF graph nodes are, equivalently, segment-subbands
and subband-segments.

3.3. JASF graph

The JASF graph integrates the spatial and partition-
able frequency expansions, symmetrically. The JASF
graph generates the same number of basis elements as
the DT but signi�cantly more bases, Bg(D) = 1 +

2Bg(D � 1)� + Bg(D � 2)�
2

bases, where Bg(0) = 0
and Bg(1) = 1. For D = 6 the JASF graph generates
Bd(6) � 10147 bases.

3.4. RSFT

By symmetrically combining segmentation with non-
partitionable frequency expansion, a redundant space
and frequency tree (RSFT) is generated. The RSFT
increases the number of basis elements to Nr(D) =
1+ 2�Nr(D � 1) and the number of bases to Br(D) =
1 + �Br(D � 1)�, where Nr(0) = 0, Br(0) = 0 and
Br(1) = 1.

When the frequency expansion is inherently parti-
tionable (i.e., Haar �lter bank has Hi's which are al-

ready block-diagonal, that is Hi = H
(M)
i ), the RSFT

and JASF graph generate the identical basis elements.
However, the RSFT generates multiple copies of each
basis element. For example, in Table 1, of the 37; 449
basis elements generated by the RSFT, only 7; 737 are
unique.

Otherwise, when using a non-partitionable frequency
expansion in the RSFT, many of the basis elements



are nearly redundant. The di�erence between many of
the basis elements stems only from the border exten-
sion used in the �ltering operations. We have observed
that these additional nearly redundant RSFT basis el-
ements provide for little gain in compression perfor-
mance, while they greatly increase the complexity.

4. JASF BASIS SELECTION

The selection of a basis from the JASF graph involves a
three-way decision at each node: (1) choose F (frequency-
expansion), (2) choose S (segmentation), or (3) choose
neither. An example of a selected basis from the JASF
graph is depicted in Figure 4. The basis selection pro-
cedure is carried out as follows:

1. Assign a coding cost (Ji = Ri + �Di) to each
basis element (node) i in the JASF graph, where
Ri; Di gives the rate-distortion at trade-o� � for
basis element i (see [3]).

2. Starting from the root node, and recursively at
each F and S child node, choose the least cost
path:

min(
X

Ji;fk ;
X

Ji;sk ; Ji);

where
P

Ji;fk is the total cost of the F child
path,

P
Ji;sk is the total cost of the S child path,

and Ji cost of choosing neither.

3. The �nal embedded tree gives the basis with the
least total cost.
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Figure 4: Example basis selected from JASF graph.

5. COMPRESSION EVALUATION

We now examine the compression performance of the
basis selection procedure carried out on the spatial QT,

WP-tree, DT, JASF graph and RSFT.We used a twelve-
tap QMF �lter for the frequency expansions. For the
JASF graph, the frequency-expansions were carried out
in the partitionable-form as discussed in Section 2. The
results, given in Table 2, show that the JASF graph
improves image compression performance over the spa-
tial QT, WP-tree and DT. Furthermore, the bases se-
lected by the JASF graph are not available in the spa-
tial QT, WP-tree or DT. We see also that the RSFT
tree provides no compression improvement over the
JASF graph. The addition in the RSFT of the nearly-
redundant basis elements does not improve the com-
pression performance.

spatial WP DT JASF RSFT
QT tree graph

0.25 bpp N/A 27.9 db 27.9 db 28.4 db 28.4 db
0.5 bpp 19.0 db 32.3 db 32.3 db 32.7 db 32.7 db
1.0 bpp 25.1 db 36.8 db 36.8 db 37.5 db 37.5 db
2.0 bpp 33.1 db 42.9 db 42.9 db 43.8 db 43.8 db

Table 2: Compression results on the Barbara image.

6. SUMMARY

We developed a method for the jointly adaptive, space
and frequency selection of an image basis. The JASF
generates a symmetric decomposition of the image by
combining partitionable frequency expansion and spa-
tial segmentation. The JASF graph generates a greater
number of bases than recent wavelet packet (WP), spa-
tial quad-tree (QT) and double-tree (DT) methods.
The bases are selected from the JASF graph by choos-
ing at each node from a frequency expansion, spatial
segmentation or neither. We demonstrated that im-
age compression performance using the JASF graph
improves over the QT, WP-tree and DT.
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