
ABSTRACT

Processing digital video directly in the compressed domain
has many advantages in terms of storage efficiency, speed,
and video quality. We have developed a compressed video
editing and parsing system (CVEPS) with advanced video
indexing and manipulation functions. The video parsing
tools support automatic extraction of key visual features,
e.g., scene cuts, transitional effects, camera operations
(zoom/pan), shape and trajectories of prominent moving
objects. These visual features are used for efficient video
indexing, retrieval and browsing. The editing tools allow
users to perform useful video compositing functions and
special visual effects typically seen in video production stu-
dios. We contrast our compressed-domain approach with
traditional decode-process-reencode approach with quanti-
tative and/or qualitative performance comparison. We also
present a client-server network based CVEPS implementa-
tion.
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1.  INTRODUCTION

Digital video is an essential component of new media appli-
cations. It demands special technical support in processing,
communication, and storage. This paper investigates innova-
tive compressed-domain technologies for compressed video
manipulation, indexing, and browsing, in order to support
various multimedia applications such as real-time video pro-
duction and video digital library.

We present aCompressed Video Editing and Parsing Sys-
tem, CVEPS, using a unique compressed-domain approach

which offers many great benefits [6,7]. First, implementa-
tion of the same manipulation algorithms in the compressed
domain will be much cheaper than that in the uncompressed
domain because the data rate is highly reduced in the com-
pressed domain (e.g., a typical 20:1 to 50:1 compression
ratio for MPEG). Second, given most existing images and
videos stored in the compressed form, the specific manipu-
lation algorithms can be applied to the compressed streams
without full decoding of the compressed images/videos.
Lastly, because that full decoding and re-encoding of video
are not necessary, we can avoid the extra quality degradation
that usually occurs in the reencoding process. We have
shown that for MPEG compressed video editing, the speed
performance can be improved by more than 60 times and the
video quality can be improved by about 3-4 dB if we use the
compressed-domain approach rather than the traditional
decode-edit-reencode approach [15].

In order to allow users to manipulate compressed video
directly, two types of functionalities are required (1) key
content browsing and search, (2) compressed video editing.
The former allows users to efficiently browse through or
search for key content of the video without decoding and
viewing the entire video stream. The key content refers to
the key frames in video sequences, prominent video objects
and their associated visual features (motion, shape, color,
and trajectory), or special reconstructed video models for
representing video content in a video scene. The second
type of functionalities, video editing, allow users to manipu-
late the object of interest in the video stream without full
decoding. One example is to cut and paste any arbitrary seg-
ments from existing video streams and produce a new video
stream which conforms to the valid compression format.
Other examples include special visual effects typically used
in video production studios.

This paper describes system components and specific pro-
posed compressed-domain algorithms for achieving the
above functionalities in CVEPS. The primary compression
standard used is MPEG (MPEG1 and MPEG2). Most of our
techniques are applicable to generally encoded MPEG
streams with different parameter settings such as constant or
variable bitrate, different frequency of I, P, B frames etc.
Our scene change detection techniques assume the use of
interframe coded frames (i.e. P or B). However, the underly-
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ing approach and techniques are general enough to be
applied to other video compression standards (e.g, those
using transform coding and/or interframe motion compensa-
tion). This paper is organized as the following. Section 2
discusses related work. Section 3 provides system overview
for CVEPS. Section 4 presents our compressed-domain
techniques for parsing MPEG video to extract visual fea-
tures. Section 5 describes algorithms for compressed video
editing. Section 6 discusses system design issues, followed
by conclusion at the end.

2.  RELATED WORK

Video indexing and manipulation has emerged as an active
research area. Much work has been reported by several
research groups, some of which also explored the com-
pressed-domain approach. But there are no existing systems
that provide integrated solutions for both video manipula-
tion and video indexing. To this end, our prior work has pre-
sented techniques for manipulation of both compressed
image and video [7,8], compressed image feature extraction
[6], and video scene analysis using MPEG streams [15].

For scene cut detection in the spatial domain, Smoliar and
Zhang proposed color histogram comparison [22] and
Shahraray used a block-based match and motion estimation
algorithm [19]. In the compressed domain (Motion JPEG
video), comparison of DCT coefficients of selected blocks
from each JPEG frame was used to detect the scene cuts [4].
We detect scene cuts in motion compensated video
sequences such as MPEG. Distribution of motion vectors is
used for detecting direct scene cuts and the variance of DCT
DC coefficients is used for detecting transitional scene cuts
[14]. After the scene cuts are found, video shots can be
browsed with the clustering algorithms proposed in [24].

Within each shot, camera operation and moving objects are
important visual features. In spatial domain, finding parame-
ters of an affine matrix and constructing a mosaic image
from a sequence of video images was addressed by Sawh-
ney et al [18]; searching for object appearance and using
them in video indexing was proposed by Nagasakaet al
[16]. In compressed domain, detecting camera operations
(zoom, pan) using motion vectors had been discussed in
[2,25]. Both [2,25] used a simple 3 parameter model with
the assumption that the camera panning is very small and
focal length is very long. The two restrictions make the
algorithms not suitable for general video processing. Object
motion tracking in MPEG video was also discussed by Dim-
itrova et al [9], however, camera operations were not taken
into consideration for object motion recovery. We use a 6-
parameter affine transform model and the least squares (LS)
method to estimate camera operation parameters. With the
estimated camera parameters we further recover the local
object motion from the global motion.

Video indexing using finite state models for parsing and
retrieval of specific domain video, such as news video, was
discussed by Smoliaret al [22]. Hampapuret al [11] pro-
posed feature based video indexing scheme, which uses low
level machine derivable indices to map into the set of appli-
cation specific video indices. Our goal is to extract a rich set
of visual features associated with the scenes and individual
objects from the compressed video to enable content based
query, and allow for integration with domain knowledge for
derivation of higher-level semantics.

To manipulate image and video sequences, a resolution
independent video language (Rivl) was proposed by Swartz
and Smith [23]. Although Rivl utilized group of pictures
(GOPs) level direct copying whenever possible for “cut and
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paste” operations on MPEG video, Rivl did not use com-
pressed domain approach at the frame level and macroblock
level for special effects editing (see Section 5.2). Most video
effects in Rivl were done by decoding each frame to pixel
domain and applying image library routines. Also the rate
control problems due to editing of constant bitrate video was
not addressed by Rivl.

3.  SYSTEM OVERVIEW

The CVEPS system consists of three major modules: Pars-
ing, Visualization and Authoring, see Figure 1. In the Pars-
ing module, MPEG compressed video is first broken into
shot segments. Within each shot, camera operation parame-
ters are estimated. Then moving objects are detected and
their shape and trajectory features are extracted. In the Visu-
alization module, the scene cut output list and the camera
zoom/pan information are used to extract key frames for
representing each video shot. The key frames can be
browsed with the hierarchical video scene browser [26]. Our
content-based image query system, VisualSEEk [20] and
WebSEEk [21], are used to index and retrieve key frames or
video objects based on their visual features and spatial lay-
out. In the Authoring module, we provide tools for cutting/
pasting of arbitrary MPEG video segments and adding spe-
cial effects such as dissolve, key, masking and motion
effects (described in more details later).

4.  PARSING OF MPEG VIDEO

4.1  Scene Cut Detection in Compressed Domain

Within a video shot, consecutive frames have high temporal
correlation. In MPEG video, this correlation can be charac-
terized by the ratio of the number of backward motion vec-
tors (or intracoded macroblocks) versus the number of
forward motion vectors in B (or P) frames. For example,
when a direct scene cut occurs on a P-frame, most macrob-
locks will be intracoded (i.e., no interframe prediction). We
calculate the motion vector ratios for every B/P frame and
use local adaptive thresholds to detect the peak values.

To detect the transitional scene cut such as dissolve, we use
the fact that the variance of the pixel intensity of each frame
in the dissolve region shows an approximated parabolic
curve [3]. For MPEG video, we use the DCT DC values to
approximate the pixel intensity. We are able to successfully
detect long dissolves in sequences without high motion.
Short dissolves with high motion are trickier and often
treated as direct scene cuts.

Figure 2 shows the block diagram of our scene cut detection
algorithm. MPEG video is minimally decoded and parsed to
get the motion vector counts and DCT DC coefficients. This
involves simple parsing of the MPEG streams and does not
need any intensive computation. In the Statistical Stage,
three ratios are calculated for detecting direct scene cuts in
P, B, and I frames, respectively; variance of DCT DC coeffi-
cients are calculated from I and P frames for detecting dis-
solve curves. The peaks of ratios and the dissolve curve are
found in the Detection Stage. Finally, duplicated cuts are
eliminated before returning a list of scenes.

We have tested our algorithms on several bitstreams from
classic movies and CNN news. Table 1 shows the results of
a 10 minutes CNN news (unconstrained content) with 19931
frames, Group of Pictures (GOP) size 15, one I or P frame
for every two B frames, and frame size 352 pixels by 240
pixels. For the direct scene cuts, we detected 54 out of 59
correctly; the 7 false alarms were mainly caused by a shot
including the strobe motion special effect (refer to
Section 5.2.4); the 5 missed cuts were due to similar dark
background of the two shots. For transitional effects, we
detected 19 out 21 correctly; the false alarms and misses in
the transitional scene cut detection were mainly due to our
light-weight implementation which skipped B frames.
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4.2  Camera Operation Parameters Estimation

Within a shot, low level visual features such as camera
zoom/pan and moving objects are useful information for
video indexing. We estimate the camera zoom and pan with
a 6-parameter affine transform model [5] using the motion
vectors from the MPEG compressed stream.

The motion vectors in MPEG are usually generated by block
matching: finding a block in the reference frame so that the
mean square error is minimized. Although the motion vec-
tors do not represent the true optical flow, it is still good in
most cases to estimate the camera parameters in sequences
that do not contain large dark or uniform regions.

When the distance between the object/background and the
camera is large, it is usually sufficient to use a 6 parameter
affine transform to describe the global motion of the current
frame,

(1)

where (x,y) is the coordinate of a macroblock in the current

frame, is the motion vector associated with that mac-

roblock, is the affine transform vector.

We denoteU for , X for , and  for

.

Given the motion vector for each macroblock, we find the
global parameter using the Least Squares (LS) estimation,
that is to find a set of parameter  to minimize the error
between the motion vectors estimated in (1) and the actual
motion vectors obtained from the MPEG stream [25].

(2)

where  is the estimated motion vector. To solve for ,
set the first derivative of  to 0, then we get

 and (3)

where,

, , ,

, , ,

, , ,

, , .

All summations are computed over all valid macroblocks
whose motion vectors survive after the nonlinear noise
reduction process. After the first LS estimation, motion vec-
tors that have large distance from the estimated ones are fil-
tered out before a second LS estimation. The estimation
process is iterated several times to refine the accuracy.

4.3  Moving Object Detection and Tracking

After the global camera parameters  is found, we may

recover the object motion by applying the global motion

compensation. If an object located at(x,y) in the current

frame has a local motion  from(x0,y0) to

(x1,y1) in the reference frame with motion vectorU, then

, see Figure 3. That means the local object

motion can be recovered from motion vectors provided that

is known,

(4)

This is the global motion compensation (GMC). For motion
vectors of the background, GMC will give mostly 0. For
motion vectors of the foreground moving objects, GMC will
reveal the local motion of objects, see Figure 4(b).

Moving objects are detected by thresholding the magnitude
of the local motion followed by simple morphological oper-
ations to delete small false objects and to fill noisy spots.

TABLE 1. Scene Cut Detection Results

Direct
Scene Cuts

Transitional
Scene Cuts

Manual 59 21

Detected 54 19

Missed 5 2

False Alarm 7 8
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S a( ) ûxy uxy–( )2
v̂xy vxy–( )2

+[ ]
y

∑
x

∑=
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See Figure 4(c) for extracted moving object. The DCT coef-
ficients of the moving object are extracted for query pur-
pose. The outermost points of the object are used to form a
bounding box. The location and size of the bounding boxes
are saved for later browsing and indexing, see Figure 4(d).

To track the moving objects throughout a video shot, we first
select a reference frame where the moving object is initially
detected. Secondly, we obtain the centroid of each moving
object by taking the first moment of the object’s shape.
Thirdly, we map the centroid of each object onto the refer-
ence frame using the global camera parameters . When
tracking multiple objects, color and texture of the object can
be used to distinguishing them. The motion trajectory of
each moving object is formed by repeatedly mapping the
centroid until the object has stopped or moved out of the
picture or the next scene comes. Finally, filters such as a
median filter are used to smooth out the trajectories.

Visual features of the extracted objects, such as color, tex-
tures, and shape, can be used to provide content-based
visual query of these and associated video scenes.

5.  COMPRESSED VIDEO EDITING

Based on the source material, we classify video editing into
two stages: the production stage and the post-production
stage. The production stage editing are based on original
analog or digital footages from cameras. At this level,
sophisticated hardware is usually used to guarantee the ease
of editing and the highest possible video quality. Commer-
cially available digital video systems such as AVID,
Media100 and D-Vision etc., currently use the Motion JPEG

compression [17]. The compression ratio varies from 3:1 to
about 10:1. With the latest technology, high bandwidth bus
technology will make uncompressed video editing possible.
The output video from the production stage will be eventu-
ally converted to more heavily compressed bitstreams (e.g.
MPEG2) for broadcasting or storage.

At the post-production stage, the users will retrieve the
MPEG bitstreams according to their needs and perform
desired editing. Post-production video editing shall not be
available only to users that have sophisticated video hard-
ware. We develop the CVEPS using a pure software and
compressed domain approach particularly for this purpose.

We will discuss technical issues of editing MPEG video
such as frame type conversion, maintaining bitrate integrity
and algorithms for creating common special effects in the
compressed domain.

5.1  Basic Editing Functions: Cut and Paste MPEG Video

When cutting and pasting several MPEG video segments to
create a new sequence, a straightforward way is to decode
all the segments and re-encode. This method is computation
intensive, and the output picture will suffer generation loss
multiple times.

We apply the basic editing functions directly in the com-
pressed domain. Figure 5 illustrates a scenario of cutting
two arbitrary segments from the middle of two separate
video streams and merging them to form a new compressed
video stream.

a

FIGURE 4.  Camera Parameter and Moving Object Detection

(b) object motion recovered in frame 1890 (I)

(c) moving object is extracted (d) Bounding box of the object

(a) Frame 1893 (P), original motion vectors
     after global motion compensation



5.1.1  Issue I — Frame Type Conversion

The MPEG video consists of GOP units. Each GOP starts
with an I frame. We only need to re-encode few frames
which are out of the GOP boundary at the beginning or end-
ing part of the segments. The newly created GOP may have
a different size, but it is still conformable to the MPEG for-
mat. Details of the frame type conversion may be found in
[15]. After type conversion, each segment is independently
decodable and can be pasted together back to back to form a
new sequence. Figure 5 shows cutting out segment 1 and 2
at arbitrary location to form a new bitstream. The beginning
few frames of a segment is re-encoded to form a shorter new
GOP.

5.1.2  Issue II — Decoder Video Buffer Control

For constant bitrate MPEG video, the MPEG encoder solves
the rate control problem with the “virtual buffer” [12,13], a
simulation module of the decoder buffer. Before quantizing
each macroblock, it sets the reference value of the quantiza-
tion parameter based on the fullness of the “virtual buffer.”

When cutting and pasting arbitrary segments from different
compressed video streams of the same bitrate, the integrity
of the original rate control mechanism is lost. For example,
Figure 6 (a) shows the video buffer occupancy after con-
necting four segments. The video buffer size is 1Mbits. Each
segment consists of 49 frames, starts with an I frame and

ends with an I frame. The video buffer decreases to a very
low level after the first I frame of Seg3. When Seg4 is
pasted, the buffer starts to have the underflow problem.

The overflow problem can be easily solved by stuffing zero
bits at the end of a slice or a picture whenever the buffer
reaches a very high level. The underflow problem can be
solved by inserting a synthetic transitional GOP [15] which
has a lower average bitrate than normal GOPs or by apply-
ing rate shaping algorithm [10] to reduce the bitrate of the
boundary I/P frames.

5.2  Extended Editing Functions: Special Effects in the
Compressed Domain

In addition to the basic editing function “cut and paste”, sev-
eral special visual effects can be created in the compressed
domain. For I frames, the basic compression component is
the Discrete Cosine Transform (DCT), which we denote as

(5)

Basic linear operations like the intensity addition and scal-
ing can done as follows [7],

(6)

(7)
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Algorithms for other operations such as spatial scaling,
translation, and filtering in DCT domain can be found in [7].
Usually, the DCT of the output video, , can be obtained by
linear matrix operations of the input DCT, , as follows

(8)

where  and  are special filter coefficient matrices in
the DCT domain. For motion compensated B and P frames,
the compressed-domain manipulation functions can be
implemented in two ways. First, in [7,8], we have proposed
transform-domain techniques to convert B and P frames to
intraframe DCT coefficients, on which the above techniques
can be readily applied. An alternative is to keep the B/P
structure (i.e., DCT of residual errors and motion vectors)
and develop algorithms directly utilizing these data. The fol-
lowing are some examples of typically used editing func-
tions such asBlend, Film, Key, Motion, andWipe etc. [1], some
of which are illustrated in Figure 7.

5.2.1  Blend Effects

Blend effects are generally two-channel effects: to create a
transitional connection between two video segments. Two
commonly used ones are: dip to color and dissolve.

Dip to color

Fades from the outgoing video to black, white, or any color
and then fades to the incoming video. Since the outgoing
and incoming video do not overlap, this effect is achieved by
modifying the DCT coefficients in outgoing and incoming
video frames. The normalized color level increment , is
added to the DCT DC of each macroblock,

(9)

wherek=0,1,2 standards for luminance and two chrominance
channels,Ck is the dip-to color,n is the total number of
frames in this effect, and the constant N is the DCT block
size (default: 8).

This operation is directly applied to the DCT coefficients in
I frames or DCT coefficients of residual in B and P frames.
For a typical MPEG..I 0B1B2P3B4B5....B n-1Bn, with I/P
frequencyM=3, the operation for each type is:

I frame: (10)

P frame: (11)

B frame: (12)

where ,  are the original and the modified DCT DC
value, andi=0,1,...,n is the frame number.

Dissolve

The outgoing video fades out while the incoming video
fades in. When there is no or low motion in the two videos,
this effects can be approximated by the linear combination
of the two video:

(13)

where  is a weighing function changing from 100% to
0%, user may modify it with any rate;  is the last
I frame of the outgoing video and  is the first I
frame of the incoming video. The resulting effect is a dis-
solve transition from a frozen frame of video 1 to another
frozen frame of video 2. However, when either of the video
contains high motion, re-encoding of few frames in the tran-
sitional period will be required.
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5.2.2  Film Effects

Film effects refers to masking video with 4:3 aspect ratio to
different aspect ratios such as 1:1.66, 1:1.85, 1:2.35, and
16:9. For I frames, the DCT blocks outside of the desired
region are set to 0, and the blocks that lie on the masking
boundaries are recalculated using the simplified DCT trans-
lation algorithm described in [7].

, where (14)

where A is an original block located on the boundary, B is
the new masked block, and  is the identity matrix with
size , as shown in Figure 7(c).

For P and B frames, only macroblocks with motion vectors
pointing outside of the masking region need to be re-
encoded. Macroblocks with motion vectors pointing inside
do not need any modification. Efficient algorithms for reen-
coding macroblocks are described in [7,8].

5.2.3  Key Effects

Key effects are often used for compositing an anchorperson
with a scene, such as a weatherman in front of a satellite
weather map. In spatial domain, this is done by shooting the
first video with a uniform background color (usually blue),
then replace every blue color pixel with the second video. In
compressed domain, we segment the first video into fore-
ground and background regions by detecting the blue color.
Then we replace the macroblocks with just blue background
color with corresponding macroblocks from the second
video. We need to re-encode the macroblocks lying on the
region boundary and the macroblocks with motion vector
pointing outside their regions. The percentage of macrob-
locks which need re-encoding depends on the video type
and MPEG encoder design. Some simulation results were
reported in [7]. The complexity of the re-encoding process
can be reduced by using the pre-existing motion vectors to
infer new motion estimation parameters.

5.2.4  Motion Effects

Motion effects includeFreeze Frame, Variable Speed and
Strobe Motion.

Freeze Frame

Since the freeze effect is usually longer than 1 second, sim-
ply inserting duplicated frames (e.g. zero-energy P frames)
for a long period of time is not desirable for interactive play-
back (e.g. random search) due to the lack of frequent I
frames. We need to place an I frame at regular short interval.
Therefore, the frozen frame is converted to an I frame if it
were B/P frame. And the rest of the GOP is filled with dupli-
cated P frames. All the macroblocks in the duplicated P
frames are set to Motion Compensation Not Coded (i.e., 0
motion vector, and the 0 residue error blocks are not coded).

Variable Speed

For fast motion, B, P, and I frames are subsequently dropped
according to the variable speed.

For slow motion, depending on the slow motion rate, two
approaches are used as shown in Figure 8. In approach 1,
duplicated frames are inserted with no decoding involved.
But the I/P frame delay is multiplied by the inverse of the
motion rate. For example,I 0 of output video must be trans-
mitted 4 frames earlier, rather than the original 2 frames.
This approach is suitable for rate 1/2 and up.

In approach 2, original P/B frames are converted to I frames
using our DCT domain techniques [7]. Then duplicated P
frames will be inserted between I frames. This approach
reduces the frame delay, however extra DCT domain manip-
ulations are required.

Strobe Motion

Strobe motion is a combination ofFreeze Frame andVariable
Speed.It is done by dropping original B/P frame and insert-
ing duplicated P frames.

As described in Section 5.1.2, to avoid decoder buffer to
overflow (e.g., inserted frame is too small) in constant
bitrate video, we may stuff redundant bits to the inserted P
frames. To avoid any buffer underflow, we may apply rate
adjustment techniques described in Section 5.1.2.

5.3  Advantages of Compressed Domain Approaches

For the basic editing function: cut and paste, the compressed
domain approach runs at least 60 times1 faster than the
straightforward approach (decode-edit-encode). That is
based on 12 second per cut on average, one P or I frame for

1.  Based on analytical estimation of computation complexity as
well as software simulation results.
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every two B frames, and cutting at arbitrary locations. The
speedup can go over 600 times if we allow cuts only at P
frames. The longer the segments are, the higher speedup we
gain. The compressed domain approach also avoids quality
degradation because the second quantization in the re-
encoding process is avoided. For example, we observed an
average 3.6 dB gain for a 60 frame segment (608x224, 4.0
Mbps). Only the re-encoded boundary GOP will suffer the 3
to 4 dB quality loss as in the straightforward approach.

6.  SYSTEM DESIGN

The CVEPS uses a distributed client-server model as illus-
trated in Figure 9. The master server is linked with Web-
SEEk which searches for image and video files over the
WWW. Once a video file is found on any other hosts or
WWW distributed content servers, it will be downloaded
and preprocessed by the master server to extract the key-
frames and associated visual features such as camera
motion, moving objects, color, texture, and temporal vari-
ance etc. The HTTP address of video and the extracted fea-
tures will be stored on the master server. This client-server
model gives the client much richer resources that are not
constrained to the client’s local environment.

The client is implemented with Java applets. The client may
open any video at the server and browse the keyframes hier-
archically using story structure or content clustering meth-
ods [26]. All the keyframes are hyperlinked to the
WebSEEk’s query engine so that the keyframes or objects
may be used to form new visual queries for new videos or
images over the entire master server.

To view the video, the user may simply drag the keyframe
which represents for a video shot to the source monitor of
the editing interface, see Figure 9. A low resolution copy of

the video shot will be sent to the client by the server. The
client can use the interactive MPEG2 viewer/decoder to do
random access, step forward, fast forward/reverse and nor-
mal playback. The MPEG2 decoder is written in C and com-
piled as a run-time shared library to be called by the Java
client.

The user may also turn on theVideoMap option of the
MPEG2 player. This option will invoke the display of the
bounding boxes of any moving objects detected (described
in Section 4.3). By clicking the mouse inside the bounding
box, the client will send a request to the server to get addi-
tional information of the object (e.g. a hyperlinked home
page) or invoke content-browsed visual query using this
object as a template.

To edit the video, the user may mark in/out any segment of
the video shot in the source monitor to splice-in or overwrite
to the new sequence in the record monitor. A separate time-
line window will show the resulting video/audio tracks and
the detailed information of each included video shot. The
user may also insert special effects as described in
Section 5.2.

During the editing, only the Edit Decision List (EDL) is cre-
ated. The new sequence must be rendered before it can be
displayed. There are three levels of rendering. At the first
level, the client uses C routines from its shared libraries to
render only the straight cuts at low resolution without show-
ing the special effect. At the second level, the client may
send the EDL to the server for generating the new low reso-
lution video with desired special effects. Finally, when the
client is done with the editing, the master server will gener-
ate a full resolution video with all the effects from the high-
est quality source video which is located at either the master
server or the distributed remote content servers.

Master Server

Distributed
Content
Servers

Java
Enabled
Clients

FIGURE 9.  Client-Server Based CVEPS System
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7.  CONCLUSION

We presented a Compressed Video Editing and Parsing Sys-
tem with our proposed compressed-domain video manipula-
tion and indexing techniques. The CVEPS processes the
compressed video to automatically extract key visual fea-
tures such as scene cut, camera operation parameters, mov-
ing objects, and then visual features (e.g., color, motion
speed and trajectory). Content based queries are formed
with the above visual features for retrieving new video clips.
The CVEPS also provides tools for editing compressed
video and creating special effects. We have shown that the
compressed domain approach can achieve significant sys-
tem performance improvement in speed, quality, and stor-
age. Software implementations of the proposed algorithms
have been developed in C and Java employing a client-
server model over the WWW. The client-server implementa-
tion is particularly useful for users with access to regular
computers or even less powerful devices (such as light-
weight mobile units).
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