
1

ABSTRACT

We provide an overview of the novel system architec-
ture currently adopted in the ISO MPEG-4 standard i-
zation effort, as embodied in its System and Description
Languages design. We briefly describe its composition
capabilities, multiplexing and sychronization model, as
well as the syntactic description mechanism which is
based on our “Flavor” language. We also describe a
theoretical framework for the analysis of algorithmic or
language-based compression using “Complexity Dis-
tortion Theory,” an extension of Kolmogorov Com-
plexity theory that takes into account distortion, and
show that it is a universal and the most natural fram e-
work for analyzing traditional and new compression
techniques.

1. INTRODUCTION

For the past several decades, digital audio-visual in-
formation representation has been focused on compres-
sion. Existing standards have been very successful in
addressing particular application needs, such as H.261
and H.263 for video conferencing, MPEG-1 for CD-
ROM type video, and MPEG-2 for broadcast TV. The
diversity of current and foreseeable multimedia appli-
cations, however, makes it very difficult to satisfy their
requirements with such monolithic vertical designs.
MPEG-2 attempted to accommodate this need for flexi-
bility by defining several profiles and levels, each one
addressing particular application needs.

In addition, the domain of audio-visual information
is increasingly encompassing non-traditional (or non
waveform-based) areas, including synthetic-natural hy-
brid representation and even purely synthetic material
(graphics, MIDI). We describe this trend using the term
“algorithmic representation,” in the sense that the co n-
tent may: 1) include downloadable algorithms that
process it, and 2) include downloadable or fixed algo-
rithms that generate it. The latter case includes co m-
puter graphics and synthetic audio, but is also applic a-

ble to natural material (e.g., in model-based video
coding and others [1]).

The on-going MPEG-4 standardization effort is i n-
tended to offer more flexibility and extensibility than
traditional approaches by using the so-called MPEG-4
System and Description Languages (MSDL) frame-
work. This framework is the mechanism with which all
MPEG-4 components are described and configured,
and represents a radical departure from past MPEG d e-
signs. It allows MPEG-4 to address exciting new capa-
bilities such as object-based coding and programmabil-
ity using platform-independent downloadable code.

We briefly describe the various MSDL components,
including composition, multiplexing and synchroniz a-
tion, and the syntactic description capabilities.

We also show that this new generation of represen-
tation techniques, which includes programmability and
synthetic or algorithmic material, requires new math e-
matical tools to properly address questions of efficiency
and performance. We outline a new theoretical frame-
work that we are developing, called “Complexity Dis-
tortion Theory,” which extends traditional Kolmogorov
Complexity theory to account for distortion.

We should note that the MPEG-4 MSDL specifica-
tion (currently described in its Working Draft [2] and
Verification Model [3]) is still evolving; the final stan-
dard is scheduled to be ratified in November 1998.

2. THE MPEG-4 ARCHITECTURE

The MPEG-4 architecture considers a system for com-
munication of audio-visual information in the form of
objects. These objects are compressed, error protected
(if needed) and multiplexed at the encoding side, and
subsequently demultiplexed, error-corrected, decom-
pressed, and composited at the receiving side. This ar-
chitecture includes the traditional components of nat u-
ral audio-video compression and multiplexing, but it
also adds several new ones:
• composition, occurring at the receiving terminal

prior to presentation,
• representation of synthetic media,

The MPEG-4 System and Description Languages:
From Practice To Theory

Alexandros Eleftheriadis

Department of Electrical Engineering
Columbia University

New York, NY 10027, USA
eleft@ee.columbia.edu

Proceedings, IEEE Int’l Symposium on Circuits and Systems, Hong Kong, June 1997
(invited paper).

2

• flexibility (configuration or extension of an MPEG-
4 system).

A fundamental component of this new architecture is
the notion of objects. MPEG-4 objects are objects in the
traditional object oriented sense, i.e., entities that co m-
bine a data structure (defining the object’s state) with a
set of methods (defining the object’s behavior). A
method is an executable procedure associated with an
object that operates on information in the object’s data
structure. Classes are templates for objects. MPEG-4
will standardize a number of pre-defined classes,
forming the MPEG-4 standard class library.

In order to allow for flexibility, two categories of
profiles are envisioned: flexible, and non-flexible. In
flexible profiles, the user or encoder will be able to pro-
duce new encoder-defined classes, modify the bitstream
syntax of existing classes, and potentially download
new methods. In a non-flexible profile, configuration
can be provided via pre-defined (standardized) option
selectors that must be present in the bitstream, as in
MPEG-2.

Figure 1 shows the overall structure of a (flexible)
MPEG-4 terminal with the various content processing
steps. Considering a decoder’s operation, the data is

retrieved from the network or storage and then demul-
tiplexed into elementary objects. These objects are then
parsed from the bitstream and decoded using their cor-
responding decoding techniques. Finally, a set of such
objects are composited together and rendered into the
final product which is presented to the user.

The hardware (HW) and Operating System (OS)
components are implementation-dependent; the Virtual
Machine (VM) component, however, is implementa-

tion-independent and provides for platform-
independent downloadable code support. Java [9] has
been currently selected to implement the flexible por-
tion of the control component of the terminal, and
hence the Java VM is used.

The “control” box, together with its interfaces to the
various content processing components, is the domain
of MSDL. It includes an executive, a compositor, and a
presenter. The executive is responsible for the overall
execution of the object’s methods, while the compositor
coordinates the aggregation of object information that
will constitute the finally presented imagery or audio.
The presenter deals with user intera ction.

Each audio-visual object class includes its own ren-
der, decode, parse, and handle methods. The parse
method is responsible for interpreting the bitstream
syntax and initializing the object’s state. The decode
method uses this information to perform traditional d e-
compression of the object at hand. The parse and de-
code methods are together part of individual classes
that are programmatically attached to objects, hence
allowing an object to use different decoders as needed.
The render method is responsible for the generation of
the corresponding pixels/samples according to infor-
mation provided by the compositor, which are subse-
quently used by the compositor to formulate the final
image displayed or sound played. The handle method is
responsible for reacting to user-generated events (user
interaction).

In order to allow reuse of objects in the construction
of new classes, flexible MPEG-4 terminals need to pro-
vide a standardized API (Application Programming
Interface) for accessing individual objects and their
methods. This API is still under development, and will
be exercised using the programming facility provided
by MSDL (currently Java) in order to define new tools
or algorithms.

3. COMPOSITION

In order to produce the final image or sound presented
to a user, the spatio-temporal location of individual ob-
jects within a scene must be determined. This is ac-
complished using composition information that is
transmitted together with the content. Depending on
the application, the individual objects may be 2-D or 3-
D; in all cases, they include a temporal component as
well.

Each object has a local coordinate system, in which
it has a fixed location and scale. Objects are positioned
in a scene by specifying a coordinate transformation
from the object’s local coordinate system into a com-
mon, global coordinate system called the scene coordi-
nate system. The transformation is not part of the o b-

OS

Analyze

HW Control
Compress

User interface/presentation layer

Syntax code

Multiplex

Transport/storage layer

content

Composite

Decompress

Syntax parse

Demultiplex

content

Capture Render

VM

control

Figure 1: MPEG-4 terminal structure.

3

ject, but part of the scene itself; as a result, scene de-
scription is sent as a separate stream within the MPEG-
4 multiplex. This separation facilitates bitstream edit-
ability and is one of the content-based functionalities of
MPEG-4. Scene descriptions are hierarchical, forming
a tree with the scene as the root object and more de-
tailed objects as one traverses the tree towards its leafs.

In the case of 2-D non-flexible scene description, a
specific bitstream syntax is defined for communicating
the desired transformation. The transformation itself
can be global translation, zoom, affine, or perspective.
For flexible 2-D composition, the scene description is
transmitted as a class.

For 3-D scene description a specific mechanism has
yet to be adopted. Current activities focus in the use of
VRML [8] as a scene description language. In partic u-
lar, two different strategies are examined: use of VRML
2.0 extension capabilities to accommodate MPEG-4
objects, and extension of VRML 2.0 with MPEG-4 spe-
cific nodes.

4. MULTIPLEXING/SYNCHRONIZATION

Multiplexing provides facilities for deinterleaving
audio-visual objects from a single bitstream, adaptation
of timing information (clock recovery), synchronization
of individual objects in time, and buffer control.

The buffer model assumes a constant delay from the
multiplexer output to the demultiplexer input, and
utilizes per-object decoding and presentation buffers.
All objects have explicit or implicit presentation and
decoding timing information. A global system time
base is assumed at the decoder, whereas individual ob-
ject time bases are allowed for different objects. In ad-
dition, object expiration time stamps are also consid-
ered, which indicate the time at which an object can be
discarded from the decoder (decoded objects can thus
be reused if needed). Object time bases are transformed
to the system time base to ensure proper coordination of
the presentation and decoding processes.

The multiplexer is constructed in a two layer con-
figuration, and originates from the ITU-T H.223 Annex
A design. The upper layer provides facilities for flexi-
bly interleaving logical channels with widely varying
instantaneous bit rate. As in H.223, it allows several
logical channels to coexist in the same PDU. The logi-
cal channel configuration is communicated using si g-
naling. The lower layer is responsible for providing ro-
bustness and quality of service support, and can be ig-
nored if appropriate facilities are provided by the un-
derlying network (e.g., it can be substituted by ATM,
H.223., H.223A, TCP/UDP, or MPEG-2 TS). Facilities
provided include header recovery, CRC and BCH cod-
ing. convolutional interleaving, as well as ARQ.

5. SYNTACTIC DESCRIPTION

MPEG-4 adopted the separation of bitstream parsing
from the remaining decoding operations. Bitstream
parsing (or syntax decoding) refers to the mapping of
data from their bitstream representation to their native
form for the particular architecture. A simple example
is the mapping from a 3-bit integer in the bitstream to
the native sign-extended representation in the term i-
nal’s architecture (e.g., 32 bits). The motivation is that
one can change the bitstream representation without
modifying the decoding algorithm in any way. This al-
lows for significant flexibility in reconfiguring the bit-
stream syntax without requiring modification of exist-
ing decoding tools.

In order to describe the bitstream syntax a Syntactic
Description Language (SDL) has been adopted, based
on our Flavor design [5, 6]. SDL provides an extension
of the typing system of regular object oriented pro-
gramming languages like C++ and Java to include bit-
stream representation information. Use of a formal lan-
guage to describe the bitstream syntax has several
benefits. As described above, it allows for reconfigura-
tion of the syntax without modifying the decoding tools.
It allows for both forward and backward compatibility:
if a new syntactic component is defined, older systems
will simply discard them without using them whereas
the tools of new systems will be able to use them. It
provides for automatic generation of bitstream compli-
ance testing and generation tools. Finally, it can be
used to automatically generate the skeleton of an en-
coder/decoder, thus significantly simplifying the task of
the developer of a software/hardware implementation
tools.

Flavor/SDL is organized around the notion of
classes, and provides support for a wide array of syn-
tactic constructs. The example in Figure 2 illustrates
the approach. We define a class called ‘Example’ con-

// Example class
class Example {

int(3) a;
int(a) b;
if (b<=0) {

int(c_map) c;
} else {

int(b) c;
}

}

// Table used in Example class
map c_map(int) {

0b0, 5,
0b10, 10,
0b11, 15

}

Figure 2: An example of Flavor/SDL.

4

taining the following elements: an integer ‘a’ that is
represented using 3 bits in the bitstream (by default,
most significant bit first), and an immediately follow-
ing integer that is represented using ‘a’ bits in the bit-
stream. Then, if the value of ‘b’ is negative or zero, the
integer ‘c’ is contained using the variable length code
table ‘c_map’; otherwise, ‘c’ has a fixed length of ‘b’
bits. The map defines that the bitstring ‘0’ correspond
to the value 5, ‘10’ corresponds to the value 10, and
‘11’ corresponds to the value 15.

As we can see, the bitstream representation informa-
tion is embedded in the class definition, and hence all
object information (data, syntax, methods) is located in
one place. Note that the flow control commands (‘if’) is
part of the class’ declaration. More detailed informa-
tion can be found in [2, 5]. A translator from Flavor to
C++/Java has already been developed.

6. AN ALGORITHMIC REPRESENTATION
THEORY

The MPEG-4 architecture clearly indicates that the n o-
tions of programmability and extensibility will soon
find their way into mainstream decoding systems, and
provide the means towards achieving a new level of
integration in audio-visual information processing. I n-
terestingly enough, however, our theoretical arsenal is
not well equipped from a conceptual standpoint to ad-
dress these new systems.

The traditional (waveform-based) representation
theory is based on information and rate distortion the o-
ries t that were developed several decades ago. Several
modern techniques, including fractals and model-based
coding do not directly fit in the old framework. We
have proposed [7] a new theoretical framework, called
Complexity Distortion Theory, which attempts to pro-
vide the proper conceptual framework to analyze pro-
grammability and algorithmic content.

Our approach is based on the notion of a decoder as
a programmable terminal. This means that the decoder
is a Turing machine and hence that, in addition to data,
it can receive algorithms that modify its operation. The
question of lossless representation of an object by an al-
gorithm has already been addressed by the work of
Kolmogorov, Chaitin, and Solomonoff, who independ-
ently formulated the foundations of Kolmogorov Com-
plexity Theory [10]. The complexity of an object ‘x’ is
the length of the shortest program which, when run on
a universal Turing machine, will output ‘x’. It has been
shown that complexity is assymptotically equivalent to
entropy for stochastic ergodic sources.

We have extended Kolmogorov Complexity to in-
clude distortion, thus providing the means to address
lossy audio-visual representation techniques. In [7], we

show that, the same way Kolmogorov Complexity par-
allels entropy, Complexity Distortion parallels rate
distortion by being assymptotically equivalent for sto-
chastic ergodic sources. This essentially closes the cir-
cle between stochastic waveform-based theories, and
the deterministic programmable complexity theories.

It is of course natural to expect that the different
theories would predict identical bounds. Their differ-
ence, however, is in the conceptual tools that they pro-
vide to address important questions of efficiency and
design in real systems. In particular, complexity theory
is fully deterministic, and hence in addition to a d-
dressing programmability it also does not require
knowledge of the statistical properties of the source. We
are currently developing techniques to address ques-
tions of performance for real decoders with finite re-
sources in terms of both space and time.

REFERENCES

[1] L. Torres and M. Kunt, eds., “Video Coding: The
Second Generation Approach,” Kluwer Academic,
Boston, Massachusetts, 1996.

[2] ISO/IEC JTC1/SC29/WG11 N1483, MPEG-4
Systems Working Draft Ver. 2.0, November 1996.

[3] ISO/IEC JTC1/SC29/WG11 N1484, MPEG-4
Systems Verification Model Ver 2.0, November
1996.

[4] O. Avaro, P. Chou, A. Eleftheriadis, C. Herpel,
and C. Reader, “The MPEG-4 System and De-
scription Languages,” Signal Processing: Image
Communiation, Special Issue on MPEG-4, to ap-
pear in 1997.

[5] Y. Fang and A. Eleftheriadis, “A Syntactic
Framework for Bitstream-Level Representation of
Audio-Visual Objects,” Proc., IEEE Int’l Conf. on
Image Proc., Lausanne, Switzerland, September
1996.

[6] A. Eleftheriadis, “A Syntactic Description Lan-
guage for MPEG-4,” Contribution ISO-IEC/JTC1/
SC29/WG11 MPEG95/546, Dallas, Texas, No-
vember 1995.

[7] D. Sow and A. Eleftheriadis, “Complexity Distor-
tion Theory,” submitted to the 1997 IEEE Int’l
Symp. on Inf. Theory and its Applications, October
1996.

[8] A. L. Ames, D. R. Nadeau, and J. L. Moreland,
“The VRML Sourcebook,” Wiley, New York, 1996

[9] J. Gosling, B. Joy, and G. Steele, “The Java Lan-
guage Specification,” Addison Wesley, Reading,
Massachusetts, 1996.

1.1. Li and P. Vitanyi, “An Introduction to Kolmogorov
Complexity and its Applications,” Springer Ver-
lag, New York, 1993.

