
1

Flavor: A Language for Media Representation

Alexandros Eleftheriadis
www.ee.columbia.edu/~eleft

Department of Electrical Engineering
and Columbia New Media Technology Center

Columbia University
New York, NY 10027, USA

Abstract
We present the design and implementation of a new programming
language for media-intensive applications called Flavor (Formal
Language for Audio-Visual Object Representation). It is an
extension of C++ and Java in which the typing system is extended
to incorporate bitstream representation semantics. This allows to
describe in a single place both the in-memory representation of
data as well as their bitstream-level (compressed) representation
as well. We have developed software tools (www.ee.
columbia.edu/flavor) that automatically generate standard C++
and Java code from the Flavor source code, so that direct access
to compressed multimedia information by application developers
can be achieved with essentially zero programming.

1. Introduction
Flavor originated from the need to simplify and speed up the
development of software that processes coded audiovisual or
general multi-media information. This includes encoders and
decoders as well as applications that manipulate such information.
Examples include editing tools, content creation tools, multimedia
indexing and searching engines, etc.

Such information is invariably encoded in a highly efficient form,
to minimize the cost of storage and transmission. This source
coding [1] operation is almost always performed in a bitstream-
oriented fashion: the data to be represented is converted to a
sequence of binary values of arbitrary (and typically variable)
lengths, according to a specified syntax. The syntax itself can
have various degrees of sophistication. One of the simplest forms
is the GIF87a format [2], consisting of essentially two headers and
blocks of coded image data using Lempel-Ziv-Welch
compression. Much more complex formats include JPEG, MPEG-
2 [3] and the forthcoming MPEG-4 specifications [4, 5, 10],
among others.

General-purpose programming languages such as C++ [6] and
Java [7] do not provide native facilities for coping with such data.
Software codec or application developers need to build their own
facilities, involving two components. First, they need to develop
software that deals with the bitstream-oriented nature of the data,
as general-purpose microprocessors are strictly byte-oriented.
Secondly, the need to implement parsing and generation code that
complies with the syntax of the format at hand (be it proprietary

or standard). These two tasks represent a significant amount of the
overall development effort. They also have to be duplicated by
everyone who requires access to a particular compressed
representation within their application. Furthermore, they can also
represent a substantial percentage of the overall execution time of
the application.

Flavor addresses these problems in an integrated way. First, it
allows the formal description of the bitstream syntax. Formal here
means that the description is based on a well-defined grammar,
and as a result is amenable to software tool manipulation. In the
past such descriptions were using ad-hoc conventions involving
tabular data or pseudo-code.

A second and key aspect of our approach is that this description
has been designed as an extension of C++ and Java, both heavily
used object-oriented languages in multimedia applications
development. This ensures seamless integration of Flavor code
with both C++ and Java code and the overall architecture of an
application.

Flavor was designed as an object-oriented language, anticipating
an audiovisual world comprised of audiovisual objects, both
synthetic and natural, and combining it with well-established
paradigms for software design and implementation. Its object-
oriented facilities go beyond the mere duplication of C++ and
Java features, and introduce several new concepts that are
pertinent for bitstream-based media  representation.

In order to validate the expressive power of the language, several
existing bitstream formats have already been described in Flavor,
including sophisticated structures such as MPEG-2 Video and
Audio. A translator has also been developed for translating Flavor
code to C++ and Java.

In the following, we first present a brief overview of the language
in terms of its history and technical approach. We then describe
each of its features, including declarations and constants,
expressions and statements, classes, scoping rules, and maps. We
also briefly describe the translator and its simple run-time API.
We conclude with an overview of the benefits of using the Flavor
approach for media representation. More detailed information and
publicly available software can be found in the Flavor Web site at:
www.ee. columbia.edu/flavor.

2. Overview

2.1 A Brief History

Flavor has its origins in a Perl script (mkvlc) that the author
developed in early 1994 in order to automate the (laborious)
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generation of C code declarations for variable-length code tables
of  the MPEG-2 Video specification. In November 1995, the ideas
behind mkvlc took a more concrete shape in the form of a
“syntactic description language,” [8, 9, 11] i.e., a formal way to
describe not just variable length codes, but the entire structure of a
bitstream. Such a facility was proposed to the MPEG-4
standardization activity, which at that time had started to consider
flexible, even programmable, audiovisual decoding systems. The
language subsequently underwent a series or revisions benefiting
from input from several participants in the MPEG-4
standardization activity, and its specification is now fairly stable.
We should note that Flavor is currently used in MPEG-4 for the
description of the bitstream syntax.

2.2 Technical Approach

Flavor provides a formal way to specify how data is laid out in a
serialized bitstream. It is based on a principal of separation
between bitstream parsing operations and encoding, decoding and
other operations. This separation acknowledges the fact that the
same syntax can be utilized by different tools, but also that the
same tool can work unchanged with a different bitstream syntax.
For example, the number of bits used for a specific quantity can
change without modifying any part of the application program.

Past approaches for syntax description utilized a combination of
tabular data, pseudo-code, and textual description to describe the
format at hand. Taking MPEG as an example, both MPEG-1 and
MPEG-2 specifications were described using a C-like pseudo-
code syntax (originally introduced by Milt Anderson, Bellcore),
coupled with explanatory text and tabular data. Several of the
lower and most sophisticated layers could only be handed by
explanatory text. The text had to be carefully crafted and tested
over time for ambiguities. Other specifications (e.g., JPEG, GIF)
use similar bitstream representation schemes, and hence share the
same limitations.

Other formal facilities already exist for representing syntax. One
important example is ASN.1 (ISO International Standards 8824
and 8825). A key difference, however, is that ASN.1 was not
designed to address the intricacies of source coding operations,
and hence cannot cope with, for example, variable length coding.
In addition, ASN.1 tries to hide the bitstream representation from
the developer by using its own set of binary encoding rules,
whereas in our case the binary encoding is the actual target of the
description.

There is also some remote relationship between syntax description
and “marshalling,” a fundamental operation in distributed systems
where consistent exchange of typed data is ensured. Examples in
this category include Sun’s ONC XDR (External Data
Representation) and the rpcgen compiler which automatically
generates marshalling code, as well as CORBA IDL, among
others. These ensure, for example, that even if the native
representation of an integer in two systems is different (big versus
little endian), they can still exchange typed data in a consistent
way. Marshalling, however, does not constitute bitstream syntax
description because: 1) the programmer does not have control
over the data representation (the binary representation for each
data type is predefined), 2) it is only concerned with the
representation of simple serial structures (lists of arguments to
functions, etc.). As in ASN.1, the binary representation is
“hidden” and is not amenable to customization by the developer.
One could parallel Flavor and marshalling by considering the

Flavor source as the XDR layer. A better parallelism would be to
view Flavor as a parser-generator like yacc, but for bitstream
representations.

It is interesting to note that all prior approaches to syntactic
description where concerned only with the definition of message
structures typically found in communication systems. These tend
to have a much simpler structure compared with coded
representations of audio-visual information (compare the IP
header with the baseline JPEG specification, for example).

 Flavor was designed to be an intuitive and natural extension of
the typing system of object-oriented languages like C++ and Java.
This means that the bitstream representation information is placed
together with the data declarations in a single place. In C++ and
Java, this place is where a class is defined.

Flavor has been explicitly designed to follow a declarative
approach to bitstream syntax specification. In other words, the
designer is specifying how the data is laid out on the bitstream,
and does not detail a step-by-step procedure that parses it. This
latter procedural approach would severely limit both the
expressive power as well as the capability for automated
processing and optimization, as it would eliminate the necessary
level of abstraction. As a result of this declarative approach,
Flavor does not have functions or methods.

A related example from traditional programming is the handling
of floating point numbers. The programmer does not have to
specify how such numbers are represented or how operations are
performed; these tasks are automatically taken care of by the
compiler in coordination with the underlying hardware or run-
time emulation libraries.

An additional feature of combining type declaration and bitstream
representation is that the underlying object hierarchy of the base
programming language (C++ or Java), becomes quite naturally
the object hierarchy for bitstream representation purposes as well.
This is an important benefit for ease of application development,
and it also allows Flavor to have a very rich typing system itself.

“Hello Bits”

The following trivial example indicates how the integration of
type and bitstream representation information is accomplished.
Consider a simple object called HelloBits with just a single
pixel, represented using 8 bits. Using the MPEG-1/2
methodology, this would be described as follows.

HelloBits () { No. of Bits Mnemonic

    Bits 8 uimsbf

}

Example 1: HelloBits using MPEG-1/2.

A C++ description of this single pixel object would include a
method to read its value, and have a form similar to the one
shown in Example 2. Here getuint() is assumed to be a
function that reads bits from the bitstream (here 8) and returns
them as an unsigned integer (by default with the most significant
bit first). When HelloBits:: get() is called, the bitstream
is read and the resultant quantity is placed in the data member
Bits.
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class HelloBits {
    unsigned int Bits;
    void get() {
        Bits=::getuint(8);
    }
};

Example 2: HelloBits using C++ (a similar construct would be
used for Java as well).

In Flavor, the same description would be done as  follows.

class HelloBits {
    unsigned int(8) Bits;
}

Example 3: HelloBits using Flavor.

As we can see, the bitstream representation is integrated with the
type declaration. The above should be read as: Bits is an
unsigned integer quantity represented using 8 bits in the bitstream.
Note that there is no implicit encoding rule as in ASN.1: the rule
here is embedded in the type declaration ans indicates that, when
the system has to parse a HelloBits data type, it will just read
the next 8 bits as an unsigned integer and assign them to the
variable Bits.

These examples, although trivial, demonstrate the differences
between the various approaches. In Example 1, we just have a
tabulation of the various bitstream entities, grouped into syntactic
units (here HelloBits). This style is sufficient for
straightforward representations, but fails when more complex
structures are used (e.g., variable length codes).

In Example 2, the syntax is incorporated into hand-written code
embedded in a get() or equivalent method. As a result, the
syntax becomes an integral part of the decoding method even
though the same decoding mechanism could be applied to a large
variety of similar syntactic constructs. Also, it quickly becomes
overly verbose.

Flavor provides a wide range of facilities to define sophisticated
bitstreams, including if-else, switch, for, and while
constructs. In contrast with regular C++ or Java, these are all
included in the data declaration part of the class, so they are
completely disassociated from code that belongs to class methods.
This is in line with the declarative nature of Flavor, where the
focus is on defining the structure of the data, not operations on
them.

In order to be usable in actual programs, Flavor source is
translated to regular C++ or Java code with each Flavor class
creating an equivalent C++/Java class. Two methods are
automatically generated by the translator for each class: a get()
method that will read data from a bitstream and load it to the class
variables, and a put() method which will take the values from
these variables and place them in the bitstream using the specified
syntax.

In the following we describe each of the language features in
more detail, emphasizing the differences between C++ and Java.
In order to ensure that Flavor semantics are in line with  both C++
and Java, whenever there was a conflict a common denominator
approach was used.

3. Declarations and Constants

3.1 Literals

All traditional C++ and Java literals are supported by Flavor with
the exception of strings. This includes integers, floating point
numbers, and character constants (e.g., ’a’ ). In addition, Flavor
defines a special binary number notation using the prefix 0b .  In
addition to specifying the actual value, binary literals also convey
their length. For example, one can write 0b011  to denote the
number 3  represented using 3 bits. For readability, a bitstring can
include periods every four digits, e.g., 0b0010.01.
Hexadecimal or octal constants used in a context of a bitstring
also convey their length in addition to their value. Whenever the
length of a bitstring literal is irrelevant, it is treated as a regular
integer literal.

3.2 Comments

Both multi-line (/**/ ) and single-line (// ) comments are
allowed. Multi-line comment delimiters cannot be nested.

3.3 Names

Variable names follow the C++ and Java conventions (e.g.,
variable names cannot start with a number). Several keywords
that are used in C++ and Java are considered reserved in Flavor.

3.4 Types

Flavor supports the common subset of C++ and Java built-in or
fundamental types. This includes char , int , float , and
double including all appropriate modifiers. In addition, Flavor
defines a new type called bit . This is to accommodate bitstring
variables.

In addition, it allows the declaration of new types in the form of
classes (see Section 5).

Flavor does not support pointers, references, casts, or C++
operators related to pointers. It also does not support structures or
enumerations.

3.5 Declarations

Regular variable declarations can be used in Flavor in the same
way as in C++ and Java. As Flavor follows a declarative
approach, constant variable declarations with specified values are
allowed everywhere (there is no constructor to set the initial
values). This means that the declaration ‘const int a=1;’ is
valid anywhere (not just in global scope). The two major
differences are the declaration of parsable variables and arrays.

3.5.1 Parsable Variables
Parsable variables are the core of Flavor’s design; it is the proper
definition of these variables that defines the bitstream syntax.

Parsable variables include a parse length specification
immediately after their type declaration, as shown in Figure 1.
length can be an integer constant, a non-constant variable of type
compatible to int, or a map (discussed later on) with the same
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type as the variable. This means that the parse length of a variable
can be controlled by another variable.

aligned(length) type(length) variable;

Figure 1: Parsable variable declaration.

In addition to the parse length specification, parsable variables
can also have the modifier aligned. This signifies that the
variable begins at the next integer multiple boundary of the length
specified within the alignment expression. If this length is
omitted, an alignment size of 8 is assumed (byte boundary). Only
multiples of 8 are allowed. For parsing, any intermediate bits are
ignored, while for output bitstream generation the bitstream is
padded with zeros.

As we will see later on, parsable variables cannot be assigned to.
This ensures that the syntax is preserved regardless if we are
performing an input or output operation. However, parsable
variables can be redeclared, as long as their type remains the
same, only the parse size is changed, and the original declaration
was not as a const. This allows one to select the parse size
depending on the context (see Exressions and Statements, Section
4). In addition, the obey special scoping rules as we will see later
on.

In general, the parse size expression must be a non-negative
value. The special value 0 can be used when, depending on the
bitstream context, a variable is not present in the bitstream but
obtains a default value. In this case no bits will be parsed or
generated, however the semantics of the declaration will be
preserved.

Finally, variables of type float, double, and long double
are only allowed to have a parse size equal to the fixed size that
their standard representation requires (32 and 64 bits).

3.5.2 Look-Ahead Parsing
In several instances it is desirable to examine the immediately
following bits in the bitstream, without actually removing the bits.
To support this behavior, a ‘*’ character can be placed after the
parse size parentheses to modify the parse size semantics. Note
that for bitstream output purposes this has no effect.

3.5.3 Parsable Variables with Expected Values
Very often, certain parsable variables in the syntax have to have
specific values (markers, start codes, reserved bits, etc.). These
are specified as initialization values for parsable variables. Figure
2 shows an example.

int(3) a = 2;

Figure 2: Example of declaration of parsable variable with
expected value.

This is interpreted as: a is an integer represented with 3 bits, and
must have the value 2. The keyword const may be prepended in
the declaration, to indicate that the parsable variable will have this
constant value and, as a result, cannot be redeclared.

As both parse size and initial value can be arbitrary expressions,
we should note that the order of evaluation is parse expression
first, followed by the initializing expression.

3.5.4 Arrays
Arrays have special behavior in Flavor, due to its declarative
nature but also due to the desire for very dynamic type

declarations. For example, we want to be able to declare a
parsable array with different array sizes depending on the context.
In addition, we may need to load the elements of an array one at a
time (this is needed when the retrieved value indicates indirectly
if further elements of the array should be parsed). These concerns
are only relevant for parsable variables.

The array size, then, does not have to be a constant expression (as
in C++ and Java), but it can be a variable as well. The following is
allowed in Flavor.

int a = 2;
int(2) A[a++];

Figure 3: Array declaration with dynamic size specification.

An interesting question is how to handle initialization of arrays, or
parsable arrays with expected values. As the size of the array may
not be known until run-time, the usual brace expression
initialization (e.g., ‘int a[2] = {1, 2};’) cannot be used.
The mechanism we provided involves the specification of a single
expression as the initializer. For example, we can write:

int A[3]= 5;

Figure 4: Array declaration with initialization.

This means that all elements of A will be initialized with the value
5. In order to provide more powerful semantics to array
initialization, Flavor considers the parse size and initializer
expressions as executed per each element of the array. The array
size expression, however, is only executed once, and before the
parse size expression or the initializer expression. Let’s look at a
more complicated example.

int a=1;
int(a++) A[a++]=a++;

Figure 5: Array declaration initialization with dynamic array and
parse sizes.

Here A is declared as an array of 2 integers. The first one is parsed
with 3 bits and is expected to have the value 4, while the second is
parsed with 5 bits and is expected to have the value 6. After the
declaration, a is left with the value 7.

This probably represents the largest deviation of Flavor’s design
from C++ and Java declarations. On the other hand it does
provide significant flexibility in constructing sophisticated
declarations in a very compact form, and it is also in line with the
dynamic nature of variable declarations that Flavor provides.

3.5.5 Partial Arrays
An additional refinement of array declaration is partial arrays.
These are declarations of parsable  arrays in which only a subset
of the array needs to be declared (or, equivalently, parsed from or
written to a bitstream). Flavor introduces a double brace notation
for this purpose. The following examples demonstrate its use.

int(2) A[[3]]=1;
int(4) B[[2]][3];

Figure 6: Partial arrays.

In the first line, we are declararing the 4-th element of A (array
indices start from 0). The array size is unknown at this point, but
of course it will be considered at least 4. In the second line, we are
declaring a two-dimensional array, and in particular only its third
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column (assuming the first index corresponds to a row). The array
indices can, of course, be expressions themselves. Partial arrays
can only appear on the left-hand side of declaration and are not
allowed in expressions.

4. Expressions and Statements
Flavor supports all of the C++ and Java arithmetic, logical, and
assignment operators. However, parsable variables cannot be used
as lvalues. This ensures that they always represent the bitstream’s
contents, and allow consistent operation for the translator-
generated put() and get() methods.

Flavor also supports all the familiar flow control statements: if-
else, do-while, while, and switch. In contrast with C++
and Java, variable declarations are not allowed within the
arguments of these statements (i.e., ‘for(int i=0; ; );’ is
not allowed. This is because in C++ the scope of this variable will
be the enclosing one, while in Java it will be the enclosed one. To
avoid confusion, we opted for the exclusion of both alternatives at
the expense of a slightly more verbose notation. Scoping rules are
discussed in detail in Section 6.

The following is an example of the use of these flow control
statements.

if (a==1){
int(3) b;

}
else {

int(4) b;
}

Figure 7: Example of conditional expression.

The variable b is declared with a parse size of 3 if a is equal to 1,
and with a parse size of 4 otherwise. Observe that this construct
would not be meaningful in C++ or Java as the two declarations
would be considered as being in separate scopes. This is the
reason why parsable variables need to obey slightly different
scoping rules than regular variables. The way to approach this to
avoid confusion is to consider that Flavor is designed so that these
parsable variables can be properly defined at the right time and
position. All the rest of the code is there to ensure that this is the
case. We can consider the parsable variable declarations as
“actions” that our system will perform at the specified times. Then
this difference in scoping rules becomes very natural.

5. Classes
Flavor uses the notion of classes in exactly the same way as C++
and Java do. It is the fundamental structure in which object data is
organized. Keeping in line with the support of both C++ and Java-
style programming, classes in Flavor cannot be nested, and only
single inheritance is supported. In addition, due to the declarative
nature of Flavor, methods are not allowed (this includes
constructors and destructors).

The following is an example of a simple class declaration with
just two parsable member variables.

class SimpleClass {
int(3) a;
unsigned int(4) b;

};  // trailing ’;’ optional

Figure 8: A simple class declaration.

The trailing ‘;’ character is optional accommodating both C++
and Java-style class declarations. This class defines objects which
contain two parsable variables. They will be present in the
bitstream in the same order they are declared. After this class is
defined, we can declare objects of this type:

SimpleClass a;

Figure 9: A simple class variable declaration.

A class is considered parsable if it contains at least one variable
that is parsable. Declaration of parsable class variables can be
prepended by the aligned modifier in the same way as simple
parsable variables.

Class member variables in Flavor do not require access modifiers
(public, protected, private). In essence, all such
variables are considered public.

5.1 Parameter Types

As Flavor classes cannot have constructors, it is necessary to have
a mechanism to pass external information to a class. This is
accomplished using parameter types. These act the same way as
formal arguments in function or method declarations do. They are
placed after the name of the class.

class SimpleClass(int i[2]) {
int(3) a=i[1];
unsigned int(4) b=i[2];

};  // trailing ’;’ optional

Figure 10: A simple class declaration with parameter types.

When declaring variables of parameter type classes, it is required
that actual arguments are provided in place of the formal ones:

int(2) v[2];
SimpleClass a(v);

Figure 11: A simple class declaration with parameter types.

Of course the types of the formal and actual parameters must
match. For arrays, only their dimensions are relevant; their actual
sizes are not significant as they can by dynamically varying. Note
that class types are allowed in parameter declarations as well.

5.2 Inheritance

As we mentioned earlier, Flavor supports single inheritance so
that compatibility with Java is maintained. Although Java can
“simulate” multiple inheritance through the use of interfaces,
Flavor has no such facility (it would be meaningless since
methods do not exist in Flavor). However, for media
representation purposes, we have not found any instance where
multiple inheritance would be required, or be even desirable. It is
interesting to note that all  existing representation standards today
are not truly object-based. The only exception, to our knowledge,
is the MPEG-4 specification which explicitly addresses the
representation of audio-visual objects. It is, of course, possible to
describe existing structures in an object-oriented way but it does
not truly map one-to-one with the notion of objects. For example,
MPEG-2 Video slices can be considered as separate objects of the
same type, but of course their semantic interpretation (horizontal
stripes of macroblocks) is not very useful.
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Derivation in C++ and Java is accomplished using a different
syntax (extends versus ‘:’). Here we opted for the Java
notation (also ‘:’ is used for object identifier declarations as
explained below). Unfortunately, it was not possible to satisfy
both.

class A {
    int(2) a;
}

class B extends A {
    int(3) b;
}

Figure 12: Derived class declaration.

In Figure 12 we show a simple example of a derived class
declaration. Derivation from a bitstream representation point of
view means that B is an A with some additional information. In
other words, the behavior would be almost identical if we just
copied the statements between the braces in the declaration of A in
the beginning of B. We say almost here because scoping rules of
variable declarations also come into play here, as discussed in
Section 6.

Note that if a class is derived from a parsable class, it is
considered parsable as well.

5.3 Polymorphic Parsable Classes

The concept of inheritance in object-oriented programming
derives its power from its capability to implement polymorphism.
In other words, the capability to use a derived object in a place
where an object of the base class is expected. Although the mere
structural organization is useful as well, it could be accomplished
equally well with containment (a variable of type A is the first
member of B).

Polymorphism in traditional programming languages is made
possible via vtable structures, which allow the resolution of
operations during run-time. Such behavior is not pertinent for
Flavor, as methods are not allowed.

A more fundamental issue, however, is that Flavor describes the
bitstream syntax: the information with which the system can
detect which object to select must be present in the bitstream. As
a result, traditional inheritance as defined in the previous section
does not allow the representation of polymorphic objects.
Considering Figure 11, there is no way to figure out by reading a
bitstream if we should read an object of type A or type B.

Flavor solves this problem by introducing the concept of object
identifiers or IDs. The concept is rather simple: in order to detect
which object we should parse/generate, there must be a parsable
variable that will identify it. This variable must have a different
expected value for any class derived from the originating base
class, so that object resolution can be uniquely performed in a
well-defined way (this is checked by the translator). As a result,
object ID values must be constant expressions.

In order to signify the importance of ID variables, they are
declared immediately after the class name (including any
derivation declaration) and before the class body. They are
separated from the class name declaration using a colon (‘:’). We
could rewrite the example of Figure 12 with IDs as shown in
Figure 13

The name and the type of the ID variable is irrelevant, and can be
anything that the user chooses. It cannot, however, be an array, or
a class variable (only built-in types are allowed). Also, the name,
type, and parse size must be identical between the base and
derived classes.

class A : int(1) id=0 {
    int(2) a;
}

class B extends A
    : int(1) id=1 {
    int(3) b;
}

Figure 13: Derived class declaration with object identifiers.

The semantics of the object identifiers in Figure 13 are the
following. Upon reading the bitstream, if the next 1 bit has the
value 0 an object of type A will be parsed; if the value is 1 then an
object of type B will be parsed. For output purposes, and as will
be discussed in Section 8, it is up to the user to set up the right
object type in preparation for output.

Object identifiers are not required for all derived classes of a base
class that has a declared ID. This allows, for example, to have the
following inheritance tree.

A

B

C D

Figure 14: Class inheritance tree; not all classes have to have
object identifiers.

Here only the classes represented by the black circles have IDs.
As a result, only classes A, B, C, and D can be used wherever an
A can appear; the intermediate classes cannot.

This type of polymorphism is already used in the MPEG-4
Systems specification, and in particular the Binary Format for
Scenes (BIFS) [12]. This is a VRML-derived set of nodes that
represent  objects and operations on them, thus forming a
hierarchical description of a scene.

ID variables are always considered constant, i.e., they cannot be
redeclared within the class. This is the same as if the keyword
const was prepended in their declaration.

6. Scoping Rules
The scoping rules that Flavor uses are identical with C++ and
Java with the exception of parsable variables.
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As in C++ and Java, a new scope is introduced with curly braces
({}). Since Flavor does not have functions or methods, a scope
can either be the global one or a scope within a class declaration.

The global scope cannot contain any parsable variable, since it
does not belong to any object. As a result, global variables can
only be constants.

Within a class, all parsable variables are considered as class
member variables, regardless of the scope they are encountered in.
This is essential in order to allow conditional declarations of
variables which will almost always require that the actual
declarations occur within compound statements (see Figure 7).
Non-parsable variables that occur in the top-most class scope are
also considered class member variables. The rest live within their
individual scopes.

This distinction is important in order to understand which
variables are accessible to a class variable that is contained in
another class. The issues are illustrated in Figure 15. Looking at
class A, the initial declaration of i occurs in the top-most class
scope; as a result i is a class member. a is declared as a parsable
variable, and hence it is automatically a class member variable.
The declaration of j occurs in the scope enclosed by the if
statement; as this is not the top-level scope, j is not a class
member. The following declaration of i is acceptable; the original
one is hidden within that scope. Finally, the declaration of the
variable a as a non-parsable would hide the parsable version. As
parsable variables do not obey scoping rules, this is not allowed
(hiding parsable variables of a base class, however, is allowed).

class A  {
  int i=1;
  int(2) a;
  if (a==2) {
    int j=i;
    int i=2; // hides i, ok
    int a;   // hides a, error
  }
}

class B {
  A a;
  a.j=1; // error, j not a
         //class member
  int j=a.a+1; // ok
  j=a.i+2; // ok
  int(3) b;

}

Figure 15: Scoping rules example.

Looking now at the declaration of class B which contains a
variable of type A, it becomes clear which variables are available
as class members.

In summary, the scoping rules have the following two special
considerations. Parsable variables do not obey scoping rules and
are always considered class members. Non-parsable variables
obey the standard scoping rules and are considered class members
only if the are at the top-level scope of the class.

Note that parameter type variables are considered as having the
top-level scope of the class. Also, they are not allowed to hide the
object identifier, if any.

7. Maps
Up to know, we have only considered fixed-length
representations, either constant or parametric. A wide variety of
representation schemes, however, rely heavily on entropy coding,
and in particular Huffman codes [1]. These are variable length
codes (VLCs) which are uniquely decodable (no codeword is the
prefix of another). Flavor provides extensive support for variable
length coding through the use of maps. These are declarations of
tables in which the correspondence between codewords and
values is described. The following is a simple example of a map
declaration.

map A(int) {
  0b0, 1,
  0b01, 2
}

Figure 16: A simple map declaration.

The map keyword indicates the declaration of a map named A.
The declaration also indicates that the map converts from bitstring
values to values of type int. The type indication can be a
fundamental type, a class type, or an array. Map declarations can
only occur in global scope. As a result, an array declaration will
have to have a constant size (no non-constant variables are visible
at this level).

The map contains a series of entries. Each entry starts with a
bitstring that declares the codeword of the entry, followed by the
value to be assigned to this codeword. If a complex type is used
for the mapped value, then the values have to be enclosed in curly
braces.

After the map is properly declared, we can now define parsable
variables that use it by indicating the name of the map where we
would put the parse size expression. For example:

int(A) i;

Figure 17: Declaring a variable with a variable length code table.

As we can see, the use of VLCs is essentially identical to fixed-
length variables. All the details are hidden away in the map
declaration.

The translator can check that the VLC table is uniquely
decodable, and also generate optimized tables for extremely fast
decoding using lookup tables.

As Huffman codeword lengths tend to get very large when their
number increases, it is typical to specify “escape codes,”
signifying that the actual value will be subsequently represented
using a fixed-length code. To accommodate these as well as more
sophisticated constructs, Flavor allows the use of parsable type
indications in map values. This means that, using the example of
Figure 16, we can write:

map A(int) {
  0b0,   1,
  0b01,  2,
  0b001, int(5)
}

Figure 18: Map declaration with extension.

This indicates that, when the bitstring 0b001 is encountered in
the bitstream, the actual return value for the map will be obtained
by parsing 5 more bits. The parse size for the extension can itself
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be a map, thus allowing the cascading of maps in sophisticated
ways. Although this facility is efficient when parsing, the
bitstream generation operation can be costly when complex map
structures are designed this way. None of today’s specifications
that we are aware of require anything beyond a single escape
code.

8. The Flavor Translator
Designing a language like Flavor would be an interesting but
academic exercise, unless  it was accompanied by software that
can put its power into full use. We have developed a translator
that evolved concurrently with the design of the language. When
the language specification became stable, the translator was
completely rewritten. The most recent release (Version 2.0,
Interim) is publicly available for downloading (www.ee.columbia.
edu/flavor). As it is an interim release, it currently supports only
Windows NT/95 and C++ code generation, with support for Java
and more operating systems expected in the near future. Earlier
versions support a large variety of UNIX systems, but do not
support all features.

8.1 Run-Time API

The translator reads a Flavor source file and generates a single .h
file that contains declarations of all Flavor classes as C++ classes
with the appropriate class members. All such members are
declared public. More importantly, the translator also generates
for each class a put() and a get() method. The get()
method is responsible for reading a bitstream and loading the
class variables with their appropriate values, while the put()
method does the reverse.

The translator makes minimal assumptions about the operating
environment for the generated code. It requires that a class called
Bitstream is defined, which provides a small and well-defined
set of methods for bitstream I/O. A Bitstream reference is
passed as an argument to the get() and put() methods. The
Flavor run-time library includes a fast and simple implementation
supporting file-based I/O. It is easy to design much more
sophisticated, application-specific I/O structures; the only
requirement is that the interface exposed is compatible with what
the translator expects.

If parameter types are used in a class, then they are also required
arguments in the get() and put() methods as well.

The translator also requires that a function (flerror) is
available to receive calls when expected values or VLC lookups
fail. The function name can be selected by the user; a default
implementation is included in the run-time library.

For efficiency reasons, Flavor arrays are converted to fixed size
arrays in the translated code. This is necessary in order to allow
developers to access Flavor arrays without needing special
techniques. Whenever possible, the translator automatically
detects and sets the maximum array size; it can also be set by the
user using a command-line option. Finally, the run-time library
(and the translator) only allow parse sizes of up to the native
integer size of the host processor (except for double values). This
enables fast implementation of bitstream I/O operations.

For parsing operations, the only task required by the programmer
is to declare an object of the class type at hand, and then call its
get() method with an appropriate bitstream. While the same is

also true for the put()operation, the application developer must
also load all class member variables with their appropriate values
before the call is made.

8.2 Verbatim Code

In order to further facilitate integration of Flavor code with
C++/Java user code, the translator supports the notion of verbatim
code. Using special delimiters, code segments can be inserted in
the Flavor source code, and copied verbatim at the correct places
in the generated C++/Java file. This allows, for example, the
declaration of constructors/destructors, user-specified methods,
pointer member variables for C++, etc. Such verbatim code can
appear wherever a Flavor statement or declaration is allowed.

The delimiters %{ and %} can be used to introduce code that
should go to the class declaration itself (or the global scope). The
delimiters %p{ and  %p}, and %g{ and %g} can be used to place
code at exactly the same position they appear in the put() and
get() methods respectively. Finally, the delimiters %*{ and
%*} can be used to place code in both put() and get()
methods.

The Flavor 2.0 release includes several samples on how to
integrate user code with Flavor-generated code, including a
simple GIF parser.

8.3 Tracing Code Generation

We are also including the option to generate bitstream tracing
code within the get() method. This will allow one to very
quickly examine the contents of a bitstream for development
and/or debugging purposes.

9. Concluding Remarks
Flavor’s design was motivated by our belief that content creation,
access, manipulation, and distribution, will become increasingly
important for end-users and developers alike. New media
representation forms will continue to be developed, providing
richer features and more functionalities for end-users. In order to
facilitate this process, it is essential to bring syntactic description
on par with modern software development practices and tools.
Flavor can provide significant benefits in the area of media
representation and multimedia application development at several
levels.

First, it can be used as a media representation documentation tool,
substituting ad-hoc ways of describing a bitstream’s syntax with a
well-defined and concise language. This by itself is a substantial
advantage for defining specifications, as a considerable amount of
time is spent to ensure that such specification are unambiguous
and bug-free.

Secondly, a formal media representation language immediately
leads to the capability of automatically generating software tools,
ranging from bitstream generators and verifiers, as well as a
substantial portion of  an encoder or decoder.

Third, it allows immediate access to the content by any
application developer, for such diverse use as editing, searching,
indexing, filtering, etc.



9

With appropriate translation software, and a bitstream
representation written in Flavor, obtaining access to such content
is as simple as cutting and pasting the Flavor source code from the
specification into an ASCII file, and running the translator.

Flavor, however, does not provide facilities to specify how full
decoding of data will be performed as it only addresses bitstream
syntax description. For example, while the data contained in a
GIF file can be fully described by Flavor, obtaining the value of a
particular pixel requires the addition of LZW decoding code that
must be provided by the programmer. In several instances, such
access is not necessary. For example, a number of tools have been
developed to do automatic indexing, search, and retrieval of visual
content directly in the compressed domain for JPEG and MPEG
content (see [13-15] and references therein). Such tools only
require parsing of the coded data so that DCT coefficients are
available, but do not require full decoding. Also, emerging
techniques, such as MPEG-7 [16], will provide a wealth of
information about the content without the need to decode it. In all
these cases, parsing of the compressed information may be the
only need for the application at hand.

Finally, Flavor can also be used to redefine the syntax of content
in both forward and backward compatible ways. The separation of
parsing from the remaining coding/decoding operations allows its
complete substitution as long as the interface (the semantics of the
previously defined parsable variables) remain the same. Old
decoding code will simply ignore the new variables, while newly
written encoders and decoders will be able to use them. Use of
Java in this respect is very useful; its capability to download new
class definitions opens the door for such downloadable content
descriptions that can accompany the content itself (similar to self-
extracting archives). This can eliminate the rigidity of current
standards, where even a slight  modification of the syntax to
accommodate new techniques or functionalities render the content
useless in non-flexible but nevertheless compliant decoders.
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