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  ABSTRACT

In this paper we discuss image matching by correlation in the subband domain with prospective applications. Theoretical proof
is given to show that the correlation of two signals equals the weighted sum of the correlations of their decomposed subband
signals. We propose an adaptive method to compute image correlation directly in the subband domain, which avoids decoding
of the compressed data. Compared with pixel-domain correlation, this method reduces computation by more than ten times
with satisfactory accuracy. We also compare the effects of template size, number of iterations of subband decomposition, and
filter type on the speed and accuracy. Complexity estimations and test results are given. In addition, several techniques that
involve image correlation are investigated for application in image matching.
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1. INTRODUCTION

As the contents of databases evolve from text to multimedia information, the search and query methods of databases are also
undergoing fundamental changes. When applying content-based search and visual query techniques,5 the objective is to
retrieve visual information efficiently from large image and video databases with as little human involvement as possible.

Prominent visual features, such as texture, shape, and color, are usually used for query in image and video databases.4, 5, 10, 11,
14 Users may specify a query by textual descriptions or, most likely, with the assistance of graphical user interface tools. In
many other cases, they will give an image example to search for visually similar images or video scenes in the database. One
way to achieve this is to extract features from the example and compare them with the visual features of the images in the data-
base. This may become hard when the example lacks distinct visual features or accurate feature extraction is difficult. Another
approach is to use the example itself as a template without extracting the features and search for similar images by template
matching.

Image matching has been studied extensively and several popular methods are based on the correlation between the image and
the template (i.e., the query example).2, 6 However, with two-dimensional convolution involved, these methods are computa-
tionally complex. Although the FFT can be used to carry out the correlation in the Fourier Domain, there is no efficiency gain
over the direct implementation when the size of the template is much smaller than the image.3 The main overhead in using
FFT is the inverse transform at the end in order to find the correlation peaks, which correspond to possible matching positions.

This paper proposes an adaptive method that achieves image correlation in the subband domain. Compared with conventional
pixel-domain correlation, it reduces computational complexity by more than ten times. Based on the energy distribution over
different bands, the adaptive method uses dominant subband correlation components to approximate the original correlation.
This method can be applied directly in the subband compressed domain without decoding overhead. Furthermore, because the
subband domain keeps partial spatial information of the images, we can find the locations of the image correlation peaks
directly without inverse transform. It is also convenient to combine other features (like texture and multiscale edges) in the
subband compressed domain with this method.

The remainder of the paper is organized as follows. Section 2 gives out the subband correlation theorem with proof. Section 3
proposes an adaptive scheme of subband correlation and discusses the effects of template size and number of iterations of sub-
band decomposition on the accuracy and speed of the proposed method. Section 4 evaluates various filter banks for their
effects on subband correlation. Section 5 compares several image matching criteria based on correlation. Conclusion and
future work are presented in Section 6.

2. SUBBAND CORRELATION THEOREM

We prove that the correlation of two discrete signals can be decomposed into the correlations of their subband components.
Here we consider the case of one-dimensional signals and two-channel filter banks. The result can be generalized to two-
dimensional signals and multi-channel filter banks easily.



2.1. Notations

In the following discussion we useX(z) for thez-transform of a one-dimensional sequencex(n); ~ (tilde) for transposition of
the matrix, followed by conjugation ofz-transform coefficients, and substitution ofz by z-1; Hi(z) for analysis filters andGi(z)
for synthesis filters; subscript 0 for lowpass filters and low frequency signals and subscript 1 for the contrary; upward arrow for
1:2 upsampler and downward arrow for 2:1 subsampler (decimator); bold face characters for matrices.

2.2. Theorem

The subband decomposition and reconstruction of signals can be represented by the diagram in Figure 1(a), in which we
assume lossless coding and ignore quantization. The analysis of such a subband system can be facilitated by using polyphase
representation of the signals and the filters.16, 17 Figure 1(b) shows the polyphase component equivalence of Figure 1(a). The
relations between the two figures are:

From Eq. (7) we can easily see that if  then we will have perfect reconstruction of the original signal after the
subband analysis and synthesis filters, i.e. . For orthogonal systems where , the condition
becomes .

We consider the correlation of two one-dimensional signalsx(n) andw(n). The correlation of the signals can be represented in
z-transform domain as . Suppose the subband decompositions ofx(n) andw(n) are {y0(n), y1(n)} and {z0(n), z1(n)},
respectively. Using above conditions with reference to Figure 1(a), we have:

Note that we assume reconstruction signals,  and , are close enough to the original signals,  and . This
is true for filter banks with the perfect reconstruction property. Eq. (10) shows that the correlation of two signals equals the
weighted sum of their correlations in subbands. The original correlation is decomposed into four terms of subband correlation
weighted by filtersFij(z) defined in Eq. (11). Hence the subband correlation theorem is proved. We define the terms associated
with F00(z) andF11(z) asin-band terms and the other two ascross-band terms. As shown in Eq. (11), the weighting filterFij(z)
corresponds to thez-transform of the correlation of the impulse responses of analysis filtersHi(z) andHj(z). Note that thez2 in
Eq. (10) corresponds to upsampling by two in time domain.
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Related work on a subband convolver can be found in 15, in which intra-subband convolutions (or correlations) are summed up
to get a subsampled version of the original convolution (or correlation). Here we explore the representation of the complete
correlation in terms of both intra-subband and cross-subband correlation, i. e., both in-band and cross-band terms in Eq. (10).

2.3. Ideal filter case

Eq. (10) has four terms including the weighted in-band and cross-band correlations of the subband components. However, if an
ideal half-band lowpass filter and an ideal half-band highpass filter are used, only the in-band terms in Eq. (10) are needed.
Consider the spectrum of the upsampled subband signals in the interval (0,π). For ideal half-band brick-wall filters, |Y0(e

j2ω)|
and |Z0(e

j2ω)| will be zero in the interval (π/4, 3π/4); |Y1(e
j2ω)| and |Z1(e

j2ω)| will be zero in the intervals (0,π/4) and (3π/4, π)
(Note that the period of Fourier spectrum of an upsampled signal is one half of that of the original signal). It is clear that the
spectrum of the cross-band correlations in Eq. (10) will be zero in this case. Therefore only the in-band terms are needed for
the computation of correlation if we use ideal filters.

2.4. Two-dimensional signals and wavelet decomposition

Using separable two-dimensional filter banks, the subband correlation theorem can be easily extended to two-dimensional sig-
nals like images. In subband decomposition, the image is filtered in each dimension separately18 and decomposed into four
frequency bands, namely LL, LH, HL, and HH bands, where L stands for lowpass filter, and H for highpass filter. The first let-
ter of L or H refers to row filtering, and the second one to column filtering. The correlation of the two images is then decom-
posed into the weighted sum of four in-band and twelve cross-band correlations. The filtering of the subband correlation by the
weighting filterFij(z) is also done in a separable manner, row filtering followed by column filtering, or vice versa.

Each subband component of a signal can be decomposed iteratively using the same filter bank and thus lead to wavelet or
wavelet packet decomposition of the signal.8 The subband correlation theorem can also be applied iteratively in these cases.

3. ADAPTIVE SUBBAND CORRELATION

Subband and wavelet decompositions preserve both partial spatial and frequency information. Correlation in the subband
domain provides the possibilities of combining these spatial-frequency features for more efficient image matching or search.
However, the straightforward implementation of Eq. (10) does not save computation. For example, suppose the image size is
NxN and the template size isMxM. In pixel domain correlation, the computation complexity is in the order of (NM)2, while the
computation for each of the subband correlations is (NM/4)2. Adding up the sixteen correlations will result in the same compu-
tational complexity as the pixel domain correlation, plus the overhead of the subband filtering byFij(z)s. Thus we need even
more computation. To solve this problem, we will show that it is not always necessary to compute the sixteen subband correla-
tions to reconstruct the original correlation. By adaptively choosing the important terms in (10) we may reduce the computa-
tion of subband correlation significantly and keep the result accurate.

3.1. Energy-based adaptation

From Eq. (10) we see that the correlation of one-dimensional signals equals the weighted sum of subband correlations. The
contribution of each term to the original correlation depends on the signals themselves as well as the filters used. Here we con-
sider the signals first. Effects of different filter banks will be discussed later.

Intuitively, the stronger a signal is, the more it will contribute to the correlation, because correlation involves the summation
and multiplication of two signals. Therefore, it is reasonable to pick up the terms in Eq. (10) that involve the correlation of the
subband components with greater energy and discard those trivial ones. Though it may not best represent the visual features of
the image, such as texture and shape, this criterion is efficient and easy to implement, especially when the visual features are
hard to extract or it is time-consuming to do so.

First we define the source images in the database as “images” and the query examples presented by the users as “templates”.
Then the energy based adaptive method for subband correlation can be summarized as follows. Given subband decomposed
image and template, first compute the energy in each subband; then by applying a pre-determined threshold, discard the terms
involving subband components with energy less than the percentage threshold; compute the necessary terms including upsam-
pling and filtering and then sum them up to approximate the original correlation; finally detect the peak area of the correlation
for possible matches.

When comparing the subband correlation results with original ones, we consider their speed and accuracy. Computer time
spent in system’s processing is given for comparison of different approaches. All algorithms are written in C language and exe-
cuted on an SGI Onyx workstation. The difference in pixels between the coordinate of the peak point in subband correlation
and that in original correlation is given in absolute value (|∆x|, |∆y|) to measure the accuracy. If either |∆x| or |∆y| is greater than
five pixels, we assume that the peak position is wrong in the result of subband correlation and the method fails in accuracy.



3.2. LL-LL subband correlation

It is known that for most natural images their energy concentrates in the low frequency bands. The high frequency components
which correspond to the difference of the pixels usually have relatively small values and energy. Thus for many pictures the
term involving LL-LL subband correlation will give a good approximation of the original correlation. Figure 3(a) shows the
original correlation of the Lenna image (Figure 2(a)) with a 16x16 template (Figure 2(b)) cut from it. Figure 3(b) shows the
corresponding subband correlation using only the LL-LL term. Both results are represented in contour maps. The height of
each curve corresponds to the normalized correlation value. We can see that the peak positions and curves of the two contour
maps matches well with each other. Hence the LL-LL subband correlation is a good approximation of the original one.

We tested five images including general images and satellite pictures for the speed and accuracy of the LL-LL subband corre-
lation. In all cases we use a 16x16 template cut from the original image and Haar Filters for subband decomposition. The result
is shown in Table 1. The size of the image is given in the form of width by height (pixels). All examples are gray-level images
with 8 bits per pixel. “Speed Gain” is defined as the ratio of the computation time of pixel domain correlation over the compu-
tation time of subband correlation. “Fail” in the last column indicates that either |∆x| or |∆y| is greater than 5 pixels.

From Table 1 we see that given the same template size and filters, the speed gain of the method is almost fixed at 11. It is inde-
pendent of the image size. The peak positions of the subband correlation are very close to the original ones except in the Lenna
case where multiple correlation peaks exist. The LL-LL subband correlation gives good approximations in most of the exam-
ples with significant reduction of computation. In later sections we will show that other subbands than the LL band may need
to be involved. For those cases, we will apply our energy-based adaptive matching method. We will also discuss the effects on
the efficiency and accuracy of subband correlation by varying template size, number of iterations of subband decomposition,
and filter type.

3.3. Speed and accuracy vs. size of template

We still take the LL-LL subband correlation as the approximation of the original correlation but vary the template size. Haar
filters are again used for subband decomposition. Templates are cut from the original images. Two satellite images are tested
and the results are given in Figure 4 and Table 2.

As stated at the beginning of Section 3, the computation of pixel domain correlation is on the order of (NM)2, with N, M the
size of the image and template, respectively. AsM doubles, the computation goes up by four times. This is exactly the case in
Figure 4(a). However, the computation of subband correlation does not go up as fast as the pixel correlation. Let n denote the
number of taps of the filtersFij(z)s in Eq. (10). For subband correlation, the computation will be on the order of (MN/4)2 +
2nN2 if we include computation associated with zero coefficients.* In our examples we use Haar filter bank wheren equals
three. So the computation is in the order of (M2/16 + 6)N2. As M goes up, because the time spent for the filtering remains the
same, the total computation time goes up more slowly than that of the pixel domain correlation. The above equation fits better
with the example in Figure 4(a) than the example in Figure 4(b).

In the above examples, the size of the template does not significantly affect the accuracy of the peak location in subband corre-
lation, as shown in Table 2.

3.4. Speed and accuracy vs. number of iterations of subband decomposition

We use examples to show the effects of the number of iterations of subband decomposition on the performance of subband cor-
relation. As the LL band image is further decomposed, we still use only the LL-LL subband correlations in the multiple itera-
tions to get an estimation of the pixel domain correlation. The sizes of the templates are 64x64 pixels. Haar filters are used for
subband decomposition. Results are shown in Figure 5 and Table 3.

It can be seen from Figure 5 that after the second iteration of decomposition, the computation reduces greatly. However, the
third iteration has much less effect on computation. Remember we estimate that the computation is on the order of (MN/4)2 +
2nN2 if computation associated with zero coefficients is included. As the number of iterations goes up by one, the first term of
the equation reduces by 16 times, while the second term increases a bit because of the filtering ofFij(z) after upsampling. Thus
the effect of the second term dominates as the number of iterations goes beyond two. Hence the reduction of computation
grows more slowly as the number of iterations goes up.

As shown in Table 3, the peak positions deviate as the number of iterations goes up. In the Baboon case this deviation is small
and the result is acceptable, while in the Hawaii case the original peak is lost if we use the LL-LL terms only after the itera-
tions of subband decomposition. The difference between Baboon and Hawaii (a satellite image) is that the latter has more high
frequency components in the templates. For example, the 64x64 template of Hawaii case has the energy distribution in the four
bands (LL, LH, HL, HH) as 53%, 21%, 15% and 11%. As the template is further decomposed and the LL band becomes

* If we carefully omit the computation associated with zero coefficients, the complexity should be (MN/4)2+0.75nN2



smaller, the energy distribution tends to move toward high frequency bands and becomes more uniform, which is different
from general large images.

These examples show that a reasonable number of iterations of subband decomposition may be two (or the size of the smallest
LL image is larger than 16x16 pixels). If the template contains considerable high frequency energy, the LL-LL subband corre-
lation alone will not give satisfying result.

3.5. Adaptive method in multiple iteration case

As shown in Section 3.4, when we have more than one iteration of subband decomposition, it is not always reliable to use only
the LL-LL subband correlation to approximate the original correlation. The adaptive method plays an important role here to
get the correct result efficiently. An example is shown in Figure 7 with Haar filter bank used. We show the original correlation
of the image Star (Figure 6(a)) with a 64x64 template cut from it (Figure 6(b)) and the result using only the LL-LL subband
correlations after two iterations of decomposition. The results are represented in Figures 7(a) and 7(b) in a mesh graph with the
height of the surface corresponding to the normalized correlation value. They differ significantly. Then we use the adaptive
method in every step of iteration. In the first step the energy distributions are 86%, 6%, 6% an 1% for the image and 64%,
16%, 14% and 6% for the template. The low frequency components dominate so we just use the LL-LL subband correlation.
As we go to the second iteration, we measure that the energy distributions change to 68%, 13%, 14%, 4% for the image and
45%, 19%, 17% and 19% for the template. Only the HH component of the image is low, so we take the in-band and cross-band
correlations of LL, LH and HL components. The result of this adaptive method is shown in Figure 7(c). It can be seen that the
result is much more closer to the original correlation result compared with the LL-LL only approach.

4. VARIATION OF FILTER BANKS

4.1. Effects on correlation accuracy and speed

As shown in section 2.3, if an ideal filter bank is used, only the in-band correlations are needed for the perfect reconstruction of
the original correlation of the two images. For general filter banks this is not true. The properties of the filters will affect both
the performance and complexity of the subband correlation. It is not easy to predict the effect of different filter banks on the
accuracy of peak location. Based on several images we tested the accuracy of peak location of correlation. We found that
Johnston’s 8-tap QMF filters7 is slightly better (within the difference of 2-3 pixels) than Haar filters.

The effects on speed is easier to predict. As shown in section 3.3 the computation can be divided into two parts: the correlation
of subband images, whose complexity has little to do with filter banks; the filtering byFij(z)after the upsampling of the sub-
band correlation, where the number of tap of filters determines the complexity. Hence it is clear that for large templates the
effect of using various filter banks is small; while for small templates and the multiple iteration case the effect of using longer
filters will be more prominent.

4.2. Comparisons of various filters

From Eq. (10) we know that it is desirable if most of the energy of the correlation signal falls into one of the four terms. Thus
filter banks that are able to compact energy into one term or few terms in Eq. (10) are more favorable. As said in Section 3.1
the filter bank will determine the spectrum of the filtersFij(z)s as well as the spectra of the subband components. The spectrum
of the original signal is in general unknown and thus we first compare the power spectra of the four terms in Eq. (10).

By inspecting Haar and Johnston’s 8-tap QMF filters, we see that the energy of the cross-band terms is generally small. In the
case of Haar filters the energy of the in-band terms are about ten times greater than the cross-band terms. In the QMF case the
ratio is over one hundred which means the QMF filters have better energy compaction property. The high frequency in-band
term is comparable with the low frequency in-band term. In practical situations since the image signals usually have much
larger low frequency components, the first term will be dominant in most cases, as we described in Section 3.

In Table 4 we give the numerical values of the mean of the power spectra in the four terms of Eq. (10) for various filter banks.
Note that these mean values are normalized so that the mean of power spectrum of term associated withF00(z) is unity. Haar
filter, Johnston’s 8-tap QMF filter, Mallat’s QMF filter,8 8-tap optimal perfect reconstruction QMF filter presented in Tables
4.7 and 4.9 of1, and Smith-Barnwell’s 8-tap CQF filter12 are compared. We can see from Table 4 that the CQF filter and Opti-
mal filters have the tendency to dramatically suppress the energy of cross-band terms in Eq. (10) and thus seem to be more
suitable for the subband correlation applications. The first Optimal filter can also suppress the energy in the high frequency in-
band term in Eq. (10). That is because these filters are carefully designed for better energy compaction properties. The “flat-
ness” of the power spectra in each of the terms in Eq. (10), which is estimated as the geometric mean divided by arithmetic
mean, are also computed and compared for these filters. This flatness metric ranges from zero to one. We see that for most fil-
ters the power spectra have similar flatness (0.5-0.7) except in the case of Johnston’s 8-tap QMF filters where cross-band terms
are relatively narrow.



5. OTHER CRITERIA OF IMAGE MATCHING INVOLVING CORRELATION

The correlation of two images is a good way of describing the relation between their image contents. However, this method is
affected by the absolute intensity of the images. When we have a large area with very high intensity in the image, it is more
likely to get high correlation values there, although the template may not be visually similar with that area. Other approaches
based on image correlation are discussed in the following.

5.1. Mean square error (MSE)

The mean square error calculates the Euclidean distances between the template and different image regions. The smaller the
error, the closer the template is to the image region. The computation of MSE can be decomposed into three components: the
energy of the template, which is a constant; the energy of the image region overlapping with the template, which is slowly
varying; and the correlation of the image and the template. With the correlation result prepared, the MSE can be easily com-
puted. In ideal cases, MSE criterion is a reasonable method to find the best match. But in practice, the noise of pictures and dif-
ferent lighting or intensity scaling will greatly affect the result of this method. Furthermore, the image pattern we are going to
find may not have the exact intensity level equivalent to the template. It is difficult for this method to find visually matched or
related candidates. Features and patterns are more important than the absolute intensity in image matching. Hence, the MSE
may not be a very good criterion without combining it with other matching criteria. In13 average intensity is used as a second
matching criterion besides MSE and the algorithm is computed in Fourier domain.

5.2. Correlation coefficient

The correlation coefficient is defined as the correlation of two normalized random variables.9 Consider one dimensional
sequencef with lengthN and another one dimensional sequenceg with lengthM, their correlation coefficient is defined as
(assumeM < N)

whereg is the average value ofg(n) (computed only once),f(n) is the average off(n) in the interval coincident with the non-
zero interval ofg. It is clear that the numerator of Eq. (11) involves correlation off andg. Since the average intensity is sub-
tracted and the residue normalized before doing the correlation, the absolute intensity does not affect the result of correlation
here.

Computation of correlation coefficient includes similar components with MSE, i.e., energy of the template, energy of the
image overlapped with the template window, and the correlation. It provides the advantage of lighting (average intensity)
invariance at the cost of the higher computation complexity, when compared to correlation.

5.3. Comparisons

Given a remote sensing picture of San Francisco Bay and a template of the seashore, we use mean square error, correlation,
and correlation coefficient to find the best match. The original image and template are shown in Figures 8(a) and 8(b), respec-
tively. The results of the three methods are shown in Figure 9. The picture is 456x640 pixels and the template is 32x32 pixels.
The template is cut from the original image and its center is at (206, 201) of the original image. We use the contour map of the
correlation, correlation coefficient, and MSE to compare the effectiveness of the three methods.

The maximum value of the correlation and correlation coefficient are normalized to 1. The MSE is shown in the reverse inten-
sity, with the minimal MSE mapped to maximum intensity. Then we look for the peak positions in these results to find the best
match positions of the template. Because of the bright area in the lower right part of the image (mountain covered by snow),
the correlation result gives the peak at a wrong position (Figure 9(a)). The MSE gives the minimal value at the correct match
point, but there are too many candidate points with small MSEs in the whole image (Figure 9(c)). The correlation coefficient
gives the correct match position and the peak value is much higher than those of the rest of the image (Figure 9(b)). In this
example, the correlation coefficient method is the only one that gives the correct result with few false alarms.

6. CONCLUSION AND FUTURE WORK

In this paper we focused on image correlation in subband domains and adaptive approaches of implementing it. First we
proved the subband correlation theorem and showed that by using ideal half-band filters the cross terms of the inter-subband
correlation are canceled. We further proposed adaptive methods of subband correlation to reduce computation while keeping
accuracy. The effects of template size and number of iterations of subband decomposition were investigated. Then we ana-
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lyzed examples of different filter banks and their effects on subband correlations. Finally we discussed other criteria of image
matching which can be implemented based on correlation.

Correlation or correlation coefficients themselves may not necessarily represent visual content similarity. Invariances of size
and rotation are not provided. Future work will address the issues of combining correlation with other image features derived
directly from compressed domains and their efficient implementations.
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TABLE 1.  Test results of the speed and accuracy of the LL-LL subband correlation

TABLE 2.  Effect of template size on accuracy

Image Name Content Size (WxH) Speed Gain (|∆x|, |∆y|) of peak

Airport satellite image 700x560 10.9 (1, 0)

Baboon close-up 256x256 11.1 (1, 0)

Earth satellite image 457x462 11.0 (1, 1)

Hawaii satellite image 359x250 11.0 (1, 0)

Lenna head and shoulder 256x240 11.1 Fail

Image Name Size (WxH) Template Size (|∆x|, |∆y|) of peak

Earth1 457x462 16x16 (1, 1)

32x32 (1, 0)

64x64 (0, 0)

Hawaii 359x250 16x16 (1, 0)

32x32 (2, 1)

64x64 (0, 0)



TABLE 3.  Effect of the number of iterations in subband decomposition on accuracy

TABLE 4.  Comparison of filter banks

Note a. The Optimality is based on energy compaction with zero mean high-pass filter.
Note b. The Optimality is based on energy compaction with zero mean high-pass filter, and uncorrelated subband signals.

Image Name Size (WxH) No. of Iterations (|∆x|, |∆y|) of peak

Baboon 256x256 1 (0, 2)

2 (0, 4)

3 (0, 4)

Hawaii 359x250 1 (0, 0)

2 Fail

3 Fail

Filter Bank (i, j)
Mean of Power Spectrum of the
Term Associated withFij(z) in

Eq. (10)

Estimated Flatness of the Power
Spectrum of the Term Associated with

Fij(z) in Eq. (10)

Haar Filter (0, 0) 1 0.52

(0, 1) 0.090 0.69

(1, 0) 0.090 0.69

(1, 1) 0.63 0.57

Johnston’s 8-tap (0, 0) 1 0.67

QMF Filter (0, 1) 0.0069 0.33

(1, 0) 0.0069 0.33

(1, 1) 0.70 0.55

Mallat’s QMF (0, 0) 1 0.73

Filter8 (0, 1) 0.032 0.51

(1, 0) 0.032 0.51

(1, 1) 0.70 0.54

8-tap Optimala (0, 0) 1 0.52

PR-QMF Filter in (0, 1) 0.0047 0.63

Tab. 4.7 of1 (1, 0) 0.0047 0.63

(1, 1) 0.33 0.59

8-tap Optimalb (0, 0) 1 0.61

PR-QMF Filter in (0, 1) 0.0022 0.51

Tab. 4.9 of1 (1, 0) 0.0022 0.51

(1, 1) 0.75 0.51

Smith-Barnwell’s (0, 0) 1 0.61

8-tap CQF Filter12 (0, 1) 0.0019 0.56

(1, 0) 0.0019 0.56

(1, 1) 0.75 0.51



FIGURE 1.  (a) Two-channel filter bank and (b) its polyphase component equivalence

FIGURE 2.  (a) Lenna image and (b) a 16x16 template cut from it (magnified)

FIGURE 3.  Contour maps of correlation results
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FIGURE 4.  Effect of template size on computation time

FIGURE 5.  Effect of number of iterations in subband decomposition on computation time

FIGURE 6.  (a) Star image and (b) a 64x64 template cut from it
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FIGURE 7.  Adaptive subband correlation in two-iteration case
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FIGURE 8.  (a) San Francisco Bay Image and (b) a 32x32 template cut from it

FIGURE 9.  Comparison of correlation, correlation coefficient, and mean square error methods
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