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ABSTRACT
1We describe a highly functional prototype system for
searching by visual features in an image database. The
VisualSEEk system is novel in that the user forms the
queries by diagramming spatial arrangements of color
regions. The system �nds the images that contain the
most similar arrangements of similar regions. Prior to
the queries, the system automatically extracts and in-
dexes salient color regions from the images. By utilizing
e�cient indexing techniques for color information, re-
gion sizes and absolute and relative spatial locations, a
wide variety of complex joint color/spatial queries may
be computed.

KEYWORDS: image databases, content-based retrieval,
image indexing, similarity retrieval, spatial query.

1 INTRODUCTION

In this paper we investigate a new content-based image
query system that enables querying by image regions
and spatial layout. VisualSEEk is a hybrid system in
that it integrates feature-based image indexing with spa-
tial query methods. The integration relies on the repre-
sentation of color regions by color sets. For one, color
sets provide for a convenient system of automated region
extraction through color set back-projection. Second,
the color sets are easily indexed for retrieval of similar
color sets. As a result, unconstrained images are decom-
posed into near-symbolic images which lend to e�cient
spatial query.

We present the strategies for computing queries that
specify the colors, sizes and arbitrary spatial layouts of
color regions, which include both absolute and relative
spatial locations. We describe the extraction process
and present the compact color set representation of re-
gional color features. We also address several special
case spatial queries involving adjacency, overlap and en-
capsulation of regions. Finally, we evaluate the Visu-
alSEEk color/spatial queries and demonstrate the im-
proved image query capabilities over non-spatial content-
based approaches.

1ACM Multimedia 96, Boston, MA, November 20, 1996

1.1 Content-based Image Query

The objective of content-based image query is to e�-
ciently �nd and retrieve images from the database that
satisfy the criteria of similarity to the user's query im-
age. When the database is large and the image fea-
tures are complex the exhaustive search of the database
and computation of the image similarities is not expe-
dient. Therefore, recent techniques have been proposed
to speed-up image retrieval by utilizing simple image
features, such as color histograms [1], devising compact
representations [2][3], e�cient indexing structures [4],
and utilizing e�ective pre-�ltering techniques [5]. How-
ever, recent approaches for content-based image query
have neglected one important criteria for similarity: spa-
tial information and spatial relationships.

1.2 Spatial Image Query

A signi�cant aspect of discriminating among images de-
pends on the sizes, spatial locations and relationships of
objects or regions. However, introducing multiple image
regions and spatial information into the query process
greatly complicates the content-based image query ap-
proaches. This results from the combinatorial explosion
in exhaustively comparing multiple regions or objects.

On the other hand, by representing images symboli-
cally, spatial query methods utilize the locations and
spatial relationships of symbols. For example, compar-
isons based upon 2-D strings [6], spatial quad-trees [7]
and graphs [8] provide for 
exible and e�cient spatial
querying. However, these approaches cannot easily ac-
commodatemeasures of similarity of the \symbols" such
as those based upon visual features of objects or regions.
The problem has only recently been addressed in lim-
ited applications, for maps in [9] and for medical images
that contain both labeled and unlabeled regions [4].

1.3 Joint Content-based/Spatial Image Query

In this work, we propose a new system that provides
for both feature comparison and spatial query for un-
constrained color images. To illustrate, as depicted in
Figure 1(b) and (c), each image is decomposed into re-
gions which have feature properties, such as color, and
spatial properties such as size, location and relationships
to other regions. In this way, images are compared by
comparing their regions. Furthermore, the system gives



q
0

q
1

t
o

t
2

t
1

t
4

t
3

(a) (b) (c)

Figure 1: Image decomposition (a) query image, Q = fq0; q1g, (b) example target image, (c) target image decomposed
into regions that have both feature and spatial properties, T = ft0; t1; : : : ; t4g.

the user control in selecting the regions, see Figure 1(a),
and parameters that are most important in determining
similarity in a given query. As such, the system accom-
modates partial matching of images as determined by
the user.

The most powerful type of image search system allows
users to 
exibly query for images by specifying both
visual features and spatial properties of the desired im-
ages. Several recent content-based image query systems
do not provide for both types of querying. The QBIC
system [3] provides querying of whole images and man-
ually extracted regions by color, texture and shape but
not spatial relationships. The Virage system [10] allows
querying of only image global features such as color,
composition, texture and structure. Several new tech-
niques have been proposed for injecting small amounts
of spatial information into the image feature sets.

Related Work

A recent approach by Stricker and Dimai [2] divides each
image into �ve fuzzy regions which contribute to the
color moment representation of the image's color. The
authors obtain compact feature sets and also allow the
user to assign weights to the �ve spatial regions. In
this way, the technique provides for querying by the �ve
absolute region locations. However, it is not possible to
query for images by specifying either arbitrary regions
or the spatial relationships of regions.

Pass, Zabih and Miller [11] devised a technique which
splits a global image histogram into coherent and scat-
tered components. The measure of color coherence iden-
ti�es the existence of connected colored regions. Al-
though the technique improves on color histogram in-
dexing, it does not support querying by the spatial lo-
cations of the color regions. Jacobs, Finkelstein and
Salesin [12] devised an image match criteria and sys-
tem which uses spatial information and visual features
represented by dominant wavelet coe�cients. Their sys-
tem allows the user to sketch example images and pro-
vides for improved matching over image distance norms.
However, their technique provides for little 
exibility in
specifying approximate and relative spatial information.

Our Approach

In order to fully integrate content-based and spatial im-
age query capabilities we need to devise an image sim-
ilarity function which contains both color feature and

spatial components. We �rst note that perceived im-
age similarity consists of both intrinsic and derived pa-
rameters. For example, the intrinsic part of a match
refers to the similarity between query and target colors
and/or region sizes and spatial locations. The derived
part refers to the inferences that can be made from the
intrinsic parameters, such as relative spatial locations
and the overall assessment of image matches consisting
of multiple regions.
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Figure 2: Image query process. Indexing of intrin-
sic region features: color sets, spatial locations, sizes
and spatial extents represented by minimum bound-
ing rectangles. Computation of image matches and
evaluation of spatial relationships.

The joint color/spatial images query strategy is summa-
rized in Figure 2. In order to quickly process queries,
we design the representations for the intrinsic param-
eters such as region color, spatial location and size to
require minimal computation in matching. For exam-
ple, color matching is achieved e�ciently through color
sets. The intrinsic parameters are indexed directly to
allow for maximal e�ciency in queries. This query pro-
cess identi�es candidate regions which are combined to
determine image matches.

In this way, a query speci�ed by the user is translated
directly into pruning operations on intrinsic parameters.
The derived parameters, such as region relative locations
and special spatial relations are resolved only in the �nal
stage of the query. This is because these evaluations
have the highest complexity. The pruning performed
by the queries on the intrinsic parameters reduce the
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Figure 3: VisualSEEk system overview.

number of candidates images that need to be evaluated
at the �nal stages.

1.4 Unique Features of VisualSEEk

� joint content-based/spatial querying
� automated region extraction
� direct indexing of color features

The VisualSEEk project2 has emphasized several unique
objectives in order to improve image retrieval, such as:
(1) automated extraction of localized regions and fea-
tures [13], (2) querying by both feature and spatial in-
formation [14], (3) feature extraction from compressed
data [15], (4) development of techniques for fast indexing
and retrieval and (5) development of highly functional
user tools.

The VisualSEEk client application was developed in the
Java language to allow for client platform independence
and accessibility on theWorld Wide Web. As illustrated
in Figure 3, the VisualSEEk system consists of several
components: the set of user tools, the query server, the
image and video server, the image and video archive,
the meta-data database and the index �les. Currently,
the VisualSEEk system allows searching for images in a
test-bed of 12; 000 color images. The VisualSEEk tools
are also being ported to an application for searching in
a collection of over one million images and videos from
the World-Wide Web [16].

In the next section, we present the color set representa-
tion and back-projection region extraction process. In
section 3, we examine the process of querying by color
similarity. In section 4, we extend the color query pro-
cess to include the matching of regions that have prop-
erties of absolute location, color and size. In section 5,
we consider the case of matching images with multiple
regions that have properties of color, size, absolute and
relative locations, which includes cases of special rela-
tions between regions. Finally in section 6, we provide
an evaluation and present some examples of querying by
joint color/spatial features.

2http://www.itnm.columbia.edu/VisualSEEk

2 COLOR SETS AND BACK-PROJECTION

Color sets provide a compact alternative to color his-
tograms for representing color information. Their uti-
lization stems from the conjecture that salient regions
have not more than a few, equally prominent colors. The
following paragraphs de�ne color sets and explain their
relationship to color histograms.

Color Sets

A key issue in de�ning the color representation is the
choice of color space and how it is partitioned. Three
dimensions of color can be de�ned and measured. For
example, each image point can be represented as a 3-D
vector v̂c = (r; g; b) in the RGB color space. The trans-
formation Tc and quantization QM

c of the RGB color
space reorganizes and groups the vectors v̂c. Perceptu-
ally distinct colors correspond to the sets of vectors that
are mapped to di�erent indicesm as diagrammed in Fig-
ure 4. Color sets are de�ned as follows: let BMc be the
M dimensional binary space such that each axis in BMc
corresponds to one unique index value m. A color set is
a binary vector in BMc which corresponds to a selection
of colors fmg.

Tc
Qc

M B c
M

v̂c ŵc h m[ ]

c m[ ]ch 0

ch 1

ch 2

ch 0

ch 1

ch 2

Figure 4: Generation of the binary color space from
color channels, color space transformation Tc, quan-
tization QM

c , histograms h[m], and color sets c[m].

Color Set Example

For example, let Tc transform RGB to HSV and let
QM
c where M = 8 quantize the HSV color space to 2

hues, 2 saturations and 2 values. The quantizer QM
c

assigns a unique index m to each quantized HSV color.
Then, B8c is the eight dimensional binary space whereby
each element in B8c corresponds to one of the quantized
HSV colors. A color set c contains a selection from the
eight colors. If the color set corresponds to a unit length
binary vector, then one color is selected. If a color set



has more than one non-zero value, then several colors
are selected. For example, the color set c = [10010100]
corresponds to the selection of three colors, m = 0;m =
3 and m = 5, from the quantized HSV color space.

For implementation in VisualSEEk, we choose Tc to
transform RGB to the HSV color space because HSV
provides a breakdown of color into its most natural com-
ponents: hue, saturation and intensity. We choose QM

c ,
as illustrated in Figure 5, to quantize HSV into M =
166 colors [13].

v̂c r g b, ,( )=

R

G

B

S

V

H

ŵc Tc v̂c⋅=

r

g

b

ŵc h s v, ,( )=

Figure 5: Transformation Tc fromRGB toHSV and
quantization gives 18 hues, 3 saturations, 3 values
and 4 grays = 166 colors.

Color Set Back-Projection

We use a color set back-projection technique in order
to extract color regions. We brie
y describe the tech-
nique here and note that a more detailed presentation
appears in [13]. The back-projection process requires
several stages: color set selection, back-projection onto
the image, thresholding and labeling. Candidate color
sets are selected �rst with one color, then with two col-
ors, etc., until the salient regions extracted.

The back-projection of a color set is accomplished as
follows: given image I[x; y] and color set c, let k be the
index of the color at image point I[x; y], then generate
image B[x; y] by

B[x; y] = c[k]; binary back-projection: (1)

That is, B[x; y] depicts the back-projection of color set
c. In order to accommodate color similarity in the back-
projection process, a correlated back-projection image
can be generated by

B[x; y] = max
j=0:::M�1

(Aj;kc[j]); correl. back-projection;

(2)
where Aj;k measures the similarity of colors j and k,
which will be discussed in the next section. After back-
projecting the model color set, image B[x; y] is �ltered
and analyzed to reveal spatially localized color regions.
The process and back-projection results are illustrated
for an example image in Figure 6.

Information about the regions such as the color set used
for back-projection, the spatial location and size are
added to the REGION relation (see Table 1) and are
subsequently used for queries as explained in the next
sections. While color set selection and back-projection
provides one automated technique for extracting salient

back-projection result
model color set

target image filtered back-projection image

back-projection

Figure 6: Example back-projection using model color
set at top left to extract color region from a target
image.

color regions from the images, other methods can easily
be incorporated into our system. For example, manually
extracted regions and their features can also be added
to the REGION relation.

IMID REGID c x y area w h

0001 0001 [01 : : :0] 18 63 430 30 15
0001 0002 [11 : : :1] 34 45 968 65 32
0002 0001 [00 : : :1] 76 54 780 53 42
0003 0001 [11 : : :0] 55 12 654 43 55

Table 1: The REGION relation with attributes for
color set c, region centroid (x; y), region size area
and width and height (w; h) of the minimum bound-
ing rectangle (MBR).

3 COLOR QUERY

We �rst describe the procedure for computing the simi-
larity of colors and color distributions. Then we describe
the process of indexing and querying by color.

3.1 Color Similarity

In order to match color regions, we need a measure for
the similarity of colors, i.e., pink is more similar to red
than blue. We base the measurement of color simi-
larity on the closeness in the HSV color space as fol-
lows: the similarity between any two colors, indexed by
mi = (hi; si; vi) and mj = (hj ; sj; vj), is given by

ai;j = 1� 1=
p
5[ (vi � vj)2+

(si cos hi � sj coshj)2+

(si sinhi � sj sinhj)2] 12
(3)

which corresponds to the proximity in the cylindrical
HSV color space depicted in Figure 5. The measure
of color similarity, ai;j, is used within the computation
of the distance between color distributions as described
next.

Color Histograms

A distribution of colors is de�ned by a color histogram.
By transforming the three color channels of image I[x; y]
using transformation Tc and quantizationQM

c as de�ned
in Section 2, where (v̂c)xy = (IA[x; y]; IB[x; y]; IC[x; y]),
the single variable color histogram is given by, where X



and Y are the width and height of the image, respec-
tively, which are used for normalization,

h[m] =
1

XY

X
x2X

X
y2Y

�
1 if QM

c Tc(v̂c)xy = m
0 otherwise.

(4)

Histogram Distance

The most common dissimilarity measures for feature
vectors are based upon the Minkowski metric, which
has the following form, where hq and ht are the query
and target feature vectors, respectively,

drq;t = (
M�1X
m=0

jhq[m]� ht[m]jr)1=r: (5)

For example, both the L1, (r = 1) [1], and L2, (r = 2),
metrics have been used for measuring dissimilarity of
histograms. However, histogram dissimilarity measures
based upon the Minkowski metric neglect to compare
similar colors in the computation of dissimilarity. For
example, using a Minkowski metric, a dark red image is
equally dissimilar to a red image as to a blue image. By
using color similaritymeasures within the distance com-
putation, a quadratic metric improves histogrammatch-
ing.

Histogram Quadratic Distance

The QBIC project uses the histogram quadratic dis-
tance metric for matching images [3]. It measures the
weighted similarity between histograms which provides
more desirable results than \like-bin" only comparisons.
The quadratic distance between histograms hq and ht

is given by

dhistq;t = (hq � ht)tA(hq � ht); (6)

where A = [ai;j] and ai;j denotes the similarity between
colors with indices i and j. By de�ning color similarity
in HSV color space, ai;j is given by Eq. 3. Since the
histogram quadratic distance computes the cross simi-
larity between colors, it is computationally expensive.
Therefore, in large database applications, histogram in-
dexing strategies, such as pre-�ltering [5], are required
to avoid exhaustive search.

Color Sets

Alternatively, we utilize color sets to represent color in-
formation. The distinction is that color sets give only
a selection of colors, whereas, color histograms denote
the relative amounts of colors. Although we use the
above system for color set selection in order to extract
regions, we note here that color sets can also be ob-
tained by thresholding color histograms. For example,
given threshold �m for color m, color sets are related to
color histograms by

c[m] =

�
1 if h[m] � �m
0 otherwise: (7)

Color sets work well to represent regional color since (1)
Tc and Q

M
c have been derived to give a complete set of

distinct colors and (2) salient regions possess only a few,
equally dominant colors [13].

Color Set Distance

We use a modi�cation of the color histogram quadratic
distance equation (Eq. 6) to measure the distance be-
tween color sets. The quadratic distance between two
color sets cq and ct is given by

dsetq;t = (cq � ct)tA(cq � ct); (8)

Considering the binary nature of the color sets, the com-
putational complexity of the quadratic distance function
can be reduced. We decompose the color set quadratic
formula to provide for a more e�cient computation and
indexing. By de�ning �q = c

t
qAcq , �t = c

t
tAct and

rt = Act, the color set quadratic distance is given as

dsetq;t = �q + �t � 2ctqrt: (9)

Since cq is a binary vector,

dsetq;t � �q = �t � 2
X

8m where cq [m]=1

rt[m]: (10)

That is, any query for the most similar color set to cq
may be easily processed by accessing individually�t and
rt[m]'s, where m 2 0 : : :M � 1, see Table 2. As such, �t
and rt[m]'s are precomputed, stored and indexed indi-
vidually. Notice also that �q is a constant of the query.
The closest color set, ct, to cq is the one that minimizes
�t � 2

P
8m where cq [m]=1 rt[m].

IMID REGID �� r[0]� r[1]� : : : r[M � 1]�

Table 2: The COLORSET relation with attributes for
the decomposed quadratic distance equation param-
eters �t and rt[m]'s. Denotation by � indicates that
a secondary index is built on the attribute in order to
allow range queries to be performed on that attribute.

3.2 Color Set Query Strategy
We now de�ne the strategy for processing the color set
queries, which is an important building block in the
overall image query process. The color set query com-
pares only the color content of regions or images. Spatial
queries are considered in the next section. Given query
Q = fcqg, the best match to Q is target Tj = fctjg,
where,

j = argminj(d
set
q;tj )

= argminj(�tj � 2
P

8m where cq [m]=1
rtj [m]):

A straightforward way to process the query is to com-
pute dsetq;tj exhaustively for all j using Eq. 10. In this

case, the computation of dsetq;tj
requires M 0+ 1 additions

per target and no multiplications, where M 0 is the num-
ber of non-zero colors in cq . This provides for drastic im-
provement over the original histogram quadratic form.



The complexity of this approach, where M = size of
color set (histogram) and N = number of images in the
database, is O((M 0+ 1)N ), where M 0 << M , gives the
number of non-zero colors in the query color set. Com-
pare this to a naive computation of quadratic histogram
distance, which is O(M2N ). In QBIC, the computation
is reduced by the technique in [5] to O(M2C +M 00N ),
where typically, M 00 = 3, and C << N . We note that
the technique in [5] can be combined with the color set
technique to further reduce complexity.

Given the query color set: �nd the best match to color set
cq , where d

set
q;t � � c de�nes the maximum tolerance for

color set distance, the following range queries produce
the best match:

MU  Select �t from COLORSET where

�t � � c � �q
COLm  Select rt[m] from COLORSET where

rt[m] � �q+�t��
c

2
;

8m where cq [m] = 1
CAND  MU \IMID COLi \IMID COLj \IMID � � �

\IMIDCOLk
MATCH  mindsetq;t

(CAND); (Eq: 10):

As this query strategy illustrates, color region matching
is accomplished by performing several range queries on
the query color set's colors, taking the intersection of
these lists and minimizing the sum of attributes in the
intersection list. The best match minimizes the color set
distance. Since this strategy merely provides e�cient in-
dexing of the terms in the decomposed quadratic color
set distance equation, the query strategy provides for no
false dismissals. The �nal candidate image list has false
alarms which are removed through the �nal minimiza-
tion which requires only additions in the computation
of dsetq;t . Using a similar indexing strategy for retrieving
images using color histograms in a database of 750; 000
images, the computation of the 60 best matches takes
less than two seconds [16].

4 SINGLE REGION QUERY
The color set query strategy provides for comparison be-
tween the colors of images or regions. Now we consider
in addition the spatial distances between the regions.

4.1 Region Absolute Location
In specifying spatial properties of the individual regions
in the query, we provide for indexing of region centroids
and minimum bounding rectangles.

Fixed Query Location

The spatial distance between regions is given by the eu-
clidean distance of centroids as illustrated in Figure 7(a).

dsq;t = [(xq � xt)
2 + (yq � yt)2] 12 : (11)

Bounded Query Location

We also give the user 
exibility in designating the spa-
tial bounds for each region in the query within which

xq

yq
xtyt

dq t,
s

t

q xq

yq

xt1yt1

dq t, 1

s'
dq t1,

s
=

R
xy

xt0

yt0

dq t0,
s'

0=

t1

q

t0

(a) (b)

Figure 7: Region spatial distance (a) �xed spatial

distance dsq;t, (b) bounded spatial distance ds
0

q;t, where

Rxy determines the valid spatial bounds.

a target region is assigned a spatial distance of zero.
When a target region falls outside of the spatial bounds
the spatial distance is given by the euclidean distance
as illustrated in Figure 7(b). This is useful in many
situations when the user does not care about the exact
position of matched regions as long as they fall within
a designated area.

ds
0

q;t =

�
0 if (xt; yt) 2 Rxy

dsq;t otherwise. (12)

(a) (b)

Figure 8: (a) spatial quad-tree indexes region cen-
troids, (b) r-tree indexes region MBRs (rectangles).

Centroid Location Spatial Access { Spatial Quad-trees

The centroids of the image regions are indexed using a
spatial quad-tree on their x and y values as illustrated in
Figure 8(a). The quad-tree provides quick access to 2-D
data points [7]. A query for region at location (xt; yt) is
processed by �rst traversing the spatial quad-tree to the
containing node, then exhaustively searching the block
for the points that minimize dsq;t. In the case that the
user speci�es a bounded spatial query, a range of blocks
are evaluated such that points within the spatial bounds
are all assigned ds

0

q;t = 0.

Rectangle Location Spatial Access { R-trees

Since the spatial locations of extracted image regions are
not su�ciently represented by centroid locations alone,
we also index the region spatial locations by their min-
imum bounding rectangles (MBRs). The MBR is the
smallest vertically aligned rectangle that completely en-
closes the region. For example, Figure 1(c) illustrates
the MBRs for some image regions. In this way, a spa-
tial query may specify a search rectangle and the target



regions are found that overlap with it spatially. The
MBRs of the regions are indexed using an r-tree as il-
lustrated in Figure 8(b). The r-tree provides a dynamic
structure for indexing k�D rectangles [17], here k = 2.
The r-tree, which consists of a hierarchy of overlapping
spatial nodes, is designed to visit only a small number
of nodes in a spatial search.

4.2 Size

Another important perceptual dimension of the regions
is their size in terms of area and spatial extent.

Area

The distance in area between two regions is given by the
absolute distance

daq;t = jareaq � areatj: (13)

Spatial Extent

The width and the height of the MBRs provide for useful
comparison of region spatial extents. It is much simpler
than shape information, which we do not utilize in the
system, and provides excellent grounds for discriminat-
ing regions. The distance in MBR width (w) and height
(h) between two regions is given by

dmq;t = [(wq �wt)
2 + (hq � ht)2] 12 : (14)

4.3 Single Region Query Strategy

Integrating these approaches, the overall region query
strategy consists of computing individual queries on color
set, region location, area and spatial extent, as speci�ed
by the user. The process is summarized in Figure 9.

The single region distance is given by the weighted sum
of the color set (Eq. 10), location (Eq. 11), area (Eq.
13) and spatial extent (Eq. 14) distances. The user
may also assign a relative weighting �n to each of these
attributes of each region. For example, the user may
weight the size parameter more heavily than color and
location in the query. The overall single region query
distance is given by

dq;t = �cd
set
q;t + �sd

s
q;t + �ad

a
q;t + �md

m
q;t: (15)

We now outline the strategy for processing the joint
color, absolute location and size queries for a single re-
gion. For example, given the single region query: �nd
the region that best matches Q = fcq; (xq; yq); areaq;
(wq; hq)g, the query is processed by �rst computing the
individual queries for color, location, size and spatial ex-
tent. The intersection of the region match lists is then
computed to obtain the set of common images; the best
match minimizes the total distance. Here, Bxy , Axy and
Bwh are the search thresholds for location, area and spa-
tial extent, respectively, which are set by the system or
by the user.

Query
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Figure 9: Overall strategy for a single region query
with parameters of color set, location, area and spa-
tial extent.

COLOR  Color Set Query(cq)
LOC  Select (xt; yt) from REGION where

(xt; yt) 2 Bxy

SIZE  Select area from REGION where

areat 2 Axy

MBR  Select (wt; ht) from REGION where

(wt; ht) 2 Bwh

CAND  COLOR\IMID LOC \IMID SIZE\IMID MBR

MATCH  mindq;t(CAND); (Eq: 15):

5 MULTIPLE REGIONS QUERY

The overall image query strategy consists of joining the
queries on the individual regions in the query image.
The join, which consists of intersecting the results of
region matches, identi�es the candidate target images
which contain matches to all the query regions. For
these images, the image match score is computed by
adding the weighted scores from the best regions matches.
In the �nal stage, the relative spatial locations, that may
have been speci�ed in the query are evaluated to deter-
mine the best match image that satis�es the constraints
of relative region placement. The image match process
is illustrated in Figure 10. By specifying multiple re-
gions in the query without any spatial relations between
regions the complexity increases only linearly with the
number of query regions.

Region
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Query

Image
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B
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A
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Image Score

qA qB qC∩ ∩

dqA tij,

dqB tij,

dqC tij,

dQ Ti,
match

Region

Query
A

Figure 10: Overall strategy for computing image
matches to a query image with several regions by com-
bining individual regions queries.



5.1 Multiple Regions Query Strategy { Absolute Locations
For each region in the query positioned by absolute loca-
tion, the query strategy outlined for single region query
(Section 4.3) is carried out, without computing the �-
nal minimization. These lists are intersected and the
best image match minimizes the combined region dis-
tance. For example, given the multiple region query:
�nd the image having three regions that best matches
Q = fQA; QB; QCg, where Qi = fciq; (xiq ; yiq); areaiq;
(wi

q; h
i
q)g gives the query parameters for query region i,

the matches are found as follows:

REGA  Single Region Query(QA)
REGB  Single Region Query(QB)
REGC  Single Region Query(QC)
CAND  REGA \IMID REGB \IMID REGC
MATCH  min�0dQA;T+�1dQB;T+�2dQC;T

(CAND):

The query is processed by intersecting the query region
lists to obtain the list of candidate images. The best
match minimizes the weighted sum of the region dis-
tances between the query and target image.

5.2 Region Relative Location
Querying by absolute locations cannot be easily extended
to include relative locations of regions. For example, for
a target with L regions and a query image with K re-
gions, there are L!=((L�K)!K!) possible matches, each
of which requires a distance computation. For example,
L = 20 and K = 3 requires 1; 140 comparisons. To cir-
cumvent this exhaustive search, we utilize a convenient
representation of image spatial relationships and their
comparisons based upon 2-D strings [6].
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Figure 11: 2-D string representation of spatial rela-
tionships (a) un-rotated 2-D string, (b) rotated pro-
jection.

The 2-D string represents spatial relationships as illus-
trated in Figure 11(a). The 2-D string is a symbolic pro-
jection of the image along the x and y directions [18].
For example, the 2-D string for the image in Figure 11(a)
is given as (t0t1 < t2 < t7 < t3 < t6 < t4 < t5; t0 <
t5t7 < t6 < t2 < t3t1 < t4), where the symbol '<'
denotes the left-right or bottom-top relation. Using 2-
D strings, the match complexity is reduced to approx-
imately O(L3=K) per target image. Since we evaluate
spatial relationships only at the �nal stage of the query,
the complexity is further reduced to O(L03=K), where
L0 is the number of candidate regions in a target image,
and L0 < L and L0 ' K.

5.3 Special Spatial Relations

We are currently implementing several spatial relations
that are of particular interest such as region adjacency,
nearness, overlap and surround. These examples of spa-
tial reasoning can be inferred from the 2-D string [18].
Scale invariance is also provided in the 2-D string, but
rotation invariance is not.

Adjacency, Nearness, Overlap and Surround

The adjacency of regions is resolved from the 2-D string
by determining whether or not other regions exist be-
tween two candidate regions. The nearness of regions is
resolved using adjacency in the 2-D string, but since the
2-D string provides no metric information, it requires an
additional computation of the region distance. Since the
2-D string captures the orthogonal relations of the re-
gions in the image, conditions of overlap and surround
can also be determined [18]. Overlapping regions require
not only the determination of nearness but also require
the evaluation of the intersection of the MBRs of the
regions. The case of surround is determined by unify-
ing sub-goal queries that evaluate regions to the north,
south, east and west of the surrounded-by region.

Spatial Invariance

Under certain conditions the user may desire invariance
in scaling and/or rotation. The 2-D string provides scale
invariance since a change in scale does not change the
order of symbols in the string. However, rotation in-
variance is not provided in the 2-D string. Therefore,
we approximate rotation invariance around the image
center point by providing two projections of each im-
age, one normal projection, and another based upon a
rotation by 45 degrees.

A C
B A

C
B

A

C
B

(a) (b) (c)

Figure 12: 2-D strings rotation invariance (a) 0�

(A < C < B;ABC), (b) 90� (ABC;A < C < B),
(c) 45� (A < C < B;ABC) with projection onto
the rotated axis.

In this case, the rotated 2-D string is extracted by the
projection onto the diagonals of the image as illustrated
in Figure 11(b). Image rotation by 90� is provided by
swapping the x and y projections as illustrated in Fig-
ure 12(a) and (b). Rotation by 45� is detected in the
rotated 2-D string as illustrated in Figure 12(a) and (c).
Other arbitrary rotations are approximated by either
the 2-D string or the rotated 2-D string.

5.4 Multiple Regions Query Strategy { Relative Locations

The resolution of the relative spatial locations is per-
formed in the �nal stage. For the regions positioned
in the query by absolute locations, the location queries
from Section 5.1 are performed. For the regions posi-
tioned in the query by relative locations, queries on all



attributes except location are performed. Then the in-
tersection of the region lists is performed to identify and
score candidate target images.

For each candidate image, the 2-D string is generated
from the identi�ed regions and is compared to the 2-D
string of the query image. This �nal operation either
validates the target image or rejects it. Therefore, after
the �nal stage, all false alarms from the earlier stages
are removed.

6 QUERY EVALUATION

We now present some example color/spatial queries and
provide some initial evaluations.

Query Formulation

The joint color/spatial queries are formulated graphi-
cally by using the VisualSEEk user tools as illustrated
in Figure 13. The user sketches regions, positions them
on the query grid and assigns them properties of color,
size and absolute location. The user may also assign
boundaries for location and size.

Figure 13: VisualSEEk user interface

Unconstrained Image Queries We illustrate the power
and 
exibility of the VisualSEEk query system over non-
spatial techniques in Figure 14. In Figure 14(a) (top
left), a VisualSEEk query is diagrammed that speci�es
two regions (outer is orange and inner is yellow) and
their spatial layout with the goal of retrieving images
of sunsets. The best matches to the color/spatial query
(left) have a similar arrangement of similarly colored re-
gions. In Figure 14(b), a typical sunset image is used
(top right), and the best matches (right) are found that
have the most similar color histograms to the query im-
age. We see that the global color histogram query pro-
cess gives the user little control in specifying the query
and more readily returns images that are not desired.

(a) (b)

Figure 14: Sample \sunset" queries (a) VisualSEEk
query using diagrammed query at top left, (b) color
histogram query using query image at top right. Best
matches are listed from top to bottom.

In Figure 15(a) (top left), a VisualSEEk query is dia-
grammed that speci�es three regions (from top to bot-
tom: light blue, tan and green) and their spatial layout.
The best matches to the query have a similar arrange-
ment of the three colored regions. In Figure 15(b), the
�rst VisualSEEk image match is used (top right = sec-
ond left). The best matches are found that have the
most similar color histograms to the query image. We
see that the color histogram matches have little simi-
larity to the regions in the query image. We note that
for the color/spatial queries in Figure 14(a) and Fig-
ure 15(a), the query response time is approximately 1-2
seconds.

Synthetic Image Queries To test the color/spatial query
system, we generated 500 synthetic images by selecting,
manipulating and compositing single color regions into
the synthetic images. Some examples are illustrated in
Figure 16. While the synthetic images appear quite dif-
ferent from real images, the composition of regions is
still di�cult to decipher. For example, in the images
in Figure 16 (bottom), the original composited regions
cannot be extracted exactly because of occlusion and
aggregation of the regions.

The region library consists of twelve elementary shapes,
illustrated at the top of Figure 17. To construct each
synthetic image, shapes were selected at random from
the library, and were randomly rotated, scaled, colored
and composited, as illustrated in Figure 17. The control
factors, such as color, size, and location of regions, were
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green
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Figure 15: Sample \nature" queries (a) VisualSEEk
query using diagrammed query at top left, (b) Color
histogram query using query image at top right. Best
matches are listed from top to bottom.

used to establish a ground truth database.

The synthetic image query experiment was conducted
as follows: 100 synthetic query images were generated,
which have from one to three randomly selected regions
in each, i.e., see Figure 16 (top); 500 target images were
generated as described above, i.e., see Figure 16 (bot-
tom). For each query image, all of the target images
were assigned a similarity score using the ground truth
database and using an exhaustive comparison and dis-
tance minimization over all query and target regions
(Query GT). The target images from each Query GT
were sorted by closest distance to the query image. The
target images were assigned a relevance to each query
based upon rank in the sorted list as follows: if rank = 1
to 5, relevance = 1; if rank = 6 to 10, relevance = 0:5;
if rank = 11 to 500, relevance = 0.

Using the target image relevances obtained from Query
GT, the queries were next evaluated using several meth-
ods and compared to the Query GT. In Query Q1, the
region indexing and distance computation strategy out-
lined in the paper was carried out on the ground truth
database. In Query Q2, the same query strategy was
carried out on a region database that was generated au-
tomatically from the target images using color set back-
projection. Finally, In Query Q3, the combined color
histogram of the query regions was matched to the com-

Figure 16: Examples of the synthetic images, query
images (top), target images (bottom), used for eval-
uating the joint color/spatial query system.
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Figure 17: Generation of synthetic images and ground
truth database and process for evaluating e�ective-
ness of joint color/spatial queries.

bined region color histogram of each target image as the
basis for image retrieval.

We see in Figure 18 that the color/spatial query strat-
egy (Query Q2) performs much better than color his-
tograms (Query Q3) in retrieving image matches. We
also see that Query Q1 performs better than Query Q2.
The di�erence represents the loss of information in the
process of automated region extraction through color set
back-projection. Furthermore, the drop in retrieval ef-
fectiveness in Queries Q1 and Q2 from the ground truth
Query GT results from the color/spatial indexing strate-
gies.

In computing the similarity between the query and tar-
get images in Query GT, all regions in the target are
considered. In this way, some target images are identi-
�ed as matches even when only two out of three regions
are close matches. These con�gurations are considered
only because Query GT conducts an exhaustive search
on all target regions. In the indexing strategy outlined



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q3

Q2

Q1

GT

Retrieval Effectiveness (synthetic images)

Recall

P
re

ci
si

on

Figure 18: Average retrieval e�ectiveness of 100 ran-
domly generated queries on database of synthetic im-
ages, with the four query methods de�ned as above.

in the paper, candidate target images are required to
possess regions which are all su�ciently close to the
query regions. This restriction, which allows the gain
in retrieval e�ciency over exhaustive search, explains
the retrieval e�ectiveness drop compared to Query GT.

Evaluation of Color Sets

In order to evaluate the impact of the loss of information
in using color sets instead of color histograms, we com-
pared their performance in retrieving images by global
color content. This experiment does not evaluate the
color/spatial query system, rather, it compares color
sets directly to color histograms.
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Figure 19: Retrieval of 83 lion images from a database
of 3; 100 images: D1 = color histogram quadratic
distance, D2 = color set quadratic distance.

In an image database of 3; 100 images, we measured the
ability of color sets and color histograms to retrieve the
83 images of lions using an example lion image. Fig-
ure 19 depicts the retrieval e�ectivenesses in the retrieval
of images of lions. The experiment shows that retrieval
e�ectiveness degrades only slightly using color sets and
the quadratic distance measure (Eq. 10) compared to
color histograms using the quadratic distance measure
(Eq. 6). This indicates that the perceptually signi�cant
color information is retained in the color sets.

Example VisualSEEk Queries

We now illustrate the range of color/spatial queries that
are possible in VisualSEEk. In the �rst example, see
Figure 20(a), the query (top) speci�es the absolute lo-
cation of a single region. The retrieved image (bottom)
has the best match in color and size to the query region
and falls within the \zero-distance" bound diagrammed
in the query. In Figure 20(b), the query speci�es two re-
gions. The retrieved image has two color match regions
located at the positions in the query image. In Fig-
ure 20(c), the query speci�es the spatial relationships
of three regions. The retrieved image has three regions
that best match the colors of the query regions and their
spatial relationship satis�es that speci�ed in the query.
In Figure 20(d), the query speci�es both absolute and
relative locations of regions. In this query, the match
to the region positioned by absolute location (top left
region in query image) considers both the color and lo-
cation of this region. The match to the other regions
(bottom two regions in query image) at �rst considers
only the colors of these regions. In the last stage of the
query, the spatial relationships of the regions are evalu-
ated to determine the match.

7 SUMMARY AND FUTURE WORK

We presented a new image database system which pro-
vides for color/spatial querying. Since, the discrimina-
tion of images is only partly provided by global fea-
tures such as color histograms, the VisualSEEk system
instead utilizes salient image regions and their colors,
sizes, spatial locations, and relationships, in order to
compare images. The integration of content-based and
spatial querying provides for a highly functional query
system which allows for wide variety of color/spatial
queries. We presented the strategies utilized by the Vi-
sualSEEk system for computing these complex queries
and presented some preliminary results that indicate the
system's e�ciency and power. We will next extend the
VisualSEEk system to extract and index regions of tex-
ture, and color and texture jointly [14]. We will also
investigate and include methods for shape comparison
in order to further enhance the image region query sys-
tem.
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