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Abstract

We present a technique for lossy image compression based on the joint-adaptive space and frequency decomposition of images.
The algorithm adapts to image content by both developing wavelet packet bases for separate areas of the image and by segmenting
image subbands as needed. The elements of the expansion are a two-channel �lter bank and a complete and disjoint binary
segmentation system. We construct the joint space and frequency library by cascading permutations of these elements. We also
formulate the space and frequency operations to be commutative, which allows for the full cascade system to be organized into a
graph. After the full expansion, a coding cost is assigned to all elements in the library. The best joint space and frequency basis is
found by pruning the graph which indexes the library such that the embedded graph with least cost is found. Its terminal nodes
correspond to the best complete basis. We show that encoding the image in its best joint space and frequency basis improves
compression performance.
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I. Introduction

T
H e transformation of image data is of critical importance in applications of image compression, feature extraction
and noise reduction. It provides an organization of image data by which the data can be better analyzed, prioritized,

quantized and/or discarded. In general, the choice of signal expansion provides a fundamental limitation within these
applications. For example, the rate-distortion performance of the compression of an image using the JPEG algorithm is
governed by the ability of the Discrete Cosine Transform (DCT) to decorrelate the image data. For some images, such as
those with textured regions, the correlation between pixels may be low. In these cases, the DCT does not provide the best
organization of the image data. The suitability of a particular transformation depends on the signal characteristics. In
spite of the de�ciencies of non-adaptive transforms, typically, the selection of the signal expansion is made non-adaptively
to the image signal.
In this paper we present an image compression system which includes the adaptive selection of the signal expansion.

We describe in detail the design and implementation of the system. We also propose a novel approach for the e�cient
expansion of an image into a joint space and spatial-frequency (s/s-f) library from which the best basis is selected. The
expansion is produced by cascading permutations of two fundamental elements: (1) two-channel �lter bank, and (2)
binary segmentation. Since these operations are commutative, we organize the cascade system into a graph. The best
joint space and frequency basis is found from the library by pruning the graph such that the minimum cost embedded
graph is found.

A. Applications

The most common signal expansions are produced by linear transforms and �lter banks. The existence of fast algorithms
and hardware for their implementation makes them extremely viable for practical systems. Some applications, such as
real-time video coding, necessitate low complexity at both the encoder and decoder. These applications allow for little
adaptivity in the signal expansion. As a consequence, �xed transforms such as the DCT have become most common for
image and video compression.
However, there are many new applications that support an asymmetric model for coding whereby the objectives at the

encoder and the decoder di�er greatly. For example, in digital image and video libraries the data is typically encoded once
{ o�-line, and is stored. Real-time compression is not required and the encoder does not need to be of low complexity.
The compressed data may be retrieved later for purposes of analysis, decompression and viewing. This requires that the
encoded images and videos are still quickly and cheaply decompressed and possibly analyzed directly in the compressed
domain. In general, digital and image libraries require new and e�cient compression systems that jointly (1) decrease
the code size, (2) lower the visible distortion, and (3) improve access to visual content and image features [Pic94]. Given
these new applications, it is worthwhile to investigate new procedures for the adaptive decomposition of images in the
design of image compression systems.

This work was supported in part by the National Science Foundation under a CAREER award (IRI-9501266), and sponsors of the ADVENT
project of Columbia University.
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Recently new algorithms have been proposed for adaptive transformation of images. The purpose is to derive a
transform or �lter bank that is customized to each image. However, it must be done in such a way that the overhead
from the representation of the basis does not o�-set the bit reduction attained by encoding the data in the new basis.

B. Wavelet Packets

An algorithm for adaptive selection of the best frequency, or wavelet packet basis was proposed by Coifman, Quake,
Meyer and Wickerhauser [CMQW90]. The wavelet packet algorithm generates a library of orthonormal functions that
are derived from a single �lter kernel. The wavelet packet algorithm searches through the library to �nd the least
cost basis which also provides the best compression. By using a �lter bank the wavelet packet library is produced
by cascading �ltering and downsampling operations in a tree-structure. The tree also guides the search for best ba-
sis [CMQW90][Wic90][RV93]. But an important drawback of wavelet packets is that the decomposition is performed
on the entire image or on �xed blocks of the image. Wavelet packets do not adapt to variations in content across the
separate regions of the image or to non-stationarity.

C. Double Tree

To address the problem of non-stationarity, the double tree algorithmwas proposed by Herley, Kova�cevi�c, Ramchandran
and Vetterli [HKRV93]. The double tree �nds the best wavelet packet basis for a hierarchy of binary segmentations of
the signal. The overall basis search identi�es the most e�cient dyadic segmentation and corresponding wavelet packet
expansions for the segments. However, the double tree does not exploit the full potential of the joint space and frequency
library. The insu�ciency results from the asymmetric treatment of the space and frequency operations in the tree cascade.
We will show that image compression performance improves when the basis search uses a graph to better exploit the
space and frequency library, rather than the double tree.

D. Space And Frequency Graph

We proposed an improvement of the double tree that treats the space and frequency operations symmetrically and
results in a graph structured cascade [SC95]. Both the double tree and its dual are embedded in the space and frequency
graph. The graph structured decomposition provides a more complete joint space and frequency expansion of the signal.
Using the same number of nodes as the double tree library, the space and frequency graph greatly increases the number
of accessible bases that represent the signal. The space and frequency graph will be described in more detail in the
following sections.

II. Image Compression System

In this section we describe the building blocks of the image compression system. To solve the problem of adaptively
compressing the image, we develop an optimization procedure that involves basis selection, quantization and lossless
encoding. As illustrated in Figure 1, the image compression system consists of three stages: (1) transform or �lter bank,
(2) quantization or lossy compression, and (3) lossless compression. The goal of the transform/�lter bank stage is to
re-organize the data such that the latter stages produce good compression. A non-adaptive image compression system
�xes the �rst stage such that its processing is not signal dependent, and thus the compression performance is tuned only
by the last two stages. For example, the JPEG image compression algorithm adjusts the quantization and run-encoding
of the transform data to meet the compression criteria.

A. Stage 1 { Basis Selection

Improved compression can be attained by selecting the transform adaptively to the signal. Some �xed signal bases are
supported by statistical image models. The justi�cations are as follows: (1) images generally have high pixel correlation
{ DCT decorrelates image data well, (2) images have most energy at low frequencies { the wavelet transform provides
increasing frequency resolution at lower frequencies, (3) images are non-stationary { block-based transforms compensate
for long-term non-stationarity. However, in many cases real images di�er signi�cantly from the models. As such, the
non-adaptive transforms provide only suboptimal organization of the image data. The incorporation of a basis selection
mechanism for the �rst stage improves the potential for compression in the system.

B. Stage 2 { Lossy Compression

Once the transform or subband coe�cients are generated, the goal of stage 2 is to discard and de-emphasize visually
insigni�cant information. This is achieved by quantizing the transform coe�cients. We use an e�cient procedure for
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Fig. 1. Image compression system: stage 1 { image joint expansion and segmentation; stage 2 { selection of quantizers q�
i
, and quantization

of signal expansion coe�cients; stage 3 { lossless encoding using run length encoding (rle) and entropy encoding.

obtaining the optimal subband quantizers. The fundamental idea is that when the subbands are encoded independently,
the quantizers should be selected such that all subbands operate at the same level of rate-distortion trade-o�. The
procedure for �nding jointly the optimal rate-distortion trade-o� and best basis was proposed by Ramchandran and
Vetterli [RV93]. We use the algorithm to �nd the best space and frequency basis and quantizers. We also use uniform
scalar quantizers for the DC subbands and deadzone scalar quantizers for other subbands. The deadzone quantizers work
very well in producing runs of zeros which are encoded e�ciently in the next stage [VK95].

C. Stage 3 { Lossless Compression

In stage 3 the quantized coe�cients are encoded losslessly. We use run length encoding and entropy encoding. The
goal of run length encoding is to encode the zeros jointly as they appear in runs. The direction of the scan inuences
the compression performance. Choices for scan direction include vertical, horizontal and zig-zag scan. Depending on
the dominant frequencies corresponding to a particular subband, one scan direction may be better suited for extracting
long runs of zeros. After run length encoding, the data is entropy encoded for which we use Hu�man coding. We note
that it is also possible to search for runs across subbands. This shows potential for improving both the lossy and the
lossless compression components. For example, a common device is the EOB codeword which is used to denote that all
data remaining in a scan is zero. It is used in both JPEG and the Wavelet Zero-Tree [Sha92] to terminate scans across
subbands. The technique is essential for attaining good performance in these image compression systems.

D. Image Compression Optimization

In the image compression system, the compression of images is treated as an optimization problem. The goal is to
encode the image using a minimum of bits that provide a minimum distortion in the reconstructed image. Each stage
of the image compression system may be optimized independently, which often leads to good, yet overall suboptimal
results. For example, Coifman and Wickerhauser [CW92] proposed an e�cient scheme for selection of the best wavelet
packet basis by minimizing information cost. However, an additional procedure would be needed to �nd the optimal
encoding within that basis given a total bit constraint. The simultaneous optimization over multiple stages can attain
better results. For example, Ramchandran and Vetterli's algorithm, which simultaneously �nds the best wavelet packet
basis and quantizers, shows more favorable results [RV93].

E. Overall Design

We formulate the compression of images as the following optimization problems: (1) joint optimization over all stages,
and (2) joint optimization over stages 1-2. In addition, we utilize a new and extensive library to provide the large number
of potential bases. The elementary building blocks of the adaptive image expansion are (1) the two-channel quadrature
mirror �lter bank (QMF) �lter bank, and (2) a disjoint and complete binary segmentation. Cascading permutations of
these two units produces the expansion of the image in space and spatial-frequency. The building blocks of the signal
expansion system are described in the next section.

III. Filter Bank

The expansion of the image into a set of basis functions is accomplished using a discrete-time �lter bank. A perfect
reconstruction �lter bank reproduces the image exactly. The QMF �lter bank provides nearly perfect reconstruction.
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The idea is to represent a signal using a set of orthonormal basis functions, f�kg such that,

x[n] =
X
k2Z

h�k; xi�k[n]; n 2 Z; where h�k[n]; �l[n]i = �[k � l] (1)

The two channel �lter bank is illustrated in Figure 2. It implements the orthonormal signal expansion when even shifts
of the analysis and synthesis �lters are related to the basis functions by,

h0[2k� n] = g0[n� 2k] = �2k[n];

h1[2k� n] = g1[n� 2k] = �2k+1[n]:

The output of the analysis section, Yi(z), where i = 0; 1, is given by,�
Y0(z2)
Y1(z2)

�
=

1

2

�
H0(z) H0(�z)
H1(z) H1(�z)

��
X(z)
X(�z)

�
(2)

Finally, the signal is reconstructed by synthesis �lters, Gi, using

~X(z) = G0(z)Y0(z
2) + G1(z)Y1(z

2):
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Fig. 2. Two channel �lter bank, analysis �lters Hi and synthesis �lters Gi reconstruct ~X = X.

A. Adaptive Filter Bank

Cascading the two channel �lter banks produces arbitrary �lter banks. The transfer function of the cascade of �lters
and downsamplers is given by,

Hr(z) =

Kr�1Y
k=0

HSr(k)(z
2k);

and is followed with downsampling by 2Kr , where Kr = depth of the cascade of path r and Sr(k) 2 f0; 1g is an indicator
function that selects the �lter, H0 or H1, at stage k in the �lter path.
Since the two-channel �lter bank implements an orthonormal signal expansion, the cascaded �lter bank also implements

an orthonormal expansion. In other words, the impulse response of �lters hr[n] and their appropriate shifts also form
an orthonormal basis for l2(z) [VK95]. The �lter bank may be used to construct an expansion adaptively to the signal
characteristics. However, in practice it is di�cult to determine the best �lter bank structure without �rst expanding
the signal. One solution is to over-expand the signal using a full cascade, and then choose the paths that gives the best
complete expansion. However, �nding the best spatial-frequency decomposition for an image still does not compensate
for non-stationarity. Images are inherently non-stationary signals. The wavelet packet algorithm adapts to the whole
image and not to di�erent regions as needed. Therefore, we extend the wavelet packet algorithm by including the next
building block of the joint image expansion { segmentation.

B. Segmentation

The complete and disjoint segmentation of a signal is de�ned as the Schur product of the signal with the rows of a
binary matrix, whereby each column in the matrix sums to exactly one. The segmentation operation is given by,

yk = Ik � x ! yk[n] = Ik[n]x[n]; k = 0 : : :K � 1 (3)

where Ik[n] 2 f0; 1g and yk is the segmented portion of x and K is the number of segments produced. When the set
fIkg is a complete and disjoint segmentation over the sequence of N samples it requires the following

Ik 2 B
N and

K�1[
k=0

Ik = 1 and

K�1\
k=0

Ik = 0 ()
K�1X
k=0

Ik[n] = 1;

where B is the set of binary numbers. The perfect reconstruction binary segmentation system is illustrated in Figure 3.
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Fig. 3. Two split segmentation system { segmentation and summation give perfect reconstruction when I 0
k
s are disjoint and complete.

C. Filter Bank with Segmentation

By cascading the �ltering and segmentation, the segmentation operator can be incorporated into the �lter bank in two
ways: (1) segmentation before analysis �ltering, and (2) segmentation after analysis �ltering. In practice, these are not
equivalent because the �ltering requires a border extension of the signal. Typically, with a rule-based border extension
such as periodic extension, the added border data di�er in the two cases. However, with the segmentations included in
the �lter bank, perfect reconstruction can still be maintained in both cases.

C.1 Case 1: Segmentation of Subbands (F ! S ! S�1 ! F�1)

Applying the complete set of segmentation functions fIkg to each of the outputs of the analysis section of the �lter
bank produces the segmentation of the subbands. Each of the subband segments, wlk[n] is obtained from

wlk[n] = Ik[n]yl[n]: (4)

Since the segmentation operation is invertible, the subbands can be reconstructed by summing the segments of each sub-
band. Therefore, the perfect reconstruction property of the �lter bank is maintained when the subbands are reconstructed
before synthesis �ltering.

C.2 Case 2: Segmentation Before Filtering (S ! F ! F�1! S�1)

Applying the segmentation before subband decomposition creates multiple �lter bank paths, one for each segment.
Since each of the two channel �ltering maintains perfect reconstruction of the segment, the overall system is perfect
reconstruction.

D. Filtering, Segmentation and Reconstruction (F ! S ! F�1! S�1)

Filtering and segmentation may be cascaded such that the orders within the analysis and synthesis cascades are
di�erent. This case do not guarantee that the perfect reconstruction property of the system is preserved unless careful
consideration is made for the border extension used for �ltering operations. But �rst, consider the �lter bank that
includes the segmentation of the subbands, as illustrated in Figure 4.

D.1 Cascade Filter Bank with Block Transform

In certain cases the �lter operations do not require border extension. For example, when F implements a block
transform, i.e., Haar �lter bank, border extension is not necessary. In this case, the overall system maintains perfect
reconstruction as follows: in the cascaded �lter bank, synthesis �ltering is applied to the segmented subbands, and the
outputs are summed to reconstruct the signal. The analysis section consists of the cascade F ! S where

yl[n] =
X
m2z

hl[2n�m]x[m] and wlk[n] = Ik[n]yl[n] = Ik[n]
X
m2z

hl[2n�m]x[m]:

The synthesis section, F�1 ! S�1, gives the reconstructed signal by

~x[n] =
X
m2z

1X
l=0

1X
k=0

gl[n� 2m]wlk[m] =
1X
l=0

X
m2z

gl[n� 2m]yl[m]
1X

k=0

Ik[m]:

Since
P1

k=0 Ik[n] = 1,

~x[n] =
1X
l=0

X
m2z

gl[n� 2m]yl[m]
Z
 ! ~X(z) = G0(z)Y0(z

2) + G1(z)Y1(z
2);
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which is the same expression for the two channel perfect reconstruction �lter bank shown previously. Therefore, a block
transform and segmentation cascade system preserves the perfect reconstruction property of the �lter bank.
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Fig. 4. Perfect reconstruction �lter bank incorporating segmentation of subbands, analysis �ltersHl, complete and disjoint indicator functions
Ik , and synthesis �lters Gj , where l; k; j 2 f0;1g.

D.2 Cascade Filter Bank with Arbitrary Filters

In the more general case, the �lters Hl and Gj have length M � 2. Since the signal input into each �lter is �nite,
say length N , the convolution produces an output signal of length L = M + N � 1. This increases the amount of signal
data, which is undesirable in the application of image compression. To alleviate this problem, a �nite length input signal
is extended at its borders by M=2� 1 data points, and the �lter output is truncated to N points [KV89]. To minimize
the distortion resulting from border extension, the same extension rule is used for both synthesis and analysis �ltering.
However, in the case of the �lter bank of Figure 4, each synthesis �ltering operation does not correspond to one analysis
�ltering operation. As a result, there is no simple solution for matching the synthesis and analysis border extension. For
example, in Figure 4, the extended data for W00 is di�erent from the extended data for the input X. Using the same
extension rule generates di�erent extended border data for W00 and X, which degrades the reconstruction property of
the �lter bank.

*

*

=

=
+

yl n[ ]

wl0 n[ ]

wl1 n[ ]

gj n[ ]

gj n[ ]

wl0 n[ ] ∗gj n[ ]

wl1 n[ ] ∗gj n[ ]

yl n[ ] ∗gj n[ ]

Fig. 5. Overlap-add method of signal convolution using independent convolution of sections of the signal.

Therefore, we propose an alternate solution for border extension for synthesis �ltering. This includes both matching
synthesis border extension to that of analysis �ltering and using border extension with zeros. The technique is related to
the overlap-add method of obtaining a linear convolution with an in�nite length signal [OS75][VK95]. Using overlap-add,
the signal is broken up into non-overlapping sections and each is extended at its borders with zeros. When each section is
�ltered, the output data expands by M �1, where M is the �lter length. The outputs of �ltering all the sections are then
realigned such that they overlap with neighboring sections by a total of M � 1 data points. By summing these sections
together, the e�ect of breaking the signal into segments before �ltering is eliminated. This is illustrated in Figure 5, and
is formulated as follows: let each segment of yl have only N nonzero points, then segment wlk can be expressed as,

wlk[n] =

�
yl[n] if kN � n � (k + 1)N � 1
0 otherwise

Then yl[n] is equal to the sum of the wlk[n]
0s and is given by yl[n] =

PK�1
k=0 wlk[n], for K segments. Then the convolution

of yl[n] with gj [n] is equal to the sum of the wlk[n] convolved with gj[n], as desired,

yl[n] � gj[n] =
K�1X
k=0

wlk[n] � gj[n]: (5)
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By using overlap-add in synthesis �ltering, the e�ect of segmenting the subbands is eliminated. However, since the
original input signal, x[n], is of �nite length, overlap-add is used only on segment wlk[n]

0s borders that correspond to
the interior of x[n]. When the border of a segment coincides with a border of the unsegmented signal, the extension is
matched to that used for analysis �ltering.

This completes the description of the building blocks of the adaptive signal expansion. The two-channel �lter bank is
used to produce the orthonormal signal expansion and the segmentation bank divides its input into non-overlapping and
complete sections. Filtering and segmentation can be arbitrarily cascaded in the analysis and synthesis systems. When
the overlap-add rule is used for synthesis, the cascade orders of the analysis and synthesis do not need to match in order
to maintain perfect reconstruction. This was shown for the two-channel �lter bank with binary segmentation system
above. Armed with these powerful operators, we now construct a system for the arbitrary and adaptive image expansion
that includes decomposition in both space and spatial-frequency.

IV. Tree and Graph Structured Decomposition

As mentioned above, the building blocks for the joint space and frequency decomposition consist of expansions using
the two-channel �lter bank and binary segmentation. Since we are developing the compression system for images, which
are 2-D signals, we note here that we augment these basic building blocks for image expansion. For spatial-frequency
decomposition, we utilize a 2-D signal, 4-channel �lter bank by cascading two 2-channel �lter banks and by transposing
�lter channel outputs. For segmentation, we utilize a quad-tree spatial segmentation by cascading binary segmentations
and by transposing the outputs of the segmentation operators. In other words, the 2-D �ltering and segmentation used
here are separable and composed of independent operations on the rows and columns of the image. In many of the
descriptions and illustrations that follow, a 1-D signal is shown for simplicity. However, the results apply directly to the
2-D image case when using the augmented building blocks. We now present high-level diagrams that describe the joint
signal expansion. The notation in Figure 6 is used to illustrate the joint expansions in space and spatial-frequency. As
shown in Figure 6, each straight-line in the high-level notation corresponds to a tree.
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Fig. 6. High-level notation for expansions (a) tree-structured �lter bank, (b) hierarchical segmentation.

A. Single Tree

By building the full cascade system for each class of operator, space and spatial-frequency respectively, a single tree
structured decomposition is obtained. The single trees can be grown to arbitrary depth, D � N log2N , where N is the
length of the signal. A single tree built from �lter bank units implements the tree-structured wavelet transform, while
the single tree built from the segmentation operators implements the quad-tree segmentation.

A.1 Tree-Structured Wavelet Transform

The tree-structured wavelet transform, or wavelet packet tree, is constructed by recursively passing the output of each
analysis �lter channel through another instance of the �lter bank. This is illustrated in Figure 6(a) and 7(a). The wavelet
packet tree has the advantage of attaining the complete hierarchy of segmentations in frequency. By selectively choosing
the frequency segments, the signal can usually be represented at lower storage cost than the original signal. The wavelet
packet compression produces its coding gain by choosing the frequency segmentation that best captures a frequency
spectrum that is not at. However, as mentioned, the frequency spectrum for the signal as a whole is analyzed. Wavelet
packets cannot compensate for or take advantage of signal nonstationarity.
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A.2 Quad-Tree Spatial Segmentation

The full quad-tree spatial segmentation is obtained by cascading the segmentation operations such that each segmenta-
tion output is again segmented completely. This is illustrated in Figure 6(b) and 7(b). The quad-tree segmentation can
be used to best compensate for image non-stationarity. By selectively choosing from the hierarchy of spatial segments,
the image can be represented at lower cost. For images quad-tree spatial segmentation does not have the same energy
packing ability as the �lter bank. However, many images have largely diverse content in di�erent spatial regions, and
the independent treatment of regions can provide some gain.

S S SF F F
8 64 2561 8 64 2561

(a) (b)

Fig. 7. Using notation above, (a) tree-structured wavelet transform or wavelet packet tree, (b) hierarchical segmentation.

B. Double Tree

The weaknesses of the single trees { the tree-structured wavelet transform and binary segmentation was �rst addressed
in [HKRV93]. The authors proposed a double tree which combines signal binary segmentation and wavelet packets. The
double tree consists of the complete hierarchy of dyadic segmentations and the full wavelet packet decomposition of each
segment. The double tree is illustrated in Figure 8(a). The diagram shows that the double tree does not segment any
of the frequency F nodes. In other words, the outputs of the �lter banks are not segmented spatially. This limits the
performance of the double tree. For example, since frequency decomposition provides much of the energy compaction,
branching from the root node towards the right, S, reduces the potential number of frequency iterations for the entire
signal.

C. Dual Double Tree

The dual of the double tree also combines segmentation and wavelet packets. The dual double tree is produced by �rst
growing a single wavelet packet tree followed by the full segmentation of all subbands. The dual double tree is illustrated
in Figure 8(b). Its implementation is less complex than the double tree since it requires fewer frequency operations.

F S

F F S

F F F S

SF

SSF

SSSF

(a) (b)

Fig. 8. (a) double tree, (b) dual double tree

D. Joint Adaptive Space and Frequency Tree

Both the double tree and the dual double tree provide an asymmetric treatment of space and frequency. As a result,
neither tree attains the full joint decomposition in space and frequency. In order to produce the full joint decomposition,
all nodes in the trees need both a frequency and segmentation branch. In other words, the outputs at each stage must be
split by frequency and by segmentation. This creates the much larger tree structure which is illustrated in Figure 9(a).
This full space and frequency tree combines both the double tree and the dual double tree into a single structure.

E. Space And Frequency Graph

By looking more closely at the series of branchings in the full space and frequency tree, Figure 9(b), we see that we
can reduce the tree into an equivalent graph structure [SC95]. The payo� comes from recognizing commutativity in
F and S branchings. As mentioned above, the �lter bank and segmentations may be arbitrarily cascaded and perfect
reconstruction is maintained even if the synthesis path has a di�erent order than the analysis path. This commutativity
is provided by using the overlap-add method in synthesis �ltering. This observation can be used to greatly reduce the
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Fig. 9. (a) full space and frequency decomposition tree, (b) Image joint space and frequency expansion.

size and complexity of the joint expansion. The full adaptive tree contains many redundant nodes. Since the output of
the S ! F cascade is equivalent to the output of the F ! S cascade, the data does not need to be produced twice.
As illustrated for the image in Figure 9(b), the set of children generated from the S ! F cascade is the same as that
in the F ! S cascade, but the order is di�erent. When the full adaptive tree is modi�ed to collect the redundant
nodes, the space and frequency graph structure is produced, see Figure 10(a). Inspection reveals that the double tree,
Figure 8(a), the dual double tree, Figure 8(b), and the space and frequency graph, Figure 10(a), have identical nodes,
but with di�erent connectivity. The space and frequency graph o�ers the maximum connectivity between nodes.
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F S F S F S F S

a
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e fd

F S

F S F S

F S F S F S
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F SFrequency resolution Spatial resolution
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resolution
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frequency
resolution

1 1

4 1 1 4

16 1 4 4 1 16

64 1 16 4 4 16 1 64

1 2564 6416 1664 4256 1

(a) (b)

Fig. 10. (a) space and frequency graph, (b) Space and frequency resolution trade-o� with graph depth.

V. Space and Frequency Library

The space and frequency graph provides a very convenient structure for the joint decomposition of the image in space
and spatial-frequency. It requires only the basic building blocks of a two-channel �lter bank and binary segmentation.
The graph is a natural mechanism for accessing and indexing the nodes in the joint expansion. But several interesting
questions remain, such as, can a more complete joint decomposition be found and what is the physical signi�cance to
each node in the graph? To answer these questions we analyze more closely the expansion produced by the space and
frequency graph.

A. Space and Frequency Resolution Trade-o�

As illustrated in Figures 10(b), the space and frequency graph explores the trade-o� in the joint resolution in space
and spatial-frequency. The data at each node of the graph corresponds to a particular spatial position and spatial-
frequency range. Fundamentally, the joint resolution is limited by the uncertainty principle, and is bounded by the
relations �2

x � �
2
u �

1
4� and �2

y � �
2
v �

1
4� where [�2

x;�
2
y] gives resolution in space and [�2

u;�
2
v] gives resolution in

spatial-frequency. In the space and frequency graph, the frequency resolution is doubled with each �lter bank operation
and spatial resolution is doubled with each segmentation. Therefore, to answer the �rst question, the space and frequency
graph includes only a quaternary hierarchy of decomposition in space and spatial-frequency. The graph cannot produce
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any arbitrary resolution in space and spatial-frequency even within the bounds of the uncertainty principle. This manifests
itself physically in that an arbitrary segment cannot be extracted from either the spatial plane or the spatial-frequency
plane. In other words, the segmentations must be made on quad-tree boundaries and spatial-frequency subbands are
extracted as quad-tree regions in the spatial-frequency plane.

B. Space and Frequency Library

There are two notions of libraries in the signal expansion: (1) the library of orthonormal basis functions utilized
in the full wavelet packet expansion, as discussed earlier, and (2) the library consisting of all the nodes in space and
frequency graph. In order to select the nodes from the space/spatial-frequency library that best represent the image, the
nodes must be accessed, analyzed and compared. For one, each node in the graph can be indexed by its graph position.
Alternatively, since each node represents a region in space and spatial-frequency, a node can also be indexed using a
description of the region. For example, in the 1-D version of the graph { the joint time-frequency graph, a four-index
transform of the 1-D signal is produced. Each node represents a region in the time-frequency plane that can be indexed
by four parameters: i = time resolution, j = frequency resolution, k = position in time and l = position in frequency.
The time-frequency library and the embedded graph is shown in Figure 11(a). For 2-D signals, the expansion similarly
implements an eight-index transform, which includes x and y directions in space and spatial-frequency.
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Fig. 11. Time-frequency library, (a) connectivity provided by time-frequency graph, (b) selection of node t1;1;0;1 excludes all darkened nodes
from the basis.

C. Basis Sets

For 1-D signals, a basis set corresponds to a tiling of the time-frequency plane [HKRV93]. For images, it corresponds
to a partitioning of the joint 4-D space and spatial-frequency space. To generate a basis, the nodes in the library must
be selected such that the image can be reconstructed completely and non-redundantly. Using the indexing notation of
the time-frequency plane, this requires that nodes should be selected to form the basis fT �

i;j;k;lg such that

[
ti;j;k;l2fT�

i;j;k;l
g

ti;j;k;l � l2(z) ()
X

ti;j;k;l2fT�

i;j;k;l
g

2�i�j = 1:

If the nodes do not overlap, this guarantees that the basis is complete by requiring that the time-frequency plane is
completely covered by the selected nodes. In order to ensure that the basis is non-redundant { no overlap, each node
included in the basis necessarily excludes other nodes. For example, this is illustrated in Figure 11(b). When node t1;1;0;1
is included in the basis, in order to have no overlap with other nodes, all the darkened nodes must be excluded from the
basis. This requires that,

ti;j;k;l 2 fT
�g () ti0;j0;k0;l0 3 fT

�g; where i0; j0 2 z; k2i
0�i � K < k2i

0�i+1 and l2j
0�j � L < l2j

0�j+1:
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Fig. 12. (a) Basis selection from dyadic time/frequency library, (b) corresponding time/frequency tiling.

The restrictions on node membership in a basis can be translated into equivalent requirements on the graph. Any
basis, or complete and non-redundant tiling of the time-frequency plane, corresponds to the set of terminal nodes of an
embedded graph. For example, Figure 12(a) indicates a selection of nodes from the library that give the tiling of the
time-frequency plane in Figure 12(b). Notice that the full graph has been pruned to produce the graph in Figure 12(a).
The light shaded nodes are intermediate nodes in the pruned graph, the dark nodes are the terminal nodes and the
unshaded nodes have been pruned from the graph. We also point out that the basis shown in Figure 12 is not accessible
from either the wavelet packet tree, the spatial quad-tree, the double tree or the dual double tree. The completeness and
non-redundancy requirements correspond to a recursive selection at each node, starting from the root node, of either (1)
termination, (2) frequency branching or (3) segmentation.

VI. Optimization, Basis Search and Adaptive Pruning

We formulate the basis selection problem as �nding the optimal pruning of the space and frequency graph. The
pruning technique was �rst suggested for wavelet packets in [CMQW90] and was also used in [RV93]. These previous
works applied the pruning algorithm to a tree with two decision points at each node: prune vs. not prune. The di�erence
here is that the data structure is a graph with a three-way decision at each node: (1) terminate, (2) branch by frequency,
or (3) branch by segmentation. However, the tree algorithm is easily extended to the graph. The algorithm works as
follows: �rst, a coding cost value is assigned to each node. Then, by iterating over the full graph, the least cost embedded
sub-graphs from each node are found. The �nal structure left after all pruning is the graph with the lowest total cost.
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freq spat freq term
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Fig. 13. (a) adaptive pruning, (b) rate-distortion operating point computation.
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A. Cost Functions

In order to produce the basis with the lowest total coding cost, the cost function should indicate the cost of coding
each node. One restriction is that the cost function is additive. Coifman and Meyer [CW92] suggested the entropy
measure as an appropriate cost function. Ramchandran and Vetterli [RV93] suggested that a rate-distortion additive
cost function is more suited to the compression problem. This two-sided measure better matches the goal of �nding the
optimal rate-distortion point for compression. We assign rate-distortion costs to each node in the graph by quantizing the
data using the set of quantizers. This produces a set of rate-distortion points for each node. The procedure for pruning
the graph involves both identi�cation of the optimal rate-distortion points and the pruning decisions, and is illustrated in
Figure 13. For a detailed description of the algorithm, refer to [RV93]. A brief description follows: the algorithm sweeps
through a series of rate-distortion operating points �, and the least cost quantizer for each node is selected as the one
that minimizes J� = D�

i +�R�
i , see Figure 13(b). Next the least cost embedded graph is found by pruning, and the total

rate is compared to the budget, see Figure 13(a). If the total rate exceeds the budget, � is adjusted and the procedure
is repeated.

VII. Compression Examples

The image compression was applied to several test images, see table below. The results show an increase in performance
over ordinary wavelet packets and the double tree. This results from the increase in the number of potential bases that
are accessible from the space and frequency graph compared to the tree methods. As shown in the table, the bases from
the space and frequency library that are optimal for image compression cannot be reached using the wavelet packet tree
or the double tree.

Image compression results on Barbara image
JPEG wavelet spatial wavelet double adaptive

quad-tree packet tree graph
0.5bpp, SNRp = 28.3db 29.5db 19.1db 32.7db 32.7db 33.0db
1.0bpp, SNRp = 33.1db 34.6db 26.5db 37.1db 37.1db 37.7db
2.0bpp, SNRp = 38.9db 40.7db 34.7db 43.0db 43.0db 43.8db

VIII. Conclusion

We presented a new algorithm for image compression that uses an adaptive joint space and frequency image expansion.
The expansion is produced by building a graph that cascades both �lter bank and segmentation operations. The nodes in
the graph form a space and frequency library from which the best basis is selected. The library includes other expansions,
such as wavelet, wavelet packet and double tree decompositions. The space and frequency graph o�ers the most rich
expansion, and image compression performance increases when using the best basis selected from the space and frequency
library.
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