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ABSTRACT

The deployment of video services to the home will con-
tinue to push the development of low cost Digital Set
Top Units (STUs) for decoding MPEG video. One tech-
nique for reducing cost is to minimize the bu�er space
in the network interface. This means that the STU
will only accept small packets. Video pump design for
this situation is complex when the video pump is based
on a general purpose workstation. Traditional timing
mechanisms cannot be used in this situation due to the
high resolution required by the small packets. A novel
video pump design is presented which meets the strict
STU requirements. Scalability issues are addressed and
performance results are presented.

1. INTRODUCTION

One of the main concerns in developing video services is
interoperability. Many institutions are working on one
or more pieces of the video service puzzle [1, 3, 5, 7],
i.e. Set Top Units (STUs), video servers, network pro-
tocols, etc. However, it is of the utmost importance
that pieces of the puzzle from di�erent vendors �t to-
gether in such a way that maintains quality of service
for the end user.

As with the design of any system, it is possible to
minimize the cost of the system as a whole by dis-
tributing the intelligence to the entities that are least
prevalent in the system. In the video services scenario,
this would mean giving more intelligence to the video
pumps than to the STUs, since it is anticipated that
there will be manymore STUs than video pumps. How-
ever, if too much responsibility is given to the video
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pump, it could prevent general purpose high-end work-
stations from being used as video pumps. This would
result in expensive special purpose hardware, which
would most likely be much less programmable than a
workstation. The added expense might preclude in-
dividuals or small companies from becoming video in-
formation providers while the lack of programmablility
might mean that new services will be more di�cult to
disseminate quickly to the end user.

The interaction between the STU and the video
pump is quite signi�cant. One technique for both re-
ducing STU cost and increasing video pump complex-
ity is to minimize the bu�er space in the network in-
terface. However, this makes the video pump design
much more complicated. The pump must send smaller
packets more often. As the bu�er space in the STU
becomes smaller, it becomes more di�cult for general
purpose workstations to meet these requirements.

The ATM Forum also has been working on STU
and video pump interaction. They have suggested that
the unit of transmission, which is called a PDU, be N
MPEG-2 Transport Stream packets. This suggestion is
based on the fact that two MPEG-2 Transport Stream
packets and a PDU trailer �t perfectly within 8 ATM
cells. Our prototype STU requires N = 2, or 376 bytes.

In the next section, we give an overview of the en-
vironment in which our video pump is operating. This
leads us to a discussion of speci�c problems of interop-
erability between video pumps and STUs. In Section 3
we present the design of our video pump. The meth-
ods used for maintaining quality of service guarantees
are presented in Section 4. Section 5 provides a so-
lution to the interoperability problem by using a non-
conventional timing mechanism. This timing mecha-
nism is the only one available to general purpose com-
puters which can provide the resolution required by the
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STU. It will be shown that although this timing mech-
anism works quite well for a few streams, it creates
problems for scalability. A solution to the scalability
problem is proposed and experimental results are pro-
vided. Finally, some concluding remarks are given in
Section 6.

2. VIDEO PUMP ENVIRONMENT

The video pump presented in this paper runs on a Sil-
icon Graphics Onyx, which is a high-end general pur-
pose multi-user workstation with 6 processors. The
operating system is IRIX Release 5.3. The workstation
has a �le system which has 4 disks striped in parallel.
It is connected to both an ATM LAN and an Ether-
net LAN. On the client side there is an STU which
accepts MPEG-2 transport streams over ATM Adap-
tation Layer 5 (AAL5). There is also a software de-
coder which accepts MPEG-2 transport streams over
UDP/IP [1]. The ATM client will be the focus of this
paper.

User level timing mechanisms on general purpose
workstations are all based on signals. Signals are sent
periodically to interrupt the CPU. Applications can use
them to perform periodic actions. Normally, signals oc-
cur on the order of once every millisecond. The time
between arriving 376 byte PDUs is 600 microseconds
for a 5 Mbps high quality stream. The di�erence be-
tween what is available on general purpose computers
and what is needed to support high bandwidth video
streams using small PDUs, is the core of the problem
that we address here.

In the case of our workstation, interrupts can come
more quickly, as fast as one every 500 microseconds.
This number is a system tunable parameter which is
set at boot-time and a�ects all processors. The signal
resolution has a limit though. Each interrupt has sub-
stantial overhead which will degrade the performance
of the processor if the interrupt frequency is too high.

Even though a 500 microsecond timer may seem
like enough, it is not. For example, at 500 microsec-
onds a rate of 6 Mbps can be supported, however a
rate of 5 Mbps cannot because this rate requires in-
terrupts every 600 microseconds and the interrupts are
only coming at integer multiples of 500 microseconds.
This is clearly unacceptable since a video pump must
be able to support clients with di�ering bandwidth ca-
pabilities. A client may have a software decoder that
can only decode up to a maximumbit rate or may only
have access to a certain amount of bandwidth. In ei-
ther case the client wants to specify and receive the
maximum bandwidth it can handle [4].

There is a certain amount of processing overhead
each time data is sent to the network. Each send com-

mand is a system call and each system call initiates a
request for services from the device driver. If the send
command is called for larger PDUs, then the overhead
is amortized over a larger number of bits and the resul-
tant overhead per bit is lower. This is another reason
that larger PDUs are more attractive from the video
pump perspective.

Nonetheless there are also drawbacks to large PDUs.
When a PDU is received in error, the entire PDU is dis-
carded. Although ATM optical networks tend to have
low bit error rates on the order of 10�9, they may lose
cells due to congestion at switches along the way. In the
case of large PDUs, more data is lost each time there
is an error. This will have an increasingly detrimental
e�ect on the video.

3. ARCHITECTURE

Each time a client requests a service from the video
server, a new video pump object is created speci�cally
for that client. The management and control of these
objects is performed via the Client Object Request Bro-
ker Architecture (CORBA Rev. 1.3) [6]. CORBA is
an advanced object-oriented Remote Procedure Call
(RPC) facility. Each video pump object consists of 3
separate threads, as in Figure 1. The �rst thread is the
Control thread. Its job is to interpret commands from
the client, such as pause, resume, and stop. The second
and third threads are responsible for moving the data
and are each run on a separate processor. The Reader
thread reads data from the disks and �lls the common
bu�ers according to a round robin schedule. Mean-
while, the Writer thread reads the bu�ers and sends
the data out to the network, one PDU at a time.

Reader Writer

Control

Video Pump Object

Network

Figure 1: Video pump architecture.

The video pump object is separated into threads
for both logical and performance reasons. From a log-
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ical perspective, each thread performs a task indepen-
dent of the others and is therefore a separate entity.
The more signi�cant reason is performance. The small
PDUs result in correspondingly small periods between
PDUs. These indicate that the Writer thread is work-
ing the hardest. For this reason, it cannot su�er the
added delays required for reading large blocks of data
from the disk or for waiting for a client request.

The interaction between the threads is coordinated
via interprocess communication, or more speci�cally,
semaphores. For instance, when the Reader is get-
ting data from the disk and �lling one of the common
bu�ers, it must �rst verify that the Writer is not cur-
rently sending data from that bu�er by evaluating the
semaphore. The interprocess communication also oc-
curs when the Writer �nishes the data in one bu�er
and must get new data from the next one. Unfortu-
nately this means that each time the Writer needs a
new bu�er, it will be delayed in sending out the next
PDU by the amount of time it takes to evaluate the
semaphore; this takes about 200 microseconds. The al-
ternative is to combine the Reader and Writer into one
thread and su�er no interprocess communication delay.
However, then the Writer would have to wait for the
time it takes to actually read the data from the disk,
which can be on the order of several milliseconds.

4. RESOURCE RESERVATION

The development of economically feasible video services
will be essential to the evolution of the industry. A
system which provides a video service must, by def-
inition, provide guarantees on end to end quality of
service. These guarantees can only be met if the un-
derlying resources provide guarantees on their perfor-
mance. Therefore, one purpose of a video server is to
coordinate the usage of these resources.

IRIX Release 5.3 has several features for providing
quality of service guarantees to applications. These
guarantees are provided by isolating the resource for a
speci�ed period of time. When there is no operating
system level provision for isolating the resource, other
user-level best-e�ort arrangements must be made. The
resources used by the video pump are CPU, memory,
system bus bandwidth, disk bandwidth, and network
bandwidth.

4.1. CPU

A process is allowed to isolate an entire processor such
that no other regular process can run on it. This is
essential to guarantee that the video pump will not be
competing with other processes for time on the CPU.
Multiple video pumps could also share a single proces-

sor.

4.2. Memory

Each video pump uses a small portion of memory. To
minimize random delays, the program text and data
segments may be locked into physical memory. Lock-
ing prevents any information from being paged out to
disk. Paging happens when other user processes or
system processes need to be in physical memory and
there is not enough physical memory available to hold
all processes.

4.3. System Bus Bandwidth

This is actually the most critical area because there is
no control over it. If other users or system processes
are running they may require signi�cant access to the
system bus bandwidth. This will deplete video pump
resources. Also, no guarantees or reservations can be
made.

4.4. Disk Bandwidth

There are no operating system level guarantees for allo-
cating disk bandwidth in IRIX. Nonetheless, there are
ways of minimizing the likelihood that a video pump
object is unable to provide a speci�ed quality of service
due to a lack of disk bandwidth. The �le system sup-
ports striped disks. This means a portion of the data
in a �le is placed on each disk so that accessing the
�le requires accessing all of the disks simultaneously.
Disk bandwidth is thus increased in proportion to the
number of striped disks.

However, there may also be jitter at the output of
the disks since they are being accessed by other video
pump objects, too. This jitter is smoothed by hav-
ing each video pump �ll two bu�ers with 250 millisec-
onds of data each before delivery to the network can
begin [2]. These bu�ers will smooth up to 500 mil-
liseconds of disk jitter. If the striped disks' throughput
is 200 Mbps and the stream being served is 5 Mbps, it
will take approximately 10 milliseconds to �ll the bu�er
once the request is acted upon by the disk, depending
on seek and rotation times. If we assume round robin
scheduling then even if there are 50 other streams op-
erating simultaneously, each one will have access to the
data before their bu�ers empty. This user level guaran-
tee is obtained by assuming worst case delays for seek,
rotation and transfer time.

4.5. Network Bandwidth

Currently our ATM LAN does not support resource
reservation and does no admission control. Nonethe-
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less, it can be considered an isolated resource since it
is used for experimental purposes.

5. HIGH RESOLUTION TIMERS

As discussed earlier, traditional timingmechanisms based
on signals cannot be used for a video pump which must
use small PDUs because of the high resolution required.
For this reason, new timer objects had to be created.
The only mechanism which could provide the resolu-
tion required by the STU is simple busy-wait timers.
Busy-wait timers are a last resort since they consume
extra CPU cycles. At the beginning of a period the
timer is set to the appropriate expiration time. After
the data has been sent out for that period, the pump
waits for the timer to expire. During this waiting the
timer object is continually looping and monitoring the
time. It will only stop looping when it discovers that
the time is greater than or equal to the expiration time.

IRIX provides a way of mapping the hardware clock
into memory, thereby obtaining a clock which has an
accuracy of 21 nanoseconds. Of course this level of
accuracy cannot be fully exploited because of the time
it takes to actually read the value. Nonetheless, the
timers can measure times from 60 microseconds and
up.

The obvious problem with busy-wait timers is that
they will use the processor at times when ordinarily
it could be released to do other things, such as run-
ning a di�erent video pump. One possible solution is
to have only one processor su�er the penalty of using
a busy-wait timer by running a timer daemon on that
processor. Video pumps would register themselves with
this daemon and would be put to sleep and woken up
by it when their period ended and began, respectively.
However, the overhead due to interproccess communi-
cation is too high at about 200 microseconds, which
would be incurred each time a PDU is sent.

5.1. Accuracy

An additional short-coming of having to use these timers
is that they are accurate only to several microseconds.
A 5Mbps stream needs a period of 601 microseconds. If
the closest we can get to this is 603 microseconds, then
we will be sending too slowly. The STU will be expect-
ing 5 Mbps as indicated within the MPEG stream, but
we will be sending 4.98 Mbps. Eventually this drift will
accumulate and cause blanks to appear on the display
due to bu�er under
ow in the decoder.

The above scenario assumes that there is no Phase
Locked Loop (PLL) in the STU. The PLL modulates
the system clock of the decoder based on the bu�er oc-
cupancy in the network interface. Slight di�erences in

rate can be accommodated by the STU if it implements
a PLL. Our prototype runs in open loop mode so that
it cannot tolerate deviations from the actual rate. This
is another example of how oversimplifying the decoder
leads to a much more complex video server.
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Figure 2: Characterization of the timers. Actual time
waited by the timer over 1000 trials.

A characterization of the timing mechanisms inde-
pendent of the video pump is given in Figure 2. The
timer was repeatedly set for a 500 microsecond period.
The points in the graph show the actual time waited
by the timer for 1000 such trials. Clearly there is some
deviation from the average. The average time waited
is 501 microseconds while the standard deviation is 3
microseconds.

Since the timers are not accurate, Long Term Rate
Adaptation (LTRA) must be performed. The average
throughput is calculated periodically by dividing the
number of bytes sent by the amount of time it has taken
to send them. If the throughput is too low, then the
period is decreased; if the throughput is too high, the
period is increased. This adaptation creates small 
uc-
tuations around the desired throughput which ensure
that the accumulated jitter does not reach an intolera-
ble level.

Figure 3 is a diagram of the set-up for generating
experimental results used in this paper. The HP is
a stand alone Broadband Analyzer workstation with
special purpose hardware for network analysis. It pro-
vides timing data which has a 10 nanosecond resolu-
tion. It also reassembles ATM cells into AAL5 PDUs
and even into MPEG-2 Transport and Packetized Ele-
mentary Streams.

The data was sent from the video pump to the
Broadband Analyzer through a single ATM switch. The
Broadband Analyzer stores the data in memory as it
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ATM
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Figure 3: Experimental con�guration for HP Broad-
band Analyzer.

receives it. Once data collection is done, it produces a
list of arrival times of PDUs. We then process this list
to obtain the interarrival times of the PDUs and var-
ious statistics, such as the probability mass function,
the mean, the variance, and the coe�cient of variation.
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Figure 4: Deviation from the average PDU interarrival
time for a 5 Mbps stream measured at the output of
the video pump through one ATM switch.

Figure 4 is a graph of interarrival times of consec-
utive PDUs with the actual average interarrival time
subtracted. The stream was sent at 5 Mbps. The stan-
dard deviation of the interarrival times is 21 microsec-
onds. This is larger than the 3 microsecond standard
deviation for the timers operating alone, as shown back
in Figure 2. This di�erence is due in part to the sharp
peaks at 700 and 1400 PDUs. The peaks are caused
by the calculation of the LTRA as well as the interpro-

cess communication overhead for switching bu�ers as
mentioned in Section 3. As was mentioned there, this
delay is much better than if the Reader thread and
Writer thread were merged into one because then the
delay would be that of reading from disk, which would
be several orders of magnitude higher.

Immediately after the peak comes a trough. The
pump attempts to make up for lost time since it missed
the deadline on the previous PDU. The jitter intro-
duced by these peaks and troughs is acceptable since
the average bit rate remains constant over a small pe-
riod of time.
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Figure 5: ProbabilityMass Function for the interarrival
times.

The subtle staircase nature of the graph is due to
the LTRA determining that the current rate is too slow
and that it must decrease the interarrival time to in-
crease the throughput. Figure 5 shows the Probability
Mass Function (PMF) for the interarrival times of Fig-
ure 4. The ideal PMF would be an impulse of height
one, indicating that the interarrival times were always
exactly the same. In our case, we have one main peak
and two side lobes which correspond to the peaks and
troughs mentioned previously.

5.2. Scalability

Scalability is another problem for busy-wait timers and
small PDUs. Each video pump object will use 100%
of a processor since the pump is not asleep while wait-
ing. This is clearly not an e�cient use of that resource.
When two pumps are run on the same processor the op-
erating system's scheduler gives the processor to each
pump for a 30 millisecond quantum [8]. This is not a
constant for the scheduler, but an experimentally ob-
tained value. This means that a pump will not be able
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to send out any data for 30 milliseconds. Since the
average rate must remain constant, the pump must de-
liver data more quickly during the time it occupies the
processor.
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Figure 6: Interarrival times for a video pump operating
at 5 Mbps while another video pump is running on the
same processor.

The problem is solved by using short term rate
adaptation (STRA). If a video pump senses a sudden
and severe drop in average throughput, it automati-
cally changes the rate at which it is trying to pump. If
the throughput drops signi�cantly enough, it is possible
that STRA will not respond until after the decoder's
bu�er empties, causing a momentary blank screen. In
Figure 6, STRA occurs just before the 150th PDU
where there is a sudden drop o�. The dropo� in in-
terarrival times corresponds to sending the data at a
higher rate. Before the dropo� the average interarrival
time is about 570 microseconds; after the dropo� the
average time is 280 microseconds.

The sharp peaks are the times when the video pump
has been descheduled by the operating system to run
the other video pump. The peaks show a 30 millisecond
interarrival time, which is of course the time the pump
is asleep. The average throughput from one peak to the
next is still the desired throughput. However, the rate
at which the pump is operating is much higher than
this average to compensate for the 30 milliseconds of
delay.

Let Rfi be the rate at which the video pump is
sending data during interval i. The video pump is at-
tempting to maintain a rate of Ro so when the pump
�rst starts,

Rf0 = Ro: (1)

Now when another video pump starts on the same pro-

cessor, the actual throughput for the �rst one will drop
to � < Ro. The e�ort, E, is de�ned as the desired rate
divided by the actual throughput,

E =
Ro

�
: (2)

E indicates how much harder the video pump must
work to obtain the desired rate. To obtain an actual
throughput of Ro, the video pump must pump at the
faster rate,

Rfi+1 = RfiE =
RfiRo

�
: (3)
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Figure 7: Example Rf curve. Rf1 vs. � for Ro = 5
Mbps and Rf0 = 5 Mbps.

Figure 7 is a graph of Equation 3. Point A is where
the pump is attempting to deliver at 5 Mbps and the
throughput is also 5 Mbps. In other words, only one
pump is running on the processor. When another pump
starts on the same processor, the scheduler runs each
pump for 30 milliseconds. This has the e�ect of cut-
ting the �rst pump's CPU time in half. The operating
point then shifts to B on the graph. The throughput
has dropped to 2.5 Mbps and the e�ort, E, is 2. This
signi�es that the pump must deliver data twice as fast.
Now when the pump is active it must send data at
Rf1 = 10 Mbps. If the pump knew in advance that it
would get only 50% of the processor, it could simply
send the data twice as fast and these calculations would
be unnecessary. However, the only information avail-
able to the pump is the rate at which it is attempting
to send and the actual throughput.
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When one of the video pumps running on the sin-
gle processor exits, the throughput of the remaining
video pump will increase substantially. Ro is still 5
Mbps. However, now the throughput, �, jumps to 10
Mbps and E = 1=2. Rf2 is calculated to be 5 Mbps,
indicating a return to our original rate. If the size of
the PDU were much larger, such that the period was
greater than the operating system scheduler quantum,
STRA would not have to be performed at all. This is
because the idle time between PDUs could be freed and
used to schedule other video pumps.

6. CONCLUSION

STUs which require the use of small PDUs make video
pumps based on general purpose computers more dif-
�cult to design. The problems with using small PDU
sizes are many. E�cient timing mechanisms for small
PDUs do not exist. Therefore, the only solution is to
use busy-wait timers. These timers are problematic
too, because of their lack of accuracy, their inability to
scale well and their ine�ciency.

One solution to this might be a programmable net-
work interface card which could receive an entire frame
of data from the video pump. The card could then be
programmed to deliver that frame at a given rate. This
relieves the video pump of the intensive timing respon-
sibilities. However, until there are such network cards
available, some compromise will have to be made be-
tween video servers and STUs.

Small PDUs require substantially more overhead
per bit to deliver. Larger PDUs would mean less over-
head and therefore a higher utilization of the CPU re-
source. Currently, each processor can only support an
aggregate throughput of 12 Mbps due to the intense
workload in having to deliver it in 376 byte PDUs. This
means a maximumof 2 MPEG-2 streams per processor
or 8 MPEG-1 streams.

If STUs continue to have such strict requirements,
video pumps will have to be built using special pur-
pose hardware to be scalable. This works against the
basic premise of interoperability where di�erent plat-
forms and architectures can work together to provide
a useful service to the end user.
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