
1

ABSTRACT
This paper describes algorithms to edit compressed video
sequences, e.g., MPEG, directly in the compressed domain.
We propose innovative methods to solve the buffer over-
flow/underflow issues resulted from video editing. Since
full decoding of input sequences and re-encoding of the
new video sequence are not required, image quality degra-
dation and intensive computations are avoided. High qual-
ity, real-time video editing can be achieved.

1. INTRODUCTION

Professional video editing has changed from linear editing,
or mechanical tape based editing to digital non-linear edit-
ing, or random accessing of digital storage based editing
[6]. Most of today’s high end digital non-linear editing sys-
tems use the motion JPEG compression standard, which
provides high video quality at low compression rate (3-
15:1). JPEG based sequence can be easily edited, since
there is no motion compensation between the neighboring
image frames. However, compression techniques, such as
MPEG, are more desirable when storing or transmitting the
final production sequences due to the high compression
rate. To the end users, they may want to edit video in the
existing compressed form which is used in the video
encoder or video server.

Continuing our prior work on compressed-domain
image manipulation/indexing [1][5], we address a basic
editing function, i.e., cut and paste (at any arbitrary frame
position). Figure 1 illustrates a scenario of cutting two seg-
ments from the middle of two separate video streams and
merging them to form a new compressed video stream. The
cut points (C1-C4, two in each stream) in original sequences
are arbitrary. We use the popular MPEG compression form
[3] to demonstrate our techniques, although our proposed
techniques can be extended to more general compression
forms.

First, the neighboring frames near the cutting points
need to be converted to the right frame types. Second, if the
original video sequences are encoded with rate control con-
straints (e.g., buffer constrained constant-bit-rate video
encoding), merging two segments directly may cause
decoder buffer overflow/underflow problems near the
merging point. We propose innovative techniques in the
compressed domain to solve these problems. We have sim-
ulated these techniques using MPEG2 standard-conforming
tools and demonstrated the real-time implementations and
quality improvement, compared to the uncompressed-
domain approach.

2. EDITING OF MPEG VIDEO

A MPEG video sequence is composed of the group of pic-
tures (GOP) units. The size of GOP is usually fixed at 12 or
15 frames. Each GOP starts with an intracoded frame (I
frame), which all later frames in the current GOP will
depend on. Each GOP can be independently decoded with-
out previous GOPs.

When cutting out a segment of MPEG video at arbitrary
location, we need to decode and re-encode only the frames
that are out of the GOP boundary at the beginning or end-
ing part of the segments. The newly created GOPs at the
two ends may have a different size, but the segment is still
conformable to the standard format. An example of frame
type conversion is illustrated in Figure 1. Next, video seg-
ments can be pasted together at any order independently to
complete the initial editing process.

When editing CBR sequences, the average bitrate of the
new sequence shall be kept the same as the original ones
and not to violate decoder buffer constraint. Thus we need
to allocate appropriate amount of bits before re-encoding
the frames that need type conversion, i.e., frames inItalic
in Figure 1. Details of bit allocation can be found in section
10 of [4]. Unfortunately, when the new GOP contains too
few frames, it is impossible to maintain the correct bitrate
without drastically reducing I frame’s bits, which will
adversely affect the quality of every picture in the GOP.

To avoid the picture quality loss, two approaches are
possible. The first one is to merge the new small GOP with

1. This work was supported in part by Intel, Siemens, the
National Science Foundation under a CAREER award (IRI-
9501266), and the ADVENT.

BUFFER CONTROL TECHNIQUES FOR COMPRESSED-DOMAIN VIDEO EDITING 1

Jianhao Meng and Shih-Fu Chang

Department of Electrical Engineering
and Center for Telecommunications Research

Columbia University, New York, NY 10027, USA
{jmeng, sfchang}@ctr.columbia.edu

http://www.ctr.columbia.edu/{~jmeng, ~sfchang}

To appear inISCAS-96, Atlanta, Georgia, May 1996.

2

the neighboring GOP and re-encode the second I frame to a
P frame in order to save bits. The second approach is to
leave this high bitrate GOP as is and apply rate modifica-
tion algorithms later when pasting segments together, see
the next two sections for details.

3. OVERVIEW OF THE MPEG RATE CONTROL

We assume editing of the constant bitrate compressed video
here. When encoding CBR sequences, the encoder usually
enforces some rate control mechanisms to ensure that the
generated bitstream will not cause buffer violations at the
decoders.

The decoder video buffer is initially empty, then coded
data bits are placed into the buffer at a constant bitrate from
the input channels, such as CBR network channels or CD-
ROM interfaces. After an initial delay (specified by the
vbv_delay field in the first I frame’s picture header), the
decoder will accumulate enough bits (about 80% full) in
the video buffer and start to fetch data from the buffer one
frame at a time with a specific interval [3].

The decoder video buffer may overflow when the bit-
stream has many low bitrate frames in a series (such as a
fade-in sequence) such that the decoder can not remove bits
from the video buffer fast enough. Newly arrived bits will
be lost due to lack of available buffer space. On the other
hand, the video buffer may underflow if the bitstream has
many large frame within a short period of time (due to
abrupt scene changes or video editing). The decoder will
quickly drain the buffer. Then at the supposed decoding
time, the decoder cannot get a complete picture from the
buffer. The video/audio will be jittery.

The MPEG encoder solves the above rate control prob-
lem by using “virtual buffer”, a simulation module of the
decoder buffer. Before quantizing each macroblock, it sets
the reference value of the quantization parameter based on
the fullness of the “virtual buffer.” When the buffer level is

too high, i.e., bitrate is too low, it sets a smaller quantiza-
tion parameter to generate more bits, and vice versa for
buffer level is too low.

The rate control mechanism is in effect for the entire
duration of a video sequence to guarantee the successful
decoding of the entire sequence.

4. BUFFER CONTROL PROBLEMS

When cutting and pasting arbitrary segments from different
compressed video streams of the same bitrate, the integrity
of the original rate control mechanism may be lost.
Because the new segments to be pasted may contain small
size GOPs that has bitrate higher than the normal average
bitrate. This may cause problems (overflow/underflow) in
the decoder buffers.

Figure 2 (a) shows the video buffer occupancy after
connecting four segments. The video buffer size is 1 Mbits.
Each segment consists of 49 frames, starts with an I frame
and ends with a small GOP with just one I frame. The video
buffer decreases to a very low level after the first I frame of
Seg3. When Seg4 is pasted, the buffer starts to have the
underflow problem.

4.1. Solutions for Underflow/Overflow Issues
The overflow problem can be easily solved by redundant
data (e.g., zeroes) stuffing whenever the buffer reaches a
very high level. The underflow problem is more complex.
We propose effective solutions which insert a synthetic
transitional sequence between the segments or modify the
bitrate before pasting compressed streams.

4.2. Insert a Synthetic Fade-in Sequence
The first technique is to insert a short synthetic fade-in
sequence, whose bitrate is much lower than the average,
between two original segments. Thus, the video buffer can
be brought up to the normal level and the underflow prob-

GOP Group of Pictures

...PBBPB BPBB GOP .. GOP I BB PBBPBBI...

...PBBPBB PBB GOP .. GOP IBBP BBPBBPBBI..

IP BB GOP .. GOP I BP I BB GOP .. GOP IBBP

Segment 1

Segment 2

New Stream

FIGURE 1. Cut and Paste MPEG bitstreams in the compressed domain.

--Frames inItalic require frame type conversion
--Frames inBold are the re-encoded frames
--All streams are shown in the display order

C1 C2

C3 C4

3

lem can be solved. The fade-in effect will also introduce a
graceful effect in connecting two separate video segments
(supposedly with very different content).

Specifically, the algorithm works as follows. At the end
of a segment, if the buffer falls below a threshold, say 30%
of the full level, we insert a GOP whose bit usage satisfies
the following:

(1)

where
Bgop: target bit allocation for the inserted GOP

r: nominalbit_rate of sequence
d: duration of the fade-in, a default choice is

vbv_delay of the second segment
B: size of the decoder video buffer
b: normal buffer occupancy when decoder starts to

decode, default: 80% (ofB)
Bn: the buffer occupancy at the end of the first segment

Intuitively, the number of bits we allocate to the
inserted GOP is equal to the difference between the total
input bits and the increment size we want to add to the
decoder buffer in this period. The number of frames
inserted,N, equalsd times frame_rate (e.g. 30 frames/sec).

To get the fade-in effect, We insert a group of frames
(0~N-1) in storage order: I0P3B1B2P6.....INBN-2BN-1,where IN
is the first I frame of the next segment to be connected. The
brightness of this sequence increases linearly from pure
darkness. In the compressed domain, we control the bright-
ness by setting the correct DCT DC levels. The content of
each frame is generated as follows:

• I0 is a blank frame; contains only the headers without any
DCT coefficients.

• For P frames, all macroblocks are motion compensated with
(0,0) motion vector.
P3: the brightness is 3/N of IN; DCT coefficients of the

residue errors are directly copied from IN with the

DC coefficients(DC’s) set to 3/N of that of IN and

AC coefficients(AC’s) unchanged.
P6,9..: the brightness is 3/N of IN more than the previous

P frame. Therefore, after motion compensation,
DCT DC’s of the residual errors simply equal 3/N
of that of IN and AC’s are 0.

• For B frames, in order to save bits, we simply set 2/3 of the
macroblocks in the 1st B frame to Forward Motion Compen-
sated and 1/3 to Backward MC (i.e., 2/3 macroblocks copied
directly from the previous reference frame and 1/3 from the
latter reference frame). Latter B frames can be handled by
similar methods.

The amount of bits used by an I or a B frame is just the
overhead of the headers and macroblock-modes, without
any bits for transmitting motion vectors and DCT coeffi-
cients. The remaining ofBgop are assigned to P frames, in
which P3 uses most of the allocated bits to copy DCT DC
and AC coefficients from IN. If the allocated bits are not
enough, we reduce the amount of high frequency AC coef-
ficients in the P frame. If there are more bits left, we may
stuff zero bits to P frames.

The choice ofd in (1) is flexible, as long as
, (2)

 whereBmin is the minimum bits required to form a
frame to cover the overhead bits used for headers and mac-
roblock-modes etc.;Bp is the estimated bit usage by P
frames. For simplicity,d can be set tovbv_delay (e.g., 0.5
second) for most applications.

See Figure 2 (b) for the buffer status after applying the
above algorithm. With the inserted synthetic fade-in, the
video buffer level is brought back to about 70% before
decoding the first I frame of Segment 3. The GOP inserted
uses about only 1/3 to 1/2 of the amount of bits of a normal
GOP size. The next sub-section proposes an alternative

Bgop r d B b⋅ Bn–()–⋅=

Bgop N Bmin Bp+⋅>

0 1 2 3 4 5 6 7
−10

0

10

20

30

40

50

decoding time second

vb
v_

bu
ffe

r_
si

ze
, i

n
m

ul
tip

le
 o

f 1
6x

10
24

FIGURE 2. Connecting MPEG video segments in the compressed domain.

(a) Decoder video buffer underflows when pasting
segments together.

(b) With the proposed synthetic fade-in connect-
ing Seg2 and Seg3, buffer remains normal.

0 1 2 3 4 5 6 7
−10

0

10

20

30

40

50

decoding time second

vb
v_

bu
ffe

r_
si

ze
, i

n
m

ul
tip

le
 o

f 1
6x

10
24

4

approach which achieves zero latency by using abrupt tran-
sition and cutting bitrate at the connecting point.

4.3. Apply the Rate Modification Algorithm
Data partitioning is a feature of the MPEG2 high profile
which provides the segmentation of a coded bitstream into
two components. One component will contain the most
critical information, e.g., low frequency DCT coefficients,
for transmitting over a reliable channel, while another will
contain the less important information for transmitting over
a less reliable channel.

We can also apply this technique to solve the buffer
underflow problem. We may reduce the bitrate of a bound-
ary GOP by cutting off some of its high frequency DCT
coefficients of I or P frames. The optimal cutting points of
the DCT coefficients can be found by using the optimal
data partitioning algorithms proposed in [2].

The drawback of the data partitioning approach is that
the computational complexity is higher than that of the
fade-in insertion method. Reducing bits in the I frame
would also cause quality degradation in all subsequent
frames in the same GOP. However, this approach may still
be useful for off-line applications.

Insertion of the fade-in effect between two video seg-
ments is attractive for real-time broadcasting. For example,
the TV station can insert pre-compressed commercial video
segments at any time. To avoid buffer underflow, a quick
synthetic fade-in (other desirable special effects: fade-out,
dissolve and wipe) can be inserted before the commercial.

5. SPEED-UP AND QUALITY PRESERVATION

Editing in the compressed domain saves computation and
preserves picture quality. If there is a cut per 12 seconds
(modem TV/movie), or about 360 frames per segment, at
30 frames/s. Using real-time codec to decode and re-
encode this segment takes 24 sec. To operate in the com-
pressed domain, the best case needs no re-encoding (i.e.,
cutting before an I and ending after I or P); the worst case is
to cut before the B frames which require decoding of all

previous I and P frames in the current GOP and then re-
encode. On average, for GOP=15 and M=3 (IBBPBB..), the
beginning part of the cut-out segment needs 4.6 frames of
decoding and 1.9 frames of encoding; the ending part needs
3.3 and 0.67 frames respectively. The average speed-up is
68 times. For cutting only before/after I or P frames, the
average speed-up is 600 times. The longer the shot seg-
ments are, the higher speed-up we gain.

Figure 3 shows the picture quality comparison of the
two approaches. The edited segment has 60 frames, with a
cut at frame 30 and frame 30-35 forms a shorter GOP. The
video is 608x224, at 24 frames/s, and is originally encoded
at 4.0 Mbps. With the spacial domain approach, the average
signal to noise ratio (SNR) drops 3.6 dB. With the com-
pressed domain approach, only few boundary frames suffer
the re-encoding quality degradation, about 3-4 dB.

6. CONCLUSION

We describe efficient methods for editing MPEG video
(e.g., cut/paste) in the compressed domain. The buffer over-
flow/underflow problems resulting from the arbitrary-posi-
tion editing are solved by inserting synthetic transitional
sequences between two video segments or by applying the
data partitioning algorithm. We have fully implemented the
compressed video editing system with enhanced graphical
user interface, and automatic video feature extraction (e.g.,
zooming and panning).

REFERENCES

[1] S.-F. Chang, “Compressed-Domain Techniques for Image/
Video Indexing and Manipulation”,IEEE Intern. Conf. on
Image Processing, ICIP 95, Special Session on Digital Image/
Video Libraries and Video-on-demand, Oct. 1995, Washington
DC.

[2] A. Eleftheriadis and D. Anastassiou, “Optimal Data Partition-
ing of MPEG-2 Coded Video,”Proceedings, 1st International
Conference on Image Processing (ICIP-94), Austin, Texas,
November 1994.

[3] ISO/IEC 13818-2, MPEG-2, H.262, 1994.

[4] ISO-IEC/JTC1/SC29/WG11, Test Model 3, November 1992.

[5] J. Meng, Y. Juan, and S.-F. Chang, “Scene Change Detection
in a MPEG Compressed Video Sequence,”IS&T/SPIE Sympo-
sium Proceedings Vol. 2419, Feb. 1995, San Jose, California.

[6] T. A. Ohanian,Digital Nonlinear Editing: new approaches to
editing film and video, Focal Press, Boston, London, 1993.

0 10 20 30 40 50
15

20

25

30

frame number

SN
R

 d
B

Compressed Domain Approach

Decode and Re-encode Approach

FIGURE 3. SNR Comparison

