
1

Tools for Compressed-Domain Video Indexing and Editing1

Jianhao Meng and Shih-Fu Chang
Department of Electrical Engineering & Center for Telecommunications Research

Columbia University, New York, NY 10027, USA
{jmeng,sfchang}@ctr.columbia.edu

Abstract

Indexing and editing digital video directly in the compressed domain offer many advantages in terms of
storage efficiency and processing speed. We have designed automatic tools in the compressed domain for
extracting key visual features such as scene cut, dissolve, camera operations (zoom, pan), and moving
object detection and tracking. In addition, we have developed algorithms to solve the decoder buffer con-
trol problems and allow users to “cut, copy and paste” arbitrary compressed video segments directly in the
compressed domain. The compressed-domain approach does not require full decoding. Thus fast software
implementations can be achieved. Our compressed video editing techniques will enhance the reusability of
existing compressed videos.

Keywords: compressed-domain video manipulation, video indexing, video editing, motion recovery,
object tracking

1. Introduction

Video compression is a key technology in many new media applications such as video on demand and
desktop video studio. How to effectively index and manipulate the compressed video is one of the keys to
the usability of massive video servers. A successful video server shall process content based queries and
retrieve video clips fast and reliably based on user’s input, which can be a sample picture, a hand-drawn
outline of a desired object, a trajectory of a moving object, or just a few key words.

The problem of compressed video indexing and manipulation will be much easier if there were a series of
automatic tools to track what the camera operations were; to identify who were and what happened in the
scene2; to record where the shot3 cutting boundaries and what the special effects were; and finally to pass
these attributes to the encoder. Then those attributes would be good not only for indexing but also for
model-based coding to achieve higher compression. Unfortunately, today’s compression techniques
[9][10] do not exploit the above issues.

Another critical technology for new media applications is the real-time compressed video editing. Profes-
sional video editing has started to change from linear editing, or mechanical tape based editing to digital
non-linear editing, or random accessing of digital storage based editing [14]. Most of today’s high end dig-
ital non-linear editing systems use the motion JPEG compression standard, which provides high video
quality at low compression rate (3-15:1). Since there is no motion compensation between the neighboring

1. This work was supported in part by Intel Research Council, the National Science Foundation under a CAREER award (IRI-
9501266), IBM under a 1995 Research Partnership (Faculty Development) Award, and sponsors of the ADVENT project of
Columbia University.

2. Scene: a scene is confined to one or more shots which are taken in the same space [5].
3. Shot: a shot is any contiguous, unedited sequence of video frames from the moment when a camera is turned on until it is turned

off [5].

To appear inSPIE Conference on Storage and Retrieval for Image
and Video Database, Vol. 2670, San Jose, CA, Feb. 1996.

2

image frames, JPEG based sequence can be easily edited. However, when storing or transmitting the final
production, other compression techniques, such as MPEG, are more desirable due to the need of high com-
pression rate. To the end users, they may want to edit video in the existing compressed form which is used
in the video encoder or video server.

Our objective is to develop innovative, efficient tools for editing and automatically indexing the contents of
compressed video. Compressed video indexing is a reverse engineering process, reciprocal to the produc-
tion process. First, the compressed sequence is broken down to the shot segment level, e.g., using the
motion vectors and DCT DC coefficients in MPEG sequences [12]. Then, the shot segments are organized
into meaningful scenes by using scene clustering techniques we proposed in [20]. We further detect camera
pan/zoom and track the objects within a shot segment. We also provide tools for users to freely compose
new compressed sequences with the aid of scene cut information. Our on-going work also includes moving
object detection and segmentation which enables object-based video manipulation.

2. Related Work

Video index refers to the video search key. Due to the spatial and temporal complexity of video data, video
search key can be any attributes of the video sequence and it is application dependent. Video indexing
using finite state models for parsing and retrieval of specific domain video, such as news video, was dis-
cussed by Smoliar and Zhang [17]. Hampapuret al [8] proposed feature based video indexing scheme,
which uses low level machine derivable indices to map into the set of application specific desired video
indices. Our goal is to provide tools to extract low level features from the compressed video data. Once the
low level feature sets such as the camera motion, object motion, and object shape/color are extracted, many
high level processing methods can be employed to extract the semantic context of the video. And a variety
of image database retrieval techniques [16] can also be applied in comparing and retrieving video clips
from the derived object database.

In spatial domain, finding parameters of an affine matrix and constructing a mosaic image from a sequence
of video images was addressed by Sawhneyet al [15]; the searching for object appearance and using them
in video indexing was proposed by Nagasakaet al [13]. In the compressed domain, research on detecting
extended camera operations (zoom, pan) using motion vectors had been discussed in [19] and [1]. In [19],
an algorithm was given to estimate the global zooming/panning parameter based on the motion vectors
generated from the block matching method. However, it assumed low local object motion, thus cannot be
effectively extended to general videos. Object motion tracking in MPEG video was also discussed by Dim-
itrovaet al [6], however, camera operations were not taken in consideration for object motion recovery. We
propose an innovative method which combines histogram segmentation, discrete search and least squares
method to estimate and detect camera operation parameters as well as the object motion trajectories.

This paper is organized as the following: camera operation parameters estimation and moving object detec-
tion, compressed video editing, and system user interface design.

3. Camera Operation Parameters Estimation and Moving Object Detection

Within a shot segment, low level visual features in a video sequence, such as camera zoom/pan and moving
objects are useful information in indexing video databases. We have reported several techniques for detect-
ing scene cut, dissolve, fade in/out in the compressed domain in [12]. In this section, we present new tech-
niques for detecting and estimation camera zoom and pan from the motion vectors in the MPEG video.

3

The motion vectors in MPEG are generated by block matching: finding a block in the reference frame so
that the mean square error is minimized. Although the motion vectors do not represent the true optical
flow, it is still useful information for estimating the camera parameters in sequences that do not contain
large dark or uniform regions.

We extract low dimension camera parameters to assist indexing of shot segment. A two dimensional model
is used. When the distance between the object/background surfaces and the camera is large, it is usually
sufficient to use a three parameter set {f, px, py} to model the camera motion:

(1)

where(x,y) is the coordinate of a point in the reference frame, (x’,y’) is the corresponding location in the
current frame due to camera operation,f is the zooming factor, and(px,py) are the panning factor. For the
convenience of estimation, we can rewrite (1) using the definition of motion vector,

, whereT denotes vector transpose,

(2)

where and . Thus, we can estimate the global camera parameter set
{F,Px,Py} from the macroblock coordinates and its motion vectors in the current frame.

3.1 Global Camera Parameter Estimation

Given the motion vectors for each macroblocks, one can find the global parameter by using the least
squares (LS) method, that is to find a set of parameters which minimizes the squared error between the
estimated motion vectors (using the estimated{F,Px,Py} in (2)) and the actual motion vectors obtained from
the MPEG stream [19]. In other words, find{F,Px,Py}, so thatS{F,Px,Py) is minimized,

(3)

whereΩ contains all macroblocks, is the estimated motion vector from the 2D motion model in (2).

The LS method assumes that there is no object motion. When there is a large region of object motion, the
LS method is not accurate even after a few iterations. To overcome this problem, we developed a new his-
togram segmentation method to estimate panning and zooming parameters.

First, we check if the shot contains only pure camera panning, which corresponds to a single dominant
motion direction. The histogram of motion vector angles with respect to the origin is calculated. Motion
vector angles are quantized to a number of bins. If there is a peak count in one bin, then the dominant
motion is estimated by taking the average of motion vectors in that peak bin. A pure panning is
declared with global parameter , where 0 indicates zero zooming effect.

If no single direction is found to be dominant, and the average magnitude of the motion vectors is much
greater than 0, then camera zooming is involved and a convergence or divergence point can be found. A
convergence point corresponds to zooming in and a divergence point corresponds to zooming out. We
detect the convergence or divergence point by combining a discrete search and a LS method:

x'

y'
f x

y
⋅

px

py

+=

u v
T

x y
T

x' y'
T

–=

u

v
F x'

y'

Px

Py

+⋅=

F 1 f–() f⁄= Px Py

T
px py

T
f⁄–=

S f Px Py, ,() ui
ˆ ui–()

2
vi
ˆ vi–()

2
+[]

i Ω∈
∑=

û v̂
T

û v̂
T

0 û v̂,{ , }

4

1. Assign a counter for each 4 by 4 block in the image space.
2. Extend each motion vector across the whole image and increment every counter on its way.
3. Get the convergence or divergence point(x0,y0) by applying a LS estimation on the set of motion vectors that pass

the block with the highest counts.

Since the motion vector is0 at (x0,y0), plug it in Eq. (2) and we will get: . Sub-
tract this equation from Eq. (2): , and . Now we can estimateF from its maxi-
mum frequency [8]. Finally,Px andPy are obtained from Eq. (2) with the estimatedF, (x’, y’)=(x0,y0), and
[u,v]T=[0,0] T.

Camera motion trajectory can be easily obtained from a series of the pan/zoom factors. One may also con-
struct a mosaic frame from the global parameter [15]. From the zooming speed and duration, we may clas-
sify the type of a shot: long shot, medium shot, close-up shot etc. Therefore, based on the needs of the
application, higher level of indices can be generated from the low level camera motion indices.

3.2 Moving Object Detection

After we found the global camera parameters{F,Px,Py}, we may recover the true object motion by applying
global motion compensation. If an object moved[mx my]

T from location(x,y) in the reference frame, then its
new location(x’,y’) in the current frame after camera pan and zoom is:

(4)

Therefore the object motion[mx,my]
T can be recovered from motion vectors in the current frame provided

that{f,px,py} is known,

(5)

where , . This is the global motion compensation (GMC). For
macroblocks of the background, GMC will give mostly 0 motion vectors. For macroblocks of the fore-
ground moving objects, GMC will provide an estimate of the true object motion, see Figure 1 (c) and (d).

Blocks with motion vector magnitudes much greater than their neighbors are considered as noise and fil-
tered out. By using the histogram segmentation method, motion of objects can be found. Note that this will
work even when there are multiple objects moving towards different directions, as long as there are clear
peaks and valleys in the histogram. We then mark the blocks, whose motion vectors fall into the peak bins
in the histogram, as object blocks. Finally, a simple morphological operation is used to delete those objects
that consists with only one block and merge those blocks that are surrounded by object blocks.

The estimation process is repeated on all P and B frames within a shot. Currently, we use the forward
motion vectors only. The backward motion vectors can be used to estimate the global parameters using a
slightly modified version of Eq. (2) withf ’=1/f and . The backward motion vectors
may be better for the B frames that are closer to the anchor frames later in display order. Also the global
parameter and object motion in the I frame can be estimated from the B frame right before it.

We can construct trajectories of the moving objects from the object motion estimated from each frame. An
initial reference frame, usually an I frame is selected. We then project object motion in the later frames to

0 0
T

F x0 y0

T
Px Py

T
+⋅=

F u x' x0–()⁄= F v y' y0–()⁄=

x'

y'
f

x mx+

y my+

px

py

+⋅=

mx

my

x'

y'

px

py

–
 
 
 
 

f⁄ x'

y'
– u

v
–=

f 1 F 1+()⁄= px py

T
Px Py

T
F 1+()⁄–=

px' py'
T

px py

T
– f⁄=

5

the initial frame using the estimated zoom/pan factor. We plot the results of a moving object’s trajectory in
Figure 1(e).

Note that this technique for separating foreground/background objects may not generate perfect results for
arbitrary type of video due to the following reasons. First, the motion vectors from the existing motion
compensation techniques in MPEG may not represent the true object motions especially in large uniform
or dark region. Second, a 2D camera model is assumed in our current system. For improved results, 3D
camera models, such as planar surface flow [3], may be used.

3.3 Indexing at the Object Level

Once the object regions are found, we extract the bitmap and the DCT DC coefficients of each object. For
reasonably large object, we may collect enough of DC coefficients to perform color histogram discrimina-
tion to distinguish different objects. Color histogram is powerful in object similarity comparison, since the
it is invariant to object translation, rotation and non-rigid motion [18].

Every time we detect an object in a new shot, we compare its color histogram with that of previous objects.
Thus, we can avoid storing duplicated objects. We are also able to record the temporal instances of each
object’s appearance.

4. Compressed Video Editing

After the scene cut detection and object extraction, the user may want to compose new MPEG sequences
based on the segment information provided by the system. A straightforward way is to decode the seg-
ments that the user specifies and re-encode the final composed sequence. This process is simple, but it
demands expensive computations. Also, the final output pictures will suffer from quantization loss twice.

We apply the basic editing functions, i.e., video cut and paste (at arbitrary frame position), directly in the
compressed domain. Though the function is simple in the uncompressed domain, it causes interesting tech-
nical issues in the compressed domain. Figure 2 illustrates a scenario of cutting two segments from the
middle of two separate video streams and merging them to form a newly compressed video stream. The cut
points (C1-C4, two in each stream) in original sequences are arbitrary.

First, the neighboring frames near the cutting points need to be processed and converted to the right frame
types. Second, if the original video sequences are encoded with certain rate control constraints, merging
two segments directly may cause decoder overflow or underflow problems near the merging point. We pro-
pose innovative techniques in the compressed domain to solve these problems. We have simulated these
techniques using MPEG-2 standard-conforming tools and demonstrated the real-time implementations and
quality improvement, compared with the uncompressed-domain approach.

4.1 Issue I — Frame Type Conversion

The MPEG compression format requires the integrity of frame structures, which are composed of the
group of pictures (GOP) units. Each GOP starts with an I frame. We only decode and re-encode certain
frames which are out of the GOP boundary at the beginning or ending part of the segments. The newly cre-
ated GOP may have a different size, but it is still conformable to the MPEG format. An example of frame
type conversion is illustrated in Figure 2.

6

(a) (b)

(c) (d)

0 50 100 150 200 250 300 350

0

50

100

150

200

FIGURE 1. Camera Zooming and Moving Object Detection

(a) Frame 15 of cnn_z.mpg (I frame)
(b) Frame 18 (P frame) and its motion vectors
(c) Frame 18, after global motion compensation

(zooming in this case)
(d) Frame 18, moving object is extracted
(e) Object motion trajectory traced from frame 15

through 29
(e)

frame 15
frame29

Convergence
Point

7

4.2 Issue II — Decoder Video Buffer Control

Video encoders usually enforce some rate control mechanisms to ensure that the generated bitstream will
not cause buffer violations at the decoders. We will discuss this issue and present our solutions as follows.

4.2.1 An Example of Rate Control — Overview of the MPEG Rate Control

For simplicity, we assume constant bit rate (CBR) compressed video here. The video buffer at the decoder
is initially empty, then coded bits are placed in the buffer at a constant bitrate from the input channels, such
as CBR network channels or CD-ROM interfaces. After an initial delay (specified by thevbv_delay field in
the first I frame’s picture header), the decoder will accumulate enough bits (about 80% full) in the video
buffer and start to remove data from the buffer one frame at a time with a specific interval [11].

The video buffer may overflow when the bitstream has many low bitrate frames in series (such as a fade-in
sequence) such that the decoder can not remove bits from the video buffer fast enough. Newly arrived bits
will be lost due to lack of available buffer space. On the other hand, the video buffer may underflow if the
bitstream has many large frame within a short period of time (due to scene cuts or editing). Therefore, at
the supposed decoding time, the decoder cannot get a complete picture from the buffer.

The MPEG encoder solves the above rate control problem by using the “virtual buffer”, a simulation mod-
ule of the decoder buffer. Before quantizing each macroblock, it sets the reference value of the quantization
parameter based on the fullness of the “virtual buffer.”

The rate control mechanism usually is in effect for the entire duration of a video sequence to guarantee
successful decoding of the entire sequence. When cutting and pasting arbitrary segments from different
compressed video streams of the same bitrate, the integrity of the original rate control mechanism is lost.

4.3 Video Editing and Buffer Control Problems

After converting the boundary frames, each segment is complete and decodable which starts with an I
frame and ends with an I or P frame. We may simply concatenate two or more such segments back to back
to form a new compressed stream. However, as described in the previous section, this may cause problems
(overflow/underflow) in the decoder buffers.

...IBBPB BPBBP..BBPBBI BB PBBPBBI...

...IBBPBB PBBP..BBPBBIBBP BBPBBPBBI..

IP BBP..BBPBBI BP I BBP..BBPBBIBBP

Segment 1

Segment 2

New Stream

FIGURE 2. Cut and Paste MPEG bitstreams in the compressed domain.

--Frames inItalic require frame type conversion
--Frames inBold are the re-encoded frames
--All streams are shown in the display order

C1 C2

C3 C4

M1

8

Figure 3 (a) shows the video buffer occupancy after connecting four segments. The video buffer size is
999424 bits. Each segment consists of 49 frames, starts with an I frame and ends with an I frame. The
video buffer decreases to a very low level after the first I frame of Seg3. When Seg4 is pasted, the buffer
starts to have the underflow problem.

4.4 Solutions for Underflow/Overflow Issues

The overflow problem can be easily solved by redundant data (e.g., zeroes) stuffing whenever the buffer
reaches a very high level. The underflow problem is more complex. We propose several effective solutions
which insert a synthetic transitional sequence between the segments or modify the bitrate before pasting
compressed streams.

4.4.1 Insert a Synthetic Fade-in Sequence

The first technique is to insert a short synthetic fade-in sequence, whose bitrate is much lower than the
average, between two original segments. Thus, the video buffer can be brought up to the normal level and
the underflow problem can be solved. The fade-in effect will also introduce a graceful effect in connecting
two separate video segments (supposedly with very different content).

Specifically, the algorithm works as follows. At the end of a segment, if the buffer falls below a threshold,
say 20% of the full level, we insert a GOP whose bit usage satisfies the following:

(6)

where

Bgop: target bit allocation for the inserted GOP
r: nominalbit_rate of sequence
d: duration of the fade-in, a default choice is vbv_delay of the second segment
B: size of the decoder video buffer
b: the buffer occupancy when decoder starts to decode, default: 80% (ofB)
Bn: the buffer occupancy at the end of the first segment

0 1 2 3 4 5 6 7
−10

0

10

20

30

40

50

decoding time second

vb
v_

bu
ffe

r_
si

ze
, i

n
m

ul
tip

le
 o

f 1
6x

10
24

0 1 2 3 4 5 6 7
−10

0

10

20

30

40

50

decoding time second

vb
v_

bu
ffe

r_
si

ze
, i

n
m

ul
tip

le
 o

f 1
6x

10
24

FIGURE 3. Connecting MPEG video segments in the compressed domain.

(a) Decoder video buffer underflows when pasting
segments together.

(b) With the proposed synthetic fade-in connect-
ing Seg2 and Seg3, buffer remains normal.

Seg1 Seg2 Seg3 Seg1 Seg2 Seg3

Fade-in

Bgop r d B b⋅ Bn–()–⋅=

9

Intuitively, the number of bits we allocate to the inserted GOP is equal to the difference between the total
input bits and the increment size we want to add to the decoder buffer in this period. The number of frames
inserted,N, equalsd timesframe_rate (e.g. 30 frames/sec).

To get the fade-in effect, We insert a group of frames (0~N-1) in storage order: I0P3B1B2P6.....INBN-2BN-1,

where IN is the first I frame of the next segment to be connected. The brightness of this sequence increases
linearly from pure darkness:

(7)

wherefk is the brightness ofkth frame of the fade-in sequence. In the compressed domain, we control the
brightness by setting the correct DCT DC levels. The content of each frame is generated as follows:

• I0 is a blank frame; contains only the headers without any DCT coefficients.
• For P frames, all macroblocks are motion compensated with (0,0) motion vector.

P3: the brightness is 3/N of IN; DCT coefficients of the residue errors are directly copied from IN with the
 DC coefficients(DC’s) set to 3/N of that of IN and AC coefficients(AC’s) unchanged.

P6,9..: the brightness is 3/N of IN more than the previous P frame. Therefore, after motion compensation,
 DCT DC’s of the residual errors simply equal 3/N of that of IN and AC’s are 0.

• For B frames, we can use the above linear brightness relationship to set the right DCT coefficients easily. But in
order to save bits, we simply set 2/3 of the macroblocks in the 1st B frame to Forward Motion Compensated and
1/3 to Backward MC (i.e., 2/3 macroblocks copied directly from the previous reference frame and 1/3 from the
latter reference frame). Latter B frames can be handled by similar methods.

The amount of bits used by an I or a B frame is just the overhead of the headers and macroblock-modes,
without any bits for transmitting motion vectors and DCT coefficients. The remaining allocated bits (Bgop)
are assigned to P frames, in which P3 uses most of the allocated bits to copy DCT DC and AC coefficients
from IN. If the allocated bits are not enough, we reduce the amount of high frequency AC coefficients in
the P frame. If there are more bits left, we may stuff zero bits to P frames. The choice ofd in (6) is flexible,
as long as , whereBmin is the minimum overhead bits required to form a frame to cover
the overhead bits used for headers and macroblock-modes etc.;Bp is the estimated bit usage by P frames.
For simplicity,d can be set tovbv_delay (e.g., 0.5 second) for most applications.

See Figure 3 (b) for the buffer status after applying the above algorithm. With the inserted synthetic fade-
in, the video buffer level is brought back to about 70% before decoding the first I frame of Segment 3. The
GOP inserted uses about only 1/3 to 1/2 of the amount of bits of a normal GOP size. Note that as men-
tioned above, the length of the fade-in special effect is flexible. It involves the trade-off between the transi-
tion smoothness and inserted latency. Qualitatively, smoother transition implies a longer start-up latency
for the second video segment. The next section proposes another extreme approach which achieves zero
latency by using abrupt transition and cutting bitrate of the first segment.

4.4.2 Apply the Rate Modification Algorithm

Data partitioning is a feature of the MPEG2 high profile which provides the segmentation of a coded bit-
stream into two components or partitions. One component will contain the most critical information for
transmitting over a reliable channel, while another component will contain the less important information
for transmitting over a less reliable channel.

f k f N
k
N
----×= k = 0, 1,.., N-1

Bgop N Bmin Bp+⋅>

10

We can also apply this technique to solve the above buffer underflow problem. We may reduce the bitrate
of an ending I/P frame by cutting off some of its high frequency DCT coefficients. The optimal cutting
points of the DCT coefficients can be found by using the optimal data partitioning algorithms proposed in
[7]. By reducing the bitrate of ending I/P frames, the buffer occupancy can be kept at the right level.

4.5 Comparison of Two Approaches

The drawback of the data partitioning approach is that for every segment, if the ending frame is an I or P
frame, we need to partially decode to get its DCT coefficients, find the optimal cutting point, and finally re-
encode it to a new, valid compressed frame. The complexity is higher than that of the fade-in insertion
method. Reducing bits in the I frame would also cause quality degradation in the B frames right after it.
However, this approach may still be useful for off-line applications.

Insertion of the fade-in effect between two connected video segments is attractive for real-time broadcast-
ing. It is only needed when the decoder buffer reaches a very low level after connecting multiple segments.
For example, the TV station can insert pre-compressed commercial video segments at any time. To avoid
buffer underflow, a quick synthetic fade-in can be inserted before the commercial.

Although we only discussed the use of the fade-in special effect for controlling the decoder buffer level,
other desirable special effects can be used in a similar fashion. Examples include fade-out, dissolve and
wipe between segments.

5. System User Interface Design

We have developed a fully functioning prototype of compressed video editing and parsing system
(CVEPS) at the Image and Advanced TV Lab of Columbia University. In the compressed video editor
interface, every time a MPEG video is opened, its corresponding video buffer status is plotted against a
time-line. The user may run the scene cut detection to extract a list a video icons. Each icon represents for
a shot segment. At any time, the user may invoke our MPEG software viewer and the interactive VCR con-
trol panel which allows the user to do random search, step forward, fast forward/reverse, etc. The user can
also use the mouse to highlight the time-line to select arbitrary video segments and apply “copy, cut and
paste” operations, which also provide options of inserting fade in/out between the segments to be con-
nected. Figure 4 illustrates a snapshot of the system interface. Note that all the underlying operations are
done in the compressed domain, which provides great potential in improving system performance.

6. Conclusion

Tools for extracting key visual features from the compressed video and tools for editing compressed video
are presented. Compressed video is first automatically broken into shot segments. Then, camera zoom/pan
associated within each shot is detected and the moving objects’ attributes (color, histogram, motion trajec-
tories) extracted. Based on the above automatically derived low-level features, semantic indices in the
higher level can be formed. A prototype system illustrating real-time editing and indexing of MPEG com-
pressed video has be developed with enhanced graphical user interface support.

11

FIGURE 4. The Video Indexing/Editing System User Interface. The small panel shown on the
right is the interactive control panel associated with the MPEG software viewer.

12

7. References

[1] A. Akutsu, Y. Tonomura, H. Hashimoto, and Y. Ohba, “Video Indexing Using Motion Vectors,”SPIE Visual Com-
munications and Image Processing1992, Vol. 1818, pp. 1522-1530.

[2] F. Arman, A. Hsu, and M-Y. Chiu, “Image Processing on Compressed Data for Large Video Databases,”Proceed-
ings of ACM Multimedia ’93, June 1993, pp. 267-272.

[3] J. Bergen, P. Anandan, K. Hanna, and R. Hingorani, “Hierarchical Model-Based Motion estimation,”2nd ECCV,
1992, pp. 237-252.

[4] S.-F. Chang, “Compressed-Domain Techniques for Image/Video Indexing and Manipulation”, Invited Paper,
IEEE Intern. Conf. on Image Processing, ICIP 95, Special Session on Digital Image/Video Libraries and Video-
on-demand, Oct. 1995, Washington DC.

[5] T.-S. Chus, and Li.-Q. Ruan, “A Video Retrieval and Sequencing System,”ACM Transactions on Information Sys-
tems, Vol. 13, No. 4, October 1995, pp. 373-407.

[6] N. Dimitrova, and F. Golshani, “Motion Recovery for Video content Classification,”ACM Transactions on Infor-
mation Systems, Vol. 13, No. 4, October 1995, pp. 408-439.

[7] A. Eleftheriadis, and D. Anastassiou, “Optimal Data Partitioning of MPEG-2 Coded Video,”Proceedings of 1st
International Conference on Image Processing (ICIP-94), Austin, Texas, November 1994.

[8] A. Hampapur, R. Jain, and T. E. Weymouth, “Feature Based Digital Video Indexing,”IFIP2.6 Visual Database
Systems, III,Switzerland, March, 95.

[9] ISO/IEC 11172 - 2 Committee Draft (MPEG).

[10]ISO/IEC 13818 - 2 Committee Draft (MPEG-2).

[11]ISO/IEC/JTC1/SC29/WG11, MPEG Document AVC-400, Test Model 3.

[12]J. Meng, Y. Juan, and S-F Chang, “Scene Change Detection in a MPEG Compressed Video Sequence,”IS&T/
SPIE Symposium Proceedings,Vol. 2419, Feb. 1995, San Jose, California.

[13]A. Nagasaka and Y. Tanaka, “Automatic Video Indexing and Full-Video Search for Object Appearances,” In E.
Knuth and L. M. Wegner, editors,Video Database Systems, II, Elsevier Science Publishers B.V., North-Holland,
1992, pp. 113 - 127.

[14]T. A. Ohanian,Digital Nonlinear Editing: new approaches to editing film and video, Focal Press, Boston, Lon-
don, 1993.

[15]H.S. Sawhney, S. Ayer, and M. Gorkani, “Model-Based 2D & 3D Dominant Motion Estimation for Mosaicking
and Video Representation,”Proc. Fifth Int’l conf. Computer Vision, Los Alamitos, CA., 1995, pp. 583-390; http://
www.almaden.ibm.com/cs/reports/vision/dominant_motion.ps.Z.

[16]J.R. Smith, and S.-F. Chang, “Automated Image Retrieval Using Color and Texture,” Technical Report No. 414-
95-20, Center for Telecommunications Research, Columbia University, New York, 1995.

[17]S.W. Smoliar, and H.J. Zhang, “Content-Based Video Indexing and Retrieval,”IEEE Multimedia, summer 1994,
pp. 62-72.

[18]M.J. Swain, and D.H. Ballard, “Color Indexing,”International Journal of Computer Vision, Vol. 7, No.1, pp.11-
32, 1991.

[19]Y.T. Tse, and R. L. Baker, “Global Zoom/Pan Estimation and Compensation For Video Compression”Proceed-
ings of ICASSP 1991, pp.2725-2728.

[20]D. Zhong, H.J. Zhang, and S.-F. Chang, “Clustering Methods for Video Browsing and Annotation,”Storage and
Retrieval for Still Image and Video Databases IV, IS&T/SPIE’s Electronic Imaging: Science & Technology 96,
Vol. 2670, Feb. 1996, San Jose, CA.

