Proceedings, 3rd IEEE International Conference on Image Processing (ICIP-96), Lausanne,

Switzerland, September 1996.

A SYNTACTIC FRAMEWORK FOR BITSTREAM-LEVEL REPRESENTATION
OF AUDIO-VISUAL OBJECTS

Yihan Fang and Alexandros Eleftheriadis

Department of Electrical Engineering
and Image Technology for New Media Center
Columbia University, New York, NY 10027, USA
Email:{fang, eleft } @ee.columbia.edu

ABSTRACT

We present the design of a novel syntactic and se-
mantic framework to describe the bitstream-level rep-
resentation of audio-visual information objects. This
framework is important for emerging techniques in video
compression, and is currently part of the MPEG-4 Sys-
tem Description Language Working Draft. The design
is based on a principle of orthogonality between pars-
ing and processing, i.e., separating the bitstream pars-
ing from the other decoding operations, and extends
the basic typing system of a programming language so
that it incorporates sophisticated parsing information.
Examples of object representations are provided using
the MPEG-2 Video bitstream syntax.

1. INTRODUCTION

In the past several decades, the fundamental principle
of digital audio-visual information representation has
been compression. The diversity of the potential ap-
plications that use video and audio, however, makes it
extremely difficult to prescribe a single, universally ap-
plicable compression approach. Emerging applications
such as videoconferencing over computer networks and
general computer-supported collaborative work envi-
ronments, indexing and selective retrieval, classifica-
tion and archiving, editing and post-processing have
clearly shown that there are several challenges that can-
not be tackled with today’s standards’ designs. As a
result, special purpose techniques have been developed
to tackle some of these problems, be operating directly
in the compressed signal domain (e.g. DCT-based fil-
tering, compositing, dynamic rate shaping, etc.). Their
complexity, however, makes them less than an i1deal ap-
proach. Use of a flexible “programming” framework
capable of describing video processing algorithms and
being executed on different platforms will facilitate the

development of these and other applications.

This is one of the main themes in the on-going
ISO/TEC MPEG-4 standardization effort. Tt is intended
to offer more flexibility and extensibility than tradi-
tional approaches. MPEG-4 is addressing, among other
things, the development of a System Description Lan-
guage (MSDL), that can describe both the bitstream
syntax as well as the decoding tools or algorithms. This
way, audio-visual information objects can be encoded
using the best technique suitable for the particular ap-
plication at hand. If the technique is not known to the
decoder, it can be downloaded prior to the actual data.
This of course requires that the decoder is able to ex-
ecute code in that particular language, but it allows
complete customization of the decoding process. We
are addressing a more general syntactic and semantic
framework. In addition to the description of decom-
pression algorithms, our approach is also aimed on the
description of audio-visual compression, as well as pro-
cessing and manipulation. In this paper, we address
the issues of bitstream-level representation, which are
common in all cases. Our approach originates from the
C-like syntax that has been successfully used to de-
scribe the structure of coded audio-visual components
in MPEG-1 and MPEG-2, with the addition of object-
orientation and thoroughly defined semantics suitable
for machine translation. This work is currently part of

the MPEG-4 MSDL Working Draft [6].

2. THE FORMAL LANGUAGE FOR
AUDIO-VISUAL OBJECT
REPRESENTATION

Our approach is called the Formal Language for Audio-
Visual Object Representation (FLAVOR). FLAVOR
is focused on accommodating novel and conventional
functionalities for audio-visual coding. It should be

‘ source code ‘

— platform
compile
L

independent

‘ virtual machine code ‘

virtual machine interpreter

. . platform
graphics video audio
X process process dependent
engine engine engine

Figure 1: Virtual Machine

able to handle both syntactic (bitstream-level represen-
tation) and algorithmic descriptions (procedures oper-
ating on data). For algorithmic descriptions, the pro-
cess 18 rather involved. The need for platform indepen-
dence can be satisfied by using a virtual machine (VM)
architecture. Like other programming languages using
virtual machines, most notably Java [7, 8], the lan-
guage would have the advantage of being architecture-
neutral. By having virtual machine interpreters im-
plemented on different platforms, users would not need
to compile their programs for each individual platform;
the virtual machine interpreter will directly execute the
binary VM source code. Figure 1 shows the FLAVOR
virtual machine structure. For developing a new gen-
eration, the design of a syntactic representation frame-
work is the first step. In the next section, we provide
the bitstream syntax representation of FLAVOR.

3. DATA REPRESENTATION

The bitstream-level representation of FLAVOR is not
defined in a manner of particular procedural implemen-
tation (i.e., a parser), but rather as a “syntax” speci-
fication. In other words, one should not describe the
parsing process (an implementation issue) but only the
way data are mapped on the bitstream. This enables
the use of different implementations to parse and pro-
cess individual objects, optimized for the particular ar-
chitecture. An additional benefit is that it is generic
and amenable to conversion to a simple binary repre-
sentation.

The syntactic representation framework we propose
has two different levels: a textual one, that associates
coded information with meaningful names, as well as a
binary one that denotes the actual bits that are placed
in the bitstream. These bits need to be sent to the
“decoder”, so that it knows how to parse objects of the

specific type later when they are sent to it. Here we
focus on the textual representation only.
3.1. Elementary Data Types

We can in general identify the following syntactic ele-
ments:
1. Constant Length Direct Representation Bit Fields.

type[(length)] element_name[=valuel;

For example, an entity such as temporal reference would
be represented as:

unsigned int(5) temporal_reference;

where unsigned int(5) indicates that the element should

be interpreted as a b-bit unsigned integer. Two non-
standard data types are bit (just a sequence of bits)
and vlc, which we discuss below.

2. Variable Length Direct Representation Bit Fields.
This is the case where the length field i1s determined by
a variable. For example:

unsigned int(3) precision;
int (precision) DC;

3. Constant Length Indirect Representation Bit Fields.
The length of the bit field can be mapped to the actual
values using mapping algorithm. This i1s accomplished
by defining map:

map map_name (type_idx, typel,..., typel){
index valuel ... value_M,
[index valuel ... value_M, ...]

};

4. Variable Length Indirect Representation Bit Fields.
In this case, we have the data type vlc as the index
data type. For example:

map vlc_table (vlc, int value)q{
0b0000.001 0,
0b0000.0001 9

}s

The interpreter would look up for vlc_table in map
definition when it encounters the bit field of vlic_table.
Then it will map the variable codewords to actual val-
ues automatically.

3.2. Composite Data Types—Objects

Composite types or objects are defined in classes. This
approach follows an object-oriented paradigm and thus
allows for mapping both traditional as well as more ad-
vanced “object-based” representations. Object orien-
tation 1s essential in FLAVOR, since it facilitates the
definition of interfaces between self-contained entities
(audio-visual objects), and allows for reusability.

[modifiers] class name [(parameters)] [is parent]
[:[aligned] bit(length) [id_name]=id|range]{
[element; ...] // zero or elements

};

An element can be either a fundamental-type data
element as described in Section 3.1, or a composite-type
object, which is an instance of another class. The order
of declaration of bitstream components determines the
order in which the elements appear in the bitstream.
Similar to most modern object-oriented programming
languages, our language would support a hierarchical
structure. The id (or range) above, when specified, is
placed at the beginning of the object in the bitstream,
to facilitate demultiplexing of different objects to their
corresponding processing functions.

We introduce “parameterized class” to represent a
class with parameter(s). This is to address cases where
the data structure of the class is dependent on some
variables of other objects. A parameterized class is de-
pendent on the objects (could be class objects or mem-
ber variables) in its parameter list. A parameterized
class cannot be instantiated without first instantiating
the required dependent classes. It will be instantiated
automatically when a “compositing” class (a class that
contains an instance of this class) is instantiated.

3.3. Syntactic Control Flow

The syntactic control flow provides constructs that al-
low conditional parsing, depending on context, as well
as repetitive parsing. Objects that are sensitive to con-
text or defined repetitively are very common in existing
audio-visual processing algorithms. For instance, in the
MPEG-2 standard, macroblock objects are defined dif-
ferently for different chrominance formats. The conven-
tional implementation of context is by procedures. In
our framework, we consider extremely essential to avoid
the use of procedural declarations for defining objects,
and instead use conditional constructs to accommodate
context. The familiar C/C++ if-else construct is
used for testing conditions, and the for, do and while
constructs are used for repetitive definitions. The fol-
lowing example uses if-else control flow to construct
a conditional object:

class conditional_object {
unsigned int(3) foo;
int (1) bar_flag;
if (bar_flag) {
unsigned int(8) bar;
} else {
map (some_vlc_table) bar;
¥
unsigned int(32) more_foo;

};

The data structure of this conditional object ap-
pearing in the bitstream is depicted in Figure 2. In this

4 Conditional_object \

bar_fla
=1 9

bar |

foo flag

more_foo

bar_flag
=0

[3bits —|1 bit 32 bits

bar

[<— length 4’)
P P AR ’

Figure 2:
tional_object class example

Bitstream data structure for condi-

example we allow two different representations for bar,
depending on the value of bar flag. Note that the use
of a flag necessitates its declaration before the condi-
tional is encountered. The construct [bitstring] is a
test condition that is true (non-zero) if the next bits
present in the input bitstream are equal to bitstring.
The construct [bitstring*] performs the same oper-
ation, but if the string is found, the bits are removed
from the bitstream.

3.4. Temporary Variables

In order to accommodate complex syntactic constructs,
in which context information cannot be directly ob-
tained from the bitstream but is the result of a non-
trivial computation, a small number of temporary vari-
ables are provided. These are named $a through $z,
and can hold any variable type up to a maximum length
of 128 bits. They can be used in expressions and condi-
tions in the same way as bitstream-level variables. The
following example illustrates the need of using tempo-
rary variables when the number of non-zero elements
of an array is computed.

unsigned int(6) size;
int(4) arrayl[size];
for ($i=0, $n=0; $i<size; $i++) {
if (array[$i]!'=0) $n++;
}
int(3) coefficients[$n];
// read as many coefficients as there are
// zero elements in array[]

4. OBJECT PARSING

Parsing objects from the audio-visual bitstream is a
very important practical implementation issue. An ob-
ject is considered parsable from the bitstream if at least
one member of the class is parsable.

For each parsable class, there is a built-in public
data member parsed that indicates whether an in-
stance of this class has been parsed from the bitstream.
When an instance of a parsable class is parsed from
the bitstream, the data member parsed would be set
to 1. This is useful in the need of checking whether an
object is present in the bitstream. Other potentially
useful built-in variables can be defined as well.

A parsable object is guaranteed to be parsed from
the bitstream before being accessed. This gives the
maximuim flexibility in terms of implementation, allow-
ing parsers to follow the best parsing strategy for their
particular architecture.

5. REPRESENTATION OF MPEG-2 VIDEO
SPECIFICATION

Using the above simple framework, we have represented
the entire MPEG-2 video bitstream syntax specifica-
tion [4]. An example of the slice class in MPEG-2 is
as follows:

class slice(sequence_header sh,
sequence_extension se,
sequence_scalable_extension sse,
picture_spatial_scalable_extension psse,
picture_header ph,
picture_coding_extension pce):
const bit (32) slice_start_code =
0x00000101. .0x000001AF {
if ((sh.vertical_size_value +
se.vertical_size_extension<< 12) > 2800)
unsigned int(3) slice_ver_position_ext;
if (se.parsed) {
if (sse.scalable_mode == 0b00)
unsigned int(7) priority_breakpoint;
¥
unsigned int(5) quantiser_scale_code;
if ([1D {
bit(1) intra_slice_flag;
unsigned int(1) intra_slice;
unsigned int(7) reserved_bits;
while ([11){
unsigned int(1) extra_bit_slice=1;
unsigned int(8) extra_info_slice;
¥
¥
unsigned int(1) extra_bit_slice=0;
do{
Macroblock(se, sse, psse, ph, pce) mb;
}while (! [0b0000.0000.0000.0000.0000.0000.0001])

6. CONCLUSION

The Formal Language for Audio-Visual Object Repre-
sentation (FLAVOR) is designed to provide a flexible

environment for the development for audio-visual infor-
mation, coding and compression/decompression algo-
rithms. We have presented the design of the bitstream-
level data representation framework. Its key features
are the separation of syntax specification from the ac-
tual parsing/processing operation, and its independence
from the actual language to be used. The approach
follows an object-oriented paradigm, thus being capa-
ble of mapping both traditional as well as more ad-
vanced “object-based” representations. A translator
to C4++/Java is already being implemented. Future
work includes the design and implementation of binary
version of syntax, the design of procedural language, as
well as the design of virtual machine.

Acknowledgments

The authors would like to thank the entire MPEG-4
MSDL Subgroup for useful discussions, and especially
Drs. P. Chou and J.C. Dufourd.

7. REFERENCES

[1] Y. Fang and A. Elefttheriadis, “The MPEG-4 Syn-
tactic Description Language”, submitted to Image
Communications.

[2] A. Eleftheriadis and Y. Fang, “A Revision
and Proposed Grammar for MSDL-S”, ISO/TEC
JTC1/SC29/WG11 Contribution M0856, Flo-
rence, Italy, March 1996.

[3] A. Eleftheriadis, “A Syntactic Description Lan-
guage for MPEG-4”. ISO/IEC JTC1/SC29/
WG11 Contribution M0546, Dallas, TX, Novem-
ber 1995.

[4] “MPEG-2 Video”, Recommendation ITU-T H.262
(1995 E), ISO/IEC 13818-2 International Stan-
dard, 1995.

[5] AHG on MSDL issues, “Requirements for the
MPEG-4 SDL(Draft in Progress Revision 1.1)”.
ISO/TEC/JTC1/SC29/WG11, Tokyo, July 1995.

[6] MSDL Specification. Version 1.1, ISO/IEC
JTC1/SC29/WG11 N1246, Florence, Ttaly, March
1996.

[7] “The Java Language: A White Paper”, Sun Mi-
crosystems, 1994.

[8] “The Java Language Specification”, Release 1.0
Alpha3, Sun Microsystems Computer Corpora-
tion, May 1995.

