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Abstract

We are presenting a new framework of content
based video (CBV) modeling, suitable for scalable
variable bit rate (VBR) video traffic. Our approach
differs form previous works in that it is not based only on
matching of various statistics of the original source, but
rather it includes characterization and classification of
the video content. We show, that CBV model is fully
compatible with existing compression algorithms and
also with the current research directions in the very low
bit rate video compression. As an example, we introduce
MPEG-2 VBR video traffic model based on the ordered
list of scene descriptors forming the template of the video
stream. The model is verified in terms of trace, first and
second order statistics. Results of simulation of ATM
network interface multiplexer indicate that the CBV
model can generate video traffic which closely matches
the important performance parameters and statistics of
real VBR MPEG-2 stream. Based on our results we
argue that introduction of video content into the
modeling of video streams allows us to specify the
different classes of important features of video sources
resulting in more accurate VBR video traffic model. The
CBV model is able to generate the VBR traffic with
specific video content and therefore it can be successfully
used in the performance estimation and simulation of
storage retrieval, buffering, scheduling and admission
control of video servers and networks.

I. Introduction

In order to make future communication and storage
systems able to support VBR video, it is very important
to study and understand its characteristics. By
determining new distinctive features of VBR traffic, its
source and influence on system performance we can

improve system design of future multimedia and video
systems. VBR video has also dynamic storage and
retrieval requirements compared to constant bit rate video
(CBR). By dynamic we mean that amount of information
per any time unit varies over the time. Note that even
though the CBR could be considered variable bit rate on
the frame basis, its rate is more or less constant assuming
the group of pictures (GOP) as the time unit.

Generally, the amount of required information per
frame depends on video content and compression
technique. We can expect that the future communication
networks will transport video streams of various styles:
videophone, movie, news, sport, etc. All these video
styles have also different statistics: for example, scene
length distribution. Also, even though we expect further
improvements in digital compression technology, streams
with several different coding standards will most
probably be supported because of compatibility reasons.
Therefore, the VBR traffic models being able to capture
both the real video styles and various compression
techniques are needed. The content based approach to the
modeling of VBR video streams is one of the research
directions aimed at solving this problem.

Being able to characterize the VBR video stream
also reflects as the ability to predict in some probabilistic
sense its future behavior. Such information could be
utilized in admission or scheduling algorithms to
effectively allocate dynamic resources such as buffers or
bandwidth to streams. Since these resources are usually
allocated on per stream basis, the use of traffic models
which assume large number of sources to be multiplexed
will not give appropriate result. This apply especially to
video severs where only limited number of streams is
multiplexed and efficient disk retrieval scheduling, buffer
management and network interface scheduling determine
the optimal admission strategy and the final cost per
stream.

To appear in Proceedings of the 6th International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV96), April 23-26,
1996, Zushi, Japan



II. Video semantics

The typical video sequence is usually described as a
collection of independent video shots, also called scenes.
Each scene by itself is an ordered set of video frames
depicting a real-time, continuous action [1]. From this
perspective, the scene could be seen as a sampled and
encoded projection of real-time 3D world. With
availability of advanced image processing and editing
technology, the typical video sequence consists not only
of static real-world scenes: various artificial effects such
as camera operations (camera movement, object
following, zooming, panning), picture in picture and
graphics embedding, etc. are present in the video
sequences. Also, the assumption of scene independence

does not seem to hold in most video sequences. The
natural explanation is that the sequential real-time scenes
are usually captured in the same visual background such
as room, forest, etc. Therefore, the scenes tend to be
correlated. This can be observed on the scene complexity

and scene length statistics which are shown on Figure 1.
For this purpose we defined the scene complexity as the
size of the first intraframe DCT-coded frame of the
scene. Figure 1a depicts the scene complexity trace
indexed by scene number. The Figure 1b depicts its
histogram which can be approximated by normal
distribution. Figure 1c depicts its corresponding
normalized autocorrelation. We can readily see that
scenes are in fact correlated. This intra-scene correlation
can be one of reasons of observed phenomena of long-
term correlation of VBR traffic.

Another important observation is directly coming
from the scene length trace, depicted on Figure 1d.
Observed heavy tail of the scene length histogram in
Figure 1e can also explain the long term autocorrelation
and fractal characteristics of VBR video. Note the bell-
like shape of marginal distribution: there is a low
probability of having very short scenes, while the
probability of having very long ones decays relatively
slow. This distribution can be very well matched by
lognormal distribution. On the contrary to the scene
complexity the scene lengths seem to be not correlated
(see Figure 1f).

Each scene can be further decomposed into a set of
virtual objects O = {Oi: i=1,2,...N}. By virtual object we
mean spatially or temporary segmented region within the
frame sequence having some similar features such as
color, texture or motion. In some cases the virtual object
can reassemble the real objects but sometimes virtual
object will not directly correspond to the real objects.
The simplest example of fixed segmentation is block-
based segmentation of MPEG-2. More advanced coding
techniques such as region-based or object-based are able
to decompose the frame sequence into regions of various
shapes and sizes. Each of the virtual objects is then
associated with a set of object descriptors: object model
(2D or 3D), shape, size, color, complexity (texture),
activity and 2D or 3D motion. As we already mentioned,
the proposed decomposition is similar to techniques used
in second generation low bit rate video coding techniques
[11,12]. Note, that by definition, the scene segmentation
is based on non-continuous sample paths of scene or
object characteristics. Therefore, we can assume, that
during the scene duration segmented objects will change
their corresponding parameters only continuously.

Some scene operations such as camera movement,
zooming or panning affect some descriptors of all
objects. For example, during the camera movement all
virtual objects will be offset by global scene motion.
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III. Content based approach

The VBR coded video has a very complicated
structure. The previous attempts to characterize VBR
video streams by various stochastic models without
understanding the nature of the coding process have not
been fully successful and have only limited usability.
Such models focussed only on matching the trace
statistics or queuing analysis. The introduction of video
content into the VBR video modeling allowsus to create
realistic VBR video traffic based not only on global
statistical parameters but also on the video style, scene or
object description. Since the particular video stream is a
combination of scene characteristic and coding algorithm
specific mapping, it is desirable to separate them by
identifying the independent descriptor variables
characterizing the scene, frame, and objects.

We propose the following technique which allow us
to accommodate both current and future coding
algorithms. The new technique of content based
modeling is based on the following principle. The model
consists of two independent parts: (1) general scene/
object model and (2) mapping function. This separation
principle is schematically depicted on Figure 2. The
scene model generates the frame content descriptors on
frame by frame basis. It takes into account the
cumulative influence of global scene operators (zooming,
panning, etc.) and descriptors of all objects on each frame
descriptor. The mapping function is coding standard
dependable. It takes into account the specific coding
standard used and maps video content to actual output bit
rate. For example, it creates the appropriate frame type
and assemble the stream according to particular frame
ordering. In the case of MPEG-2, this corresponds to I, P
and B specific frame ordering. Such division is very
natural and better facilitate the understanding of the VBR
video stream behavior.

The selected parameters included in the scene/object
or frame descriptors generally depend on the coding
technique. For example, for MPEG-2 model we propose

the following parameters to be included in the scene
descriptorΨ:

whereτ is scene length,χ is scene complexity andµ is
scene motion. Detailed discussions about particular
descriptor parameters are included in section IV.

We are investigating an innovative approach that
scene complexity and motion could be approximated by
using random walk or auto-regressive AR model [2]. This
approach comes naturally from the definition of a scene
and its high temporal frame correlation. The changes in
the bit rate during the scene are due to object complexity
changes, object movement, or due to camera operations
(affecting all objects). Each frame in the scene sequence
can be decomposed into two components: the scene
complexity and object movement. In the special case of
MPEG-2, the frame complexity could be estimated from
the DCT coefficients of I frames and the object
movement speed from the motion vectors and residual
error of motion compensated P and B frames. Therefore,
the scene could be described by two stochastic processes
R and M. The processR corresponds to scene complexity
and M corresponds to the motion. Note that I frame
sequence, which is intra-frame coded using DCT
transform depends onR, while both P and B frame
sequences depend onR andM. To simplify the MPEG-2
modeling, which is based only on static macroblock-
based motion compensation and also taking into account
individual objects, we can divide the scenes into
collection of sub-scenes, corresponding to individual
object activity, and treat them similarly as scenes itself.
In this case, the difference is only in time scale. Example
of different scenes with various levels of activity
extracted from source trace is in Figure 6.

IV. MPEG-2 VBR video stream analysis

Figure 3 depicts three streams of MPEG-2 VBR
coded video sequence corresponding to three scalable
layers: low, medium and high. This video trace was
created using Columbia University’s MPEG-2 software
encoder. The trace consists of approximately 7000 frames
of the movie Ben Hur. A GOP (Group Of Pictures) of
size N consists of subgroups of M pictures starting with I
or P reference picture. We selected N=12 and M=3 and
the following scalability options: spatial for the second
layer and SNR for the third layer. We found that
subjective visual quality of the low and medium layers is
comparable to the VHS while high layer is comparable to
S-VHS quality. Since each layer is generated from the
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same video source, the same scene descriptor would be
used to model different layers with different model
parameters. Scalable stream characteristics are given in
following Table 1.

In this paper we are focusing on the low layer only, but
we expect to apply our results to the higher layers.

The left side of Figure 4 depicts trace resulting from
separation of different frame types: I, P, and B. I frame
trace can be described as collection of time periods with
approximately constant or continuously varying bit rate.
These time intervals match observed scenes or they
correspond to sudden changes inside the scene: the object
influence. Since I frames are intra-frame coded using the
DCT transformation, we can expect that for each framek,
its compressed I-frame size, denoted asSI={SI,k;
k=1,2,...}, directly corresponds to scene complexity,
denoted asRk. Namely, for MPEG-2 holds the following:
SI,k=fI(Rk)=Rk, where fI is coding algorithm specific
mapping function. On the other hand, P and B frames are
coded using the motion compensation. Their frame size is
the combination of scene complexity (Rk) and motion,
denoted asMk for each framek. High peaks observed on
the trace of P and B frames are results of scene changes
or instantaneous object changes during the scene. The

size of P or B frames depends on how well the motion
prediction algorithm can be applied to the scene.
Therefore, defining scene motion coefficient asMk,

,we can express the size of P frames as

SP,k=fP(Rk,Mk) and the size of B frames asSB,k=fB(Rk,Mk)
for each framek. WherefP and fB are coding algorithm
specific mapping functions,SP={SP,k; k=1,2,...} and
SB={SB,k; k=1,2,...} are sequences of P and B frames.
Note that based on N and M parameters and MPEG-2
frame ordering, resultant MPEG-2 sequence has to be
assembled fromSI, SP, andSB sequences.

V. A content-based VBR source model for
MPEG-2

We propose the following model for generating
MPEG-2 sequences. Each scene is generated
independently of each other. The scene complexity
R={Rn; n=1,2,...} and motionM={Mn; n=1,2,...} are
independent stochastic processes. We callR andM intra-
scene reference processes for complexity and motion
respectively. In terms of selecting the actual stochastic
process forR and M, we have chosen the random walk
for its relative low computation requirements and high
correlation between close samples. More complex
models could be chosen, such as AR, DAR or TES if
necessary [2, 3, 4, 5, 6]. The following were selected as

Table 1:

x σ2
max{x i }

/ x

Low 0.6632 0.1818 3.6494

Medium 1.0870 0.4001 3.5083

High 3.5176 2.1060 2.5445
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scene descriptors (Eq.1):τ={sceneLength},  χ={mean,
stepSize}, and µ={mean, stepSize}. Means of complexity
and motion are normalized to indicate 0 as lowest frame
size or no motion, and 1 to indicate maximum frame size
or motion. The following is the detailed description:

1. Intra-scene complexity reference
frame sequence R is modeled as
random walk R={ Rk; k=1,2,...} with

mean R1 and step size D R.

2. Intra-scene motion reference
sequence M is modeled as random walk
M={ Mk; k=1,2,...} with mean M1 and

step size D M.

3. SI , I frame sequence defined on set

of all frames is then
in the form SI  ={ SI , k=Rk; k=1,2,...}.

Namely, the I frames are modeled
by intra-frame complexity only.

4. SP, P frame sequence defined on set

of all frames is approximated as
follows:
SP=f P( R,M)={ SfP,k =RkMk; k=1,2,...}.

Namely, motion compensation effect
is modeled by the multiplicative
motion factor Mk.

5. SB, B frame sequence, defined on

set of all frames is approximated as
follows:
SB=f B( R,M)={ SB,k =SP,k Mk+SP,k (1-

Mk)b, k=1,2,...}, where b=0.5 is

MPEG-2 specific coefficient obtained
empirically from source trace. The
second term in MPEG-2 specific
approximation of f B is due to fact

that for the same motion,
compression achieved by B frame
referenced to P frame is much
lower then compression achieved by P
frame referenced to I frame. Also,
for high motion, the advantage of
B frame coding is not substantial.

6. The resultant sequence T is obtained
by sub-sampling of SI , SP, and SB

and correct ordering of I, P, and
B frames according to MPEG-2
standard. In case of N=12, M=3,
the sequence would be as follows:
SI,1 , SB,2 , SB,3 , SP,4 , SB,5 , SB,6 , ...,S P,10 ,

SB,11 , SB,12 , SI,13 ,...

7. The effect of scene change is
modeled as follows: if the scene
change occurs on I frame, no
change to the sequence is made. If
the scene change occurs during the P
frame, P frame will be replaced with
corresponding SI,k  value. If the

scene change occurs on B frame, both
consecutive B frames are replaced
with corresponding SP,k .

To model intra-scene objects, each scene is further
divided into the set of sub-scenes and modeled using the
above algorithm.

In our current experiment, scene cut locations are
identified manually. Automatic scene change detection
methods using compressed data only have been proposed
in [13] and will be incorporated into our system. We
assume independent content among different scenes at
this stage. But as we have shown in section II, there
exists some long-term scene dependence. We are
incorporating this relationship into the model.

VI. Statistical verification and simulation

We evaluated our model by comparing the first and
second order characteristics of the original and modeled
trace [7]. To be able to test our model, we created the
scene descriptor table corresponding to the original
source. First we normalized the source such that
minimum and maximum frame sizes corresponded to 0
and 1 respectively. Scene complexity and motion activity
can be estimated by examining the DCT coefficients and
motion vectors of the compressed streams. Access to the
low level coefficients requires some processing of the
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streams. For time efficiency, our initial experiments
estimated them as follows. Scene complexityR1=mR and

step size∆R
2=σR

2/τ, where mR and σR
2 are mean and

variance of size of I frames in the scene, andτ is the
scene length. For each scene, motionM1 and motion step
size were evaluated similarly by normalizing each frame
size in a GOP with respect to its I frame (the first frame
in GOP) and taking average and variation of such
normalized P frames.

The trace comparison of different frame types is
depicted on Figure 4. On the model trace we can identify
similar periods corresponding to scenes in the original
source. On traces of P and B frames we can identify high
peaks as the result of scene changes, very similar to the
original trace. Examples of different scenes are depicted
in Figure 6. Three different scenes are shown: first with

high motion, second and third with intra-scene object. As
depicted on Figure 5, the histograms of trace and model
match each other closely. Also, autocorrelation of I, P
and B frames, depicted on Figure 7 is very similar. We
can confirm its slow decaying characteristic, as reported
in [8]. To further evaluate the model, we simulated the
ATM multiplexer loaded with several sources, either real
or modeled. The results are depicted on Figure 8. Four

cases of 100, 120, 140 and 200 sources correspond to
load ρ=0.47, 0.57, 0.66, and 0.95. The bit error rate
(BER) of the model closely matched the bit error rate of
the source for the low buffer values and all four
utilizations. The differences at high buffer values (for
low utilization, model slightly overestimates the BER,
while for high utilization the BER is little
underestimated) may be due to non-uniform spacing of
sources during the frame interval (we used uniform
random generator for the starting time of each source
within the frame interval). Note that for high multiplexer
loads the model estimates the change of the slope of the
bit error rate characteristics well. Observed multiple-
slope characteristics, appearing in cases of high link
utilizations were analyzed in [9].

VII. Conclusion and continuing work

We presented a new framework of content based
approach to modeling of VBR video sources. This
approach is based on the fact that typical video
compression algorithms such as MPEG-2 in order to
encode the original video stream have explored a variety
of high-correlated features in both spatial and temporal
scale. Identification of various feature descriptors and
their influence on the final bit rate is the key point in the
content-based video modeling. We outlined the
separation principle which isolates the independent video
features from their specific use during the compression.
Such separation allows us to accommodate both current
(MPEG-2) and future coding algorithms (e.g. region-
based, object-based or model-based coding) into the
same framework by specification of only algorithmic,
coding specific part of the model. The video feature part
of the model could remain the same. The classification of
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higher level features such as camera movement, zooming,
panning, etc., and understanding of their projection into
the resulting video trace would allow us to better predict
behavior of the video stream in real time applications. In
this paper, an experimental model, based on subset of
such features, the scene duration, complexity and motion
was presented and verified in terms of first and second
order statistics. The obtained results show that such
simple scene descriptor model can very well match VBR
video statistics of real sources. In order to further
compare the model characteristics with the real trace, we
simulated ATM network multiplexing 100 to 200 video
sources in the burst mode. The results indicated, that for
the burst mode of independent sources, the results match
each other well for the low values of buffer sizes.
Because of the relatively small size of the video trace, the
difference at high buffer size values, which is less then
the order of magnitude, depends on the phase sources are
multiplexed during the frame period.

In the future, by identifying and separating other
independent video features, we would like to
accommodate new content-based video coding
techniques into the same framework. The proposed
approach to VBR video traffic modeling also has great
synergy with recent work on content-based image/video
search and retrieval [10].
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