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ABSTRACT

We present our recent work oncontent based video (CBV)
traffic modeling of variable bit rate (VBR) sources. CBV
approach differs from previous works in that it is not based only
on matching of various statistics of the original source, but rather
on modeling and mapping its visual content into the
corresponding bit rate. We show that CBV model is fully
compatible with current and future compression algorithms
including those of very low bit rate video coding. We introduce
the separation principle between the visual content and encoder
dependent bit rate mapping. We construct and verify two
experimental CBV models for basic camera operations. The
results obtained show that the CBV model can closely match the
various statistics of MPEG-2 VBR stream.

1. INTRODUCTION

Over the last few years it become clear that the video
component of the emerging multimedia technology will play an
important role in future communication and storage systems.
This underlines the key importance of video traffic modeling in
the development of future multimedia systems [1].

Generally, the VBR video rate depends onvideo style,
content and compression technique used. For example, the
different video styles (videophone, movie, news, sport, etc.) can
have distinct statistics of scene length, etc. Also, the captured
video content, such as scene background, static or moving
objects, and the camera motion are very important in terms of
resulting bit rate. Because of compatibility reasons, streams with
various different compression and coding techniques will most
probably be supported in future multimedia systems. Logically,
the traffic model taking advantage of video content information
should be able to match and predict the video rate better than
current models. The content based approach to the modeling of
VBR video streams is one of the research directions aimed at
exploring this important area.

CBV model generated VBR rate prediction information
could be utilized in the end-to-end QOS management, connection
admission control and video stream scheduling algorithms to
effectively and dynamically allocate resources such as buffers or

bandwidth to the video streams. Since these resources are usually
allocated on per stream basis, the use of traffic models which
assume large number of sources to be multiplexed will not give
appropriate result. This apply especially to video servers where
only limited number of streams is multiplexed and efficient disk
retrieval scheduling, buffer management and network interface
scheduling determine the optimal admission strategy and the
final cost per stream.

2. VIDEO CONTENT

The typical video sequence is usually described as a
collection of independent video shots, also calledscenes. Each
scene by itself is an ordered set of videoframes depicting a real-
time, continuous action [2]. From this perspective, the scene
could be seen as a sampled and encoded projection of real-time
3D world.

With the availability of advanced image processing and
editing technology, the typical video sequence consists not only
of simple static scenes but various visual effects are present in
the final video sequences. We say that the scene is composed of
several differentepochs, each containing one of these visual
effect primitives (Figure 1). Epochi of the lengthτi is described

in terms ofglobal epoch content descriptorΨi. We identified the

following visual effects, connected with camera operations to be
included in descriptorΨi: static scene, panning, zooming, and

translation.
At each epoch we identify a set ofvirtual objects O= {Oj:

j=1,2,...N}. By virtual object we mean the spatially segmented
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Figure 1. Scene decomposition
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frame region having some similar features. The simplest example
of such segmentation is fixed block-based frame segmentation
used in MPEG-2. More advanced coding techniques such as
region-based or object-based are able to decompose the frame
sequence into more complicated regions of various shapes and
sizes [3]. In many cases the virtual object will resemble the real
object but sometimes virtual object will not directly correspond
to the real objects. One of the characteristics of virtual object is
its size, which is very important in terms of influence of the
object on the encoded bit rate. We call the largest object in the
epoch thebackground object O1. At epochi virtual object j is

described in terms oflocal epoch content descriptorΛi,j. The

following features should be included in theΛi,j descriptor: size,

position, shape, complexity (intensity, color, texture), and local
motion vector. Note that global descriptorΨi operates on the set

O of N virtual objects at epoch i, while local descriptorΛi,j

operates on single virtual objectOj only.

3. CONTENT BASED MODEL

Compressed video has a very complicated structure and it is
very difficult to model its bit rate accurately [4]. The previous
attempts to characterize VBR video streams by various stochastic
models have not been fully successful. The main idea behind the
CBV modeling is that it targets the natural source of compressed
video traffic: the video content.

Since the video stream rate depends on both scene
characteristic and compression technique, it is desirable to model
them independently. Thisseparation principle of the content
based video model is schematically depicted on Figure 2. The
CBV model consists of two independent parts: (1)epoch model
and (2) traffic model. The epoch model generates theframe
descriptors Fk on frame by frame basis. It takes into account the

cumulative influence of global and local epoch content
descriptors. The traffic model is coding standard dependent. It
generates the bit rate based on frame descriptors. It also creates
the appropriate frame type structure and assembles the stream
according to the particular frame ordering.

In terms of targeted applications CBV model can function
as a synthetic traffic generator by arranging the epoch content
descriptors in the list form calledvideo content template. This
way, specific video styles may be generated. In the case of real-
time video, the epoch content descriptors are generated from
video stream byvideo content analyzeror supplied directly by
digital camera.

3.1. Epoch Model

The function of the epoch model is to model the video
epoch in both spatial and temporal dimension. The output from
the epoch model, the frame descriptor, is used subsequently by
the traffic model to generate the corresponding bit rate. Based on
new global descriptorΨi, the model may change its internal

state. The local descriptorsΛi,j are used mainly as state

parameters. At each state the different mathematical model, best
describing the current epoch is selected. Each global descriptor
Ψi can have several parameters describing the current state.

The parameters included in the frame descriptorsFk

generally depend on the coding technique. Currently, for MPEG-
2 we identified two components of the frame descriptork:

whereRk andMk are frame complexityof the background object

O1 andframe motion coefficientsrespectively. Then each epoch

is modeled using two independent stochastic processesR={Rk;

k=1,2,...} and M={Mk; k=1,2,...}. We call R and M epoch

reference processes.The selection of the actual stochastic
process forR and M with corresponding parameters depends on
current state of scene content model. We are investigating an
innovative approach that the frame complexity and motion
coefficient could be approximated by using random walk (RW)
with the drift, and auto-regressive AR or ARMA models. More
complex models could be chosen, such as DAR or TES if
necessary [5].

The following parameters were selected in theΨi, andΛi,1

descriptors for each epochi:

where s is a camera motion state,M andR are epoch reference
processes with the following parameters:

3.2. MPEG-2 Traffic Model

For each single frame descriptorFk (Eq. 1), the traffic

model creates three valuesSI,k, SP,k, and SB,k representing the

sizes of modeled I, P, and B frames respectively. For simplicity,
we assume these values are arranged in the sequencesSI={SI,k;

k=1,2,...},SP={SP,k; k=1,2,...}, andSB={SB,k; k=1,2,...}. Based on

the specific MPEG-2 standard, the video stream is then properly
assembled fromSI, SP, andSB sequences to reflect correct frame

ordering. Assuming a GOP (Group Of Pictures) of size 12 with 4
subgroups each starting with I or P reference picture, the
sequence would be then:

The values ofSI,k, SP,k, and SB,k frames are modeled as

follows. Since I frames are intra-frame coded using the DCT
transformation, they are directly related to the current frame
complexity coefficient, denoted asRk. Then for each framek, its

compressed I-frame size, denoted asSI,k, is modeled as:

Fk Rk Mk,{ }→ (1)
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Figure 2. Separation principle of content based model
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where fI is MPEG-2 specific mapping function simplifying to

scaling constantCI.

On the other hand, P and B frames are coded using the
motion compensation. Their frame size is the combination of
frame complexity (Rk) and frame motion coefficient, denoted as

Mk. We approximate the size of P and B frames, denoted asSP,k

andSB,k respectively for each framek as:

Where fP and fB are MPEG-2 specific mapping functions,Rk is

frame complexity coefficient, andβ=0.5 is a empirically
estimated scaling coefficient. Eq. 6 expresses the observed
nonlinear dependency ofSB,k frame size onMk. The intuition

behind this non-linearity is following: it was observed that for
low motion, the advantage of bidirectional motion compensated
coding was not significant, while for higher motion the
substantial compression gain was observed. Note however, that
for very high motion, the B frame size approaches the P frame
size (Figure 3).

4. MODEL VERIFICATION

We evaluated our model by comparing the first and second
order characteristics of the original and modeled trace. To be
able to test our model, we created the video content template of
the original source sequence-1, depicted on the left of Figure 4.
In our initial experiments we estimated epoch content descriptor
parameters as in Eq. 2, 3. We have chosen the random walk for
its relative low computation requirements and high correlation
between close samples. We approximated the initial frame
complexity coefficient, denoted asR1, and step size, denoted as

∆R as:

wheremR andσR
2 are mean and variance of I frame sizes in the

epoch, andτ is the epoch length. For the still camera motion   we
set δ=0. For each epoch, motionM1 and motion step size were

evaluated similarly by normalizing each frame size in a GOP
with respect to its I frame (the first frame in GOP) and taking
average and variation of such normalized P frames.

The trace comparison of different frame types is depicted in
Figure 4. In the model trace we can identify similar periods
corresponding to epochs in the original source. Autocorrelation
of I, P and B frames, depicted in Figure 5 is also very similar.

We can confirm its slow decaying characteristic, as reported in
[6]. To further evaluate the model, we simulated the ATM
multiplexer loaded with several sources, either real or modeled.
The results are depicted in Figure 6. Four cases of 100, 120, 140
and 200 sources correspond to loadρ=0.47, 0.57, 0.66, and 0.95.
The bit error rate (BER) of the model closely matched the bit
error rate of the source for the low buffer values and all four
utilizations. Note that for high multiplexer loads the model
estimates the change of the slope of the bit error rate
characteristics well. Observed multiple-slope characteristics,

SP k, f P Rk Mk,( ) RkMk= =

SB k, f B SP k, Mk,( ) SP k, Mk SP k, 1 Mk–( )β+= =

(5)

(6)
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Figure 3. Nonlinear compression gain of B frames relative
to size of P frame and its dependency on frame motion
coefficient Mk
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Figure 4. Trace of I, P, and B frames of sequence-1
and model
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Figure 5. Autocorrelation of I, P, and B sequences for
source sequence-1 (left) and model (right)
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appearing in cases of high link utilizations were analyzed in [7].

The content model including the panning camera operation
was similarly evaluated and compared with the original sequence-
2, selected from five long epochs containing the camera panning
operations (Figure 7). Using the global scene motion model [8,9]
we extracted the panning speed for each P frame in the sequence
(Figure 8). At this stage we used panning speed as a frame
motion coefficient Mk. The epoch complexity was modeled

similarly as in the previous case using the random walk. The
resulting trace, histogram and autocorrelation are depicted on the
Figures 7, 9, and 10 respectively. Even though the original trace

sequence-2 was relatively short (1944 frames), the modeled
stream reassemble the original stream trace well. Also, both
original and model histograms autocorrelation coefficients match
each other well.

5. CONCLUSION

We presented a framework of video traffic modeling based
on the new approach of using the information about the visual
content. An experimental model for camera operations was
presented and statistically verified. Based on obtained results we
argue that this new technique can significantly increase the
accuracy of VBR video models. In the future, we would like to
incorporate into the current model several other video and object
characteristics.

The proposed approach to VBR video traffic modeling also
has great synergy with recent work on content-based image/
video search and retrieval [9].
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Figure 7. Trace of I, P, and B frames of sequence-2
and model including panning camera operation
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Figure 9. Histogram of the sequence-2 and model.
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