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ABSTRACT bandwidth to the video streams. Since these resources are usually
allocated on per stream basis, the use of traffic models which

We present our recent work @ontent based vide(CBY) ~ @ssume large number of sources to be multiplexed will not give
traffic modeling of variable bit rate (VBR) sources. CBV a@ppropriate result. This apply especially to video servers where
approach differs from previous works in that it is not based onI;PnlY limited numper of streams is multiplexed and efflcn_ent disk
on matching of various statistics of the original source, but rathefetrieval scheduling, buffer management and network interface
on modeling and mapping its visual content into thes_chedullng determine the optimal admission strategy and the
corresponding bit rate. We show that CBV model is fully final cost per stream.
compatible with current and future compression algorithms
including those of very low bit rate video coding. We introduce 2. VIDEO CONTENT
the separation principle between the visual content and encoder
dependent bit rate mapping. We construct and verify two The typical video sequence is usually described as a

experimental CBV models for basic camera operations. Theeqtion of independent video shots, also caliednes Each
results obtained show that the CBV model can closely match thg.. o by itself is an ordered set of videonesdepicting a real-
various statistics of MPEG-2 VBR stream. time, continuous action [2]. From this perspective, the scene
could be seen as a sampled and encoded projection of real-time
1. INTRODUCTION 3D world.
With the availability of advanced image processing and

Over the last few years it become clear that the videcgedmng technology, the typical video sequence consists not only

" . : . of simple static scenes but various visual effects are present in
component of the emerging multimedia technology will play anth final vid W that th . d of
important role in future communication and storage systems. € Tinal viceo sequences. We say thal the Scene IS composed o
This underlines the key importance of video traffic modeling inseveral .dlfftlerentepochs each cqntamlng one O.f these.wsual
the development of future multimedia systems [1]. feffect primitives (Figure 1). Epodhof the Iengthri.ls dc.escrlbed

Generally, the VBR video rate depends wideo style I terms ofglobal epoch content descript8t;. We identified the
content and compression techniquaised. For example, the following visual effects, connected with camera operations to be
different video styles (videophone, movie, news, sport, etc.) cafiicluded in descriptol¥;: static scene, panning, zooming, and
have distinct statistics of scene length, etc. Also, the captureanslation.
video content, such as scene background, static or moving At each epoch we identify a setftual objects O= {O;:
ObjECtS, and the camera motion are very important in terms C}f:l,Z,I\} By virtual Object we mean the Spatia”y Segmented
resulting bit rate. Because of compatibility reasons, streams with
various different compression and coding techniques will most ¢, A;
probably be supported in future multimedia systems. Logically, A
the traffic model taking advantage of video content information R _/ \
should be able to match and predict the video rate better than )
current models. The content based approach to the modeling of_ _ | | | |

VBR video streams is one of the research directions aimed at zoom in| %?ggiecra: pgpar:itnd péér;]r&ing time
exploring this important area. ' ' '
.. . . > ' Y
CBV model generated VBR rate prediction information ' epoch '

- . . ! visual effect primitive
could be utilized in the end-to-end QOS management, connection T e

admission control and video stream scheduling algorithms to ' '
effectively and dynamically allocate resources such as buffers orFigure 1. Scene decomposition



frame region having some similar features. The simplest example

of such segmentation is fixed block-based frame segmentation epoch content frame
used in MPEG-2. More advanced coding techniques such as descriptors descriptors
region-based or object-based are able to decompose the frame—*A—— —M

sequence into more complicated regions of various shapes andw;: giobal
sizes [3]. In many cases the virtual object will resemble the real — epoch Fx traffic
object but sometimes virtual object will not directly correspond /i local , model ™ model [ >
to the real objects. One of the characteristics of virtual object is
its size, which is very important in terms of influence of the

object on the encoded bit rate. We call the largest object in thdrigure 2. Separation principle of content based model
epoch thebackground object © At epochi virtual objectj is

descn_bed in terms obcal epoch cont.ent descrlpt.dki,j.. The generally depend on the coding technique. Currently, for MPEG-
following features should be included in the; descriptor: size, 5 \va identified two components of the frame descriktor

position, shape, complexity (intensity, color, texture), and local Fo - {R, M} 1)
motion vector. Note that global descriptéy operates on the set K ke Tk
O of N virtual objects at epoch, while local descriptor/\;;

operates on single virtual objegj only.

bit stream

The parameters included in the frame descriptBs

whereR, and M areframe complexityf the background object
0, andframe motion coefficientespectively. Then each epoch
is modeled using two independent stochastic proceRsgR,;

3. CONTENT BASED MODEL k=1,2,...} and M={M,; k=1,2,...}. We callR and M epoch

reference processesThe selection of the actual stochastic
Compressed video has a very complicated structure and it rocess folR and M with corresponding parameters depends on
very difficult to model its bit rate accurately [4]. The previous current state of scene content model. We are investigating an
attempts to characterize VBR video streams by various stochasticnovative approach that the frame complexity and motion
models have not been fully successful. The main idea behind treefficient could be approximated by using random walk (RW)
CBV modeling is that it targets the natural source of compressedith the drift, and auto-regressive AR or ARMA models. More
video traffic: the video content. complex models could be chosen, such as DAR or TES if
Since the video stream rate depends on both scemeecessary [5].
characteristic and compression technique, it is desirable to model  The following parameters were selected in WeandA; ;
them independently. Thiseparation principleof the content  descriptors for each epoth
based video model is schematically depicted on Figure 2. The
CBV model consists of two independent parts: €ppch model Wi~ {s M} Nix = R @
and (2) traffic model The epoch model generates tlhlame  wheresis a camera motion statel andR are epoch reference
descriptors g on frame by frame basis. It takes into account theprocesses with the following parameters:
cumulative influence of global and local epoch content initial value, step, autocorrelatiorfor RW
descriptors. The traffic model is coding standard dependent. itM, mean, variance, correlation for AR(1)
generates the bit rate based on frame descriptors. It also creates
the appropriate frame type structure and assembles the stre%_ MPEG-2 Traffic Model
according to the particular frame ordering.
In terms of targeted applications CBV model can function For each single frame descript&i (Eq. 1), the traffic
as a synthetic traffic generator by arranging the epoch conteptoyel creates three valus, Spy and Sg representing the

descriptors in the list form calleddeo content templateThis eﬁ‘i_zes of modeled I, P, and B frames respectively. For simplicity,

way, specific video styles may be generated. In the case of re . i
. : . we assume these values are arranged in the sequgr¢Bs,;
time video, the epoch content descriptors are generated from 9 qURRCE;

video stream byideo content analyzesr supplied directly by ~ K=1:2:---h Sp={Spk k=1,2,...}, andSs={Sg ¢ k=12,...}. Based on

®3)

digital camera. the specific MPEG-2 standard, the video stream is then properly
assembled frong, Sp, andSg sequences to reflect correct frame
3.1. Epoch Model ordering. Assuming a GOP (Group Of Pictures) of size 12 with 4

subgroups each starting with | or P reference picture, the
The function of the epoch model is to model the videoSequence would be then:

epoch in both spatial and temporal dimension. The output from S1%2%83%54+8 586 $10581:8,125 13-
the epoch model, the frame descriptor, is used subsequently by
the traffic model to generate the corresponding bit rate. Based on  The values of§, S, and S frames are modeled as
new global descriptotV;, the model may change its internal follows. Since | frames are intra-frame coded using the DCT
state. The local descriptorAiyj are used mainly as state transformation, they are directly related to the current frame
parameters. At each state the different mathematical model, be®mPplexity coefficient, denoted &. Then for each framl its
describing the current epoch is selected. Each global descriptépmpressed I-frame size, denotedigs is modeled as:
W, can have several parameters describing the current state. S,k = f,(R) = C, Rk (4)



where f; is MPEG-2 specific mapping function simplifying to w26 (k) o ze [k

Scaling Constal’ﬁ:|. 14 | frame, source I} | frame, nodel

On the other hand, P and B frames are coded using the 12 b
motion compensation. Their frame size is the combination of & BWWW
frame complexity ) and frame motion coefficient, denoted as EWW i
M. We approximate the size of P and B frames, denot&as 20 So50— 4550 sa05—" A 20 So66 4555 so00— "™
andSg  respectively for each frankeas: , _

' size [kB] P frame, source size [k P frame, nodel

Sk = fp(Ra My) = RMy ®) " "

Sg k= Fe(Sp M) = Sp M+ S ((1-M)B  (6) 15 1%
Wherefp andfg are MPEG-2 specific mapping functiort, is 2 >
frame complexity coefficient, and3=0.5 is a empirically o zo00 4000 6000 '™ o 2000 4000 oo "™
estimated scaling coefficient. Eq. 6 expresses the observedsize ks, size [KB] [ oo el
nonlinear dependency &y frame size onM,. The intuition 1 1
behind this non-linearity is following: it was observed that for 10 10
low motion, the advantage of bidirectional motion compensated ¢ s
coding was not significant, while for higher motion the N ;
substantial compression gain was observed. Note however, that frame frame

. i ! 0 2000 4000 6000 0 2000 4000 6000
for very high motion, the B frame size approaches the P frame

size (Figure 3). Figure 4. Trace of I, P, and B frames of sequence-1

and model
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Figure 3. Nonlinear compression gain of B frames relative
to size of P frame and its dependency on frame motion
coefficient My

Figure 5. Autocorrelation of I, P, and B sequences for
source sequence-1 (left) and model (right)

We can contirm its slow decaying characteristic, as reported in
[6]. To further evaluate the model, we simulated the ATM
4. MODEL VERIFICATION multiplexer loaded with several sources, either real or modeled.
The results are depicted in Figure 6. Four cases of 100, 120, 140
We evaluated our model by comparing the first and secongnd 200 sources correspond to Ipa®.47, 0.57, 0.66, and 0.95.
order characteristics of the original and modeled trace. To bghe bit error rate (BER) of the model closely matched the bit
able to test our model, we created the video content template @fyor rate of the source for the low buffer values and all four
the original source sequence-1, depicted on the left of Figure 4yjlizations. Note that for high multiplexer loads the model
In our initial experiments we estimated epoch content descriptasstimates the change of the slope of the bit error rate

parameters as in Eq. 2, 3. We have chosen the random walk fgharacteristics well. Observed multiple-slope characteristics,
its relative low computation requirements and high correlation

between close samples. We approximated the initial frame — source
. . . [ T T nodel
complexity coefficient, denoted &, and step size, denoted as
. L BER]
AR aS LogiBER]].QO sources e [cell D_Q; ]120 sources qsi ze [ceI |]
Ri=Mo. An2=go2/T - 21500 300 400 500 606> *° 1°°! ] 75[200 400 600 800
1=Mg, AR=0R
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wheremg andog? are mean and variance of | frame sizes in the Z
epoch, and is the epoch length. For the still camera motion we
setd=0. For each epoch, motidvi; and motion step size were
evaluated similarly by normalizing each frame size in @ GOP " *™hio sources 0 (arr) e 200 sources
with respect to its | frame (the first frame in GOP) and taking 3 0 To000 2000
average and variation of such normalized P frames. e

The trace comparison of different frame types is depicted in 2
Figure 4. In the model trace we can identify similar periods
corresponding to epochs in the original source. Autocorrelation Figure 6. ATM queuing simulation (source sequence-1
of I, P and B frames, depicted in Figure 5 is also very similar. and model)

alze [cell]
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size [kB] size [KB] Figure 10. Autocorrelation of the sequence-2 and
P frame, source P franme, nodel
14 14 model.
I . sequence-2 was relatively short (1944 frames), the modeled
s s stream reassemble the original stream trace well. Also, both
4 4WWW original and model histograms autocorrelation coefficients match
2 2
0 500 1000 1500 fram 0 560 1000 1500 '™ each other well.
size [kB] B frame, source size [kl B frame, nodel
2 ' 2 ' 5. CONCLUSION
12 12
10 10 . . .
8 8 We presented a framework of video traffic modeling based
2MM . on the new approach of using the information about the visual
2 . 2 fram content. An experimental model for camera operations was
0 500 1000 1500 0 500 1000 1500 presented and statistically verified. Based on obtained results we
Figure 7. Trace of I, P, and B frames of sequence-2 argue that this new technique can significantly increase the
and model including panning camera operation accuracy of VBR video models. In the future, we would like to

- , ) o ) incorporate into the current model several other video and object
appearing in cases of high link utilizations were analyzed in [7]. 4 acteristics.

The content model including the panning camera operation  The proposed approach to VBR video traffic modeling also
was similarly evaluated and compared with the original sequencéras great synergy with recent work on content-based image/
2, selected from five long epochs containing the camera panningdeo search and retrieval [9].
operations (Figure 7). Using the global scene motion model [8,9]
we extracted the panning speed for each P frame in the sequence REFERENCES
(Figure 8). At this stage we used panning speed as a frame
motion coefficientM,. The epoch complexity was modeled _ _
similarly as in the previous case using the random walk. Th&tl V. S. Frost and B. Melamed, *Traffic Modeling For
resulting trace, histogram and autocorrelation are depicted on tHe!ecommunications  Networks”,  |[EEE ~ Communications
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