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TABLE 4.  Comparison of filter banks

Note 1. The Optimality is based on energy compaction with zero mean high-pass filter.
Note 2. The Optimality is based on energy compaction with zero mean high-pass filter, and uncorrelated subband signals.

Filter Bank (i, j)
Mean of Power Spectrum
of the Term Associated
with Fij(z) in Eq. (10)

Estimated Flatness of the Power
Spectrum of the Term Associated

with Fij(z) in Eq. (10)
Haar Filter (0, 0) 1 0.52

(0, 1) 0.090 0.69

(1, 0) 0.090 0.69

(1, 1) 0.63 0.57

Johnston’s 8-tap (0, 0) 1 0.67

QMF Filter (0, 1) 0.0069 0.33

(1, 0) 0.0069 0.33

(1, 1) 0.70 0.55

Mallat’s QMF (0, 0) 1 0.73

Filter in [8] (0, 1) 0.032 0.51

(1, 0) 0.032 0.51

(1, 1) 0.70 0.54

8-tap Optimal1 (0, 0) 1 0.52

PR-QMF Filter in (0, 1) 0.0047 0.63

Tab. 4.7 of [1] (1, 0) 0.0047 0.63

(1, 1) 0.33 0.59

8-tap Optimal2 (0, 0) 1 0.61

PR-QMF Filter in (0, 1) 0.0022 0.51

Tab. 4.9 of [1] (1, 0) 0.0022 0.51

(1, 1) 0.75 0.51

Smith-Barnwell’s (0, 0) 1 0.61

8-tap CQF Filter (0, 1) 0.0019 0.56

in [12] (1, 0) 0.0019 0.56

(1, 1) 0.75 0.51
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Appendix B. Tables

TABLE 1.  Test results of the speed and accuracy of the LL-LL subband correlation

TABLE 2.  Effect of template size on accuracy

TABLE 3.  Effect of the number of iterations in subband decomposition on accuracy

Image Name Content Size (WxH) Speed Gain (|∆x|, |∆y|) of peak

Airport satellite image 700x560 10.9 (1, 0)

Baboon close-up 256x256 11.1 (1, 0)

Earth satellite image 457x462 11.0 (1, 1)

Hawaii satellite image 359x250 11.0 (1, 0)

Lenna head and shoulder 256x240 11.1 Fail

Image Name Size (WxH) Template Size (|∆x|, |∆y|) of peak

Earth 457x462 16x16 (1, 1)

32x32 (1, 0)

64x64 (0, 0)

Hawaii 359x250 16x16 (1, 0)

32x32 (2, 1)

64x64 (0, 0)

Image Name Size (WxH) No. of Iterations (|∆x|, |∆y|) of peak
Baboon 256x256 1 (0, 2)

2 (0, 4)

3 (0, 4)

Earth 457x462 1 (0, 0)

2 (0, 2)

3 Fail

Hawaii 359x250 1 (0, 0)

2 Fail

3 Fail
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FIGURE 11.  Comparison of correlation, correlation coefficient, and mean square error methods
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FIGURE 9.  Power spectra of the four terms in Eq. (10), using Johnston’s 8-tap QMF filters

FIGURE 10.  (a) San Francisco Bay Image and (b) a 32x32 template cut from it

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2
Power Spectrum of Term 00, QMF 8 Tap, Mean 0.2168

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8
x 10

−3 Power Srectrum of Term 01, QMF 8 Tap, mean=0.0015

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8
x 10

−3 Power Srectrum of Term 10, QMF 8 Tap, mean=0.0015

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Power Srectrum of Term 11, QMF 8 Tap, mean=0.1520

(a) Term associated withF00(z), mean 0.2168 (b) Term associated withF00(z), mean 0.0015

(c) Term associated withF10(z), mean 0.0015 (d) Term associated withF11(z), mean 0.1520

(a) (b)



17

FIGURE 8.  Power spectra of the four terms in Eq. (10), using Haar filters
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FIGURE 7.  Adaptive subband correlation in two-iteration case
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FIGURE 6.  (a) Star image and (b) a 64x64 template cut from it
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FIGURE 4.  Effect of template size on computation time

FIGURE 5.  Effect of number of iterations in subband decomposition on computation time
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FIGURE 3.  Contour maps of correlation results
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Appendix A. Figures

FIGURE 1.  (a) Two-channel filter bank and (b) its polyphase component equivalence

FIGURE 2.  (a) Lenna image and (b) a 16x16 template cut from it (magnified)
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shown in Figure 11. The picture is 456x640 pixels and the template is 32x32 pixels. The template
is cut from the original image and its center is at (206, 201) of the original image. We use the con-
tour map of the correlation, correlation coefficient, and MSE to compare the effectiveness of the
three methods.

The maximum value of the correlation and correlation coefficient are normalized to 1. The MSE
is shown in the reverse intensity, with the minimal MSE mapped to maximum intensity. Then we
look for the peak positions in these results to find the best match positions of the template.
Because of the bright area in the lower right part of the image (mountain covered by snow), the
correlation result gives the peak at a wrong position (Figure 11(a)). The MSE gives the minimal
value at the correct match point, but there are too many candidate points with small MSEs in the
whole image (Figure 11(c)). The correlation coefficient gives the correct match position and the
peak value is much higher than those of the rest of the image (Figure 11(b)). In this example, the
correlation coefficient method is the only one which gives the correct result with few false alarms.

6.  Conclusion and Future Work

In this paper we focused on image correlation in subband domains and adaptive approaches of
implementing it. First we proved the subband correlation theorem and showed that by using ideal
half-band filters the cross terms of the inter-subband correlation are canceled. We further pro-
posed adaptive methods of subband correlation to reduce computation while keeping accuracy.
The effects of template size and number of iterations of subband decomposition were investi-
gated. Then we analyzed examples of different filter banks and their effects on subband correla-
tions. Finally we discussed other criteria of image matching which can be implemented based on
correlation.

Correlation or correlation coefficients themselves may not necessarily represent visual content
similarity. Invariances of size and rotation are not provided. Future work will address the issues of
combining correlation with other image features derived directly from compressed domains and
their efficient implementations.
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large area with very high intensity in the image, it is more likely to get high correlation values
there, although the template may not be visually similar with that area. Other approaches based on
image correlation are discussed in the following.

5.1  Mean Square Error

The mean square error (MSE) calculates the Euclidean distances between the template and differ-
ent image regions. The smaller the error, the closer the template is to the image region. The com-
putation of MSE can be decomposed into three components: the energy of the template, which is
a constant; the energy of the image region overlapping with the template, which is slowly varying;
and the correlation of the image and the template. With the correlation result prepared, the MSE
can be easily computed. In ideal cases, MSE criterion is a reasonable method to find the best
match. But in practice, the noise of pictures and different lighting or intensity scaling will greatly
affect the result of this method. Furthermore, the image pattern we are going to find may not have
the exact intensity level equivalent to the template. It is difficult for this method to find visually
matched or related candidates. Features and patterns are more important than the absolute inten-
sity in image matching. Hence, the MSE may not be a very good criterion without combining it
with other matching criteria. In [13] average intensity is used as a second matching criterion
besides MSE and the algorithm is computed in Fourier domain.

5.2  Correlation Coefficient

The correlation coefficient is defined as the correlation of two normalized random variables [9].
Consider one dimensional sequencef with lengthN and another one dimensional sequenceg with
lengthM, their correlation coefficient is defined as (assumeM < N)

whereg is the average value ofg(n) (computed only once),f(n) is the average off(n) in the inter-
val coincident with the non-zero interval ofg. It is clear that the numerator of Eq. (11) involves
correlation off andg. Since the average intensity is subtracted and the residue normalized before
doing the correlation, the absolute intensity does not affect the result of correlation here.

Computation of correlation coefficient includes similar components with MSE, i.e., energy of the
template, energy of the image overlapped with the template window, and the correlation. It pro-
vides the advantage of lighting (average intensity) invariance at the cost of the higher computa-
tion complexity, when compared to correlation.

5.3  Comparisons

Given a remote sensing picture of San Francisco Bay and a template of the seashore, we use mean
square error, correlation, and correlation coefficient to find the best match. The original image and
template are shown in Figures 10(a) and 10(b), respectively. The results of the three methods are
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found that Johnston’s 8 tap QMF filters [7] is slightly better (within the difference of 2-3 pixels)
than Haar filters.

The effects on speed is easier to predict. As shown in section 3.3 the computation can be divided
into two parts: the correlation of subband images, whose complexity has little to do with filter
banks; the filtering byFij(z)after the upsampling of the subband correlation, where the number of
tap of filters determines the complexity. Hence it is clear that for large templates the effect of
using various filter banks is small; while for small templates and the multiple iteration case the
effect of using longer filters will be more prominent.

4.2  Comparisons of Various Filters

From Eq. (10) we know that it is desirable if most of the energy of the correlation signal falls into
one of the four terms. Thus filter banks which are able to compact energy into one term or few
terms in Eq. (10) are more favorable. As said in section 3.1 the filter bank will determine the spec-
trum of the filtersFij(z)s as well as the spectra of the subband components. The spectrum of the
original signal is in general not known and thus we first compare the power spectra of the four
terms in Eq. (10). Figures 8 and 9 illustrate the cases for Haar filters and Johnston’s 8-tap QMF
filters.

From Figure 8 and Figure 9 we see that the energy of the cross-band terms is generally small. In
the case of Haar filters the energy of the in-band terms are about ten times greater than the cross-
band terms. In the QMF case the ratio is over one hundred which means the QMF filters have bet-
ter energy compaction property. The high frequency in-band term is comparable with the low fre-
quency in-band term. In practical situations since the image signals usually have much larger low
frequency components, the first term will be dominant in most cases, as we described in section 3.

In Table 4 we give the numerical values of the mean of the power spectra in the four terms of Eq.
(10) for various filter banks. Note that these mean values are normalized so that the mean of
power spectrum of term associated withF00(z) is unity. Haar filter, Johnston’s 8-tap QMF filter,
Mallat’s QMF filter presented in [8], 8-tap optimal perfect reconstruction QMF filter presented in
Tables 4.7 and 4.9 of [1], and Smith-Barnwell’s 8-tap CQF filter in [12] are compared. We can see
from Table 4 that the CQF filter and Optimal filters have the tendency to dramatically suppress the
energy of cross-band terms in Eq. (10) and thus seem to be more suitable for the subband correla-
tion applications. The first Optimal filter can also suppress the energy in the high frequency in-
band term in Eq. (10). That is because these filters are carefully designed for better energy com-
paction properties. The “flatness” of the power spectra in each of the terms in Eq. (10), which is
estimated as the geometric mean divided by arithmetic mean, are also computed and compared
for these filters. This flatness metric ranges from zero to one. We see that for most filters the
power spectra have similar flatness (0.5-0.7) except in the case of Johnston’s 8-tap QMF filters
where cross-band terms are relatively narrow.

5.  Other Criteria of Image Matching involving Correlation

The correlation of two images is a good way of describing the relation between their image con-
tents. However, this method is affected by the absolute intensity of the images. When we have a
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goes beyond two. Hence the reduction of computation grows more slowly as the number of itera-
tions goes up.

As shown in Table 3, the peak positions deviate as the number of iterations goes up. In the
Baboon case this deviation is small and the result is acceptable, while in the other cases the origi-
nal peaks are lost if we use the LL-LL terms only after the iterations of subband decomposition.
The difference between Baboon and the other two satellite images is that the latter have more high
frequency components in the templates. For example, the 64x64 template of Hawaii case has the
energy distribution in the four bands (LL, LH, HL, HH) as 53%, 21%, 15% and 11%. As the tem-
plate is further decomposed and the LL band becomes smaller, the energy distribution tends to
move toward high frequency bands and becomes more uniform, which is different from general
large images.

These examples show that a reasonable number of iterations of subband decomposition may be
two (or the size of the smallest LL image is larger than 16x16 pixels). If the template contains
considerable high frequency energy, the LL-LL subband correlation alone will not give satisfying
result.

3.5  Adaptive Method in Multiple Iteration Case

As shown in section 3.4, when we have more than one iteration of subband decomposition, it is
not always reliable to use only the LL-LL subband correlation to approximate the original correla-
tion. The adaptive method plays an important role here to get the correct result efficiently. An
example is shown in Figure 7 with Haar filter bank used. We show the original correlation of
image Star (Figure 6(a)) with a 64x64 template cut from it (Figure 6(b)) and the result using only
the LL-LL subband correlations after two iterations of decomposition. The results are represented
in Figures 7(a) and 7(b) in mesh graph with the height of the surface corresponding to the normal-
ized correlation value. They differ significantly. Then we use the adaptive method in every step of
iteration. In the first step the energy distributions are 86%, 6%, 6% an 1% for the image and 64%,
16%, 14% and 6% for the template. The low frequency components dominate so we just use the
LL-LL subband correlation. As we go to the second iteration, we measure that the energy distri-
butions change to 68%, 13%, 14%, 4% for the image and 45%, 19%, 17% and 19% for the tem-
plate. Only the HH component of the image is low, so we take the in-band and cross-band
correlations of LL, LH and HL components. The result of this adaptive method is shown in Figure
7(c). It can be seen that the result is much more closer to the original correlation result compared
with the LL-LL only approach.

4.  Variation of Filter Banks

4.1  Effects on Correlation Accuracy and Speed

As shown in section 2.3, if an ideal filter bank is used, only the in-band correlations are needed for
the perfect reconstruction of the original correlation of the two images. For general filter banks
this is not true. The properties of the filters will affect both the performance and complexity of the
subband correlation. It is not easy to predict the effect of different filter banks on the accuracy of
peak location. Based on several images we tested the accuracy of peak location of correlation. We
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From Table 1 we see that given the same template size and filters, the speed gain of the method is
almost fixed at 11. It is independent of the image size. The peak positions of the subband correla-
tion are very close to the original ones except in the Lenna case where multiple correlation peaks
exist. The LL-LL subband correlation gives good approximations in most of the examples with
significant reduction of computation. In later sections we will show that other subbands than LL
band only may need to be involved. For those cases, we will apply our energy-based adaptive
matching method. We will also discuss the effects on the efficiency and accuracy of subband cor-
relation by varying template size, number of iterations of subband decomposition, and filter type.

3.3  Speed and Accuracy vs. Size of Template

We still take the LL-LL subband correlation as the approximation of the original correlation but
vary the template size. Haar filters are again used for subband decomposition. Templates are cut
from the original images. Two satellite images are tested and the results are given in Figure 4 and
Table 2.

As stated at the beginning of section 3, the computation of pixel domain correlation is in the order
of (NM)2, with N, M the size of the image and template, respectively. AsM doubles, the computa-
tion goes up by four times. This is exactly the case in Figure 4(a). However, the computation of
subband correlation does not go up as fast as the pixel correlation. Let n denote the number of taps
of the filtersFij(z)s in Eq. (10). For subband correlation, the computation will be in the order of
(MN/4)2 + 2nN2 if we include computation associated with zero coefficients.* In our examples we
use Haar filter bank wheren equals three. So the computation is in the order of (M2/16 + 6)N2. As
M goes up, because the time spent for the filtering remains the same, the total computation time
goes up more slowly than that of the pixel domain correlation. The above equation fits better with
the example in Figure 4(a) than the example in Figure 4(b).

In the above examples, the size of the template does not significantly affect the accuracy of the
peak location in subband correlation, as shown in Table 2.

3.4  Speed and Accuracy vs. Number of Iterations of Subband Decomposition

We use two images as examples to show the effects of the number of iterations of subband decom-
position on the performance of subband correlation. As the LL band image is further decomposed,
we still use only the LL-LL subband correlations in the multiple iterations to get an estimation of
the pixel domain correlation. The sizes of the templates are 64x64 pixels. Haar filters are used for
subband decomposition. Results are shown in Figure 5 and Table 3.

It can be seen from Figure 5 that after the second iteration of decomposition, the computation
reduces greatly. However, the third iteration has much less effect on computation. Remember we
estimate that the computation is in the order of (MN/4)2 + 2nN2 if computation associated with
zero coefficients is included. As the number of iterations goes up by one, the first term of the
equation reduces by 16 times, while the second term increases a bit because of the filtering of
Fij(z) after upsampling. Thus the effect of the second term dominates as the number of iterations

* If we carefully omit the computation associated with zero coefficients, the complexity should be (MN/4)2+0.75nN2
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nals themselves as well as the filters used. Here we consider the signals first. Effects of different
filter banks will be discussed later.

Intuitively, the stronger a signal is, the more it will contribute to the correlation, because correla-
tion involves the summation and multiplication of two signals. Therefore, it is reasonable to pick
up the terms in Eq. (10) which involve the correlation of the subband components with greater
energy and discard those trivial ones. Though it may not best represent the visual features of the
image, such as texture and shape, this criterion is efficient and easy to implement, especially when
the visual features are hard to extract or it is time-consuming to do so.

First we define the source images in the database as “images” and the query examples presented
by the users as “templates”. Then the energy based adaptive method for subband correlation can
be summarized as follows. Given subband decomposed image and template, first compute the
energy in each subband; then by applying a pre-determined threshold, discard the terms involving
subband components with energy less than the percentage threshold; compute the necessary terms
including upsampling and filtering and then sum them up to approximate the original correlation;
finally detect the peak area of the correlation for possible matches.

When comparing the subband correlation results with original ones, we consider their speed and
accuracy. Computer run time spent in the system are given for comparison of different
approaches. All algorithms are written in C language and executed on an SGI Onyx workstation.
The difference in pixels between the coordinate of the peak point in subband correlation and that
in original correlation is given in absolute value (|∆x|, |∆y|) to measure the accuracy. If either |∆x|
or |∆y| is greater than five pixels, we assume that the peak position is wrong in the result of sub-
band correlation and the method fails in accuracy.

3.2  LL-LL Subband Correlation

It is known that for most natural images their energy concentrates in the low frequency bands. The
high frequency components which correspond to the difference of the pixels usually have rela-
tively small values and energy. Thus for many pictures the term involving LL-LL subband corre-
lation will give a good approximation of the original correlation. Figure 3(a) shows the original
correlation of the Lenna image (Figure 2(a)) with a 16x16 template (Figure 2(b)) cut from it. Fig-
ure 3(b) shows the corresponding subband correlation using only the LL-LL term. Both results
are represented in contour maps. The height of each curve corresponds to the normalized correla-
tion value. We can see that the peak positions and curves of the two contour maps matches well
with each other. Hence the LL-LL subband correlation is a good approximation of the original
one.

We tested five images including general images and satellite pictures for the speed and accuracy
of the LL-LL subband correlation. In all cases we use a 16x16 template cut from the original
image and Haar Filters for subband decomposition. The result is shown in Table 1. The size of the
image is given in the form of width by height (pixels). All examples are gray-level images with 8
bits per pixel. “Speed Gain” is defined as the ratio of the computation time of pixel domain corre-
lation over the computation time of subband correlation. “Fail” in the last column indicates that
either |∆x| or |∆y| is greater than 5 pixels.
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2.3  Ideal Filter Case

Eq. (10) has four terms including the weighted in-band and cross-band correlations of the sub-
band components. However, if an ideal half-band lowpass filter and an ideal half-band highpass
filter are used, only the in-band terms in Eq. (10) are needed. Consider the spectrum of the upsam-
pled subband signals in the interval (0,π). For ideal half-band brick-wall filters, |Y0(e

j2ω)| and
|Z0(e

j2ω)| will be zero in the interval (π/4, 3π/4); |Y1(e
j2ω)| and |Z1(e

j2ω)| will be zero in the inter-
vals (0,π/4) and (3π/4, π) (Note that the period of Fourier spectrum of an upsampled signal is one
half of that of the original signal). It is clear that the spectrum of the cross-band correlations in Eq.
(10) will be zero in this case. Therefore only the in-band terms are needed for the computation of
correlation if we use ideal filters.

2.4  Two Dimensional Signals and Wavelet Decomposition

Using separable two-dimensional filter banks, the subband correlation theorem can be easily
extended to two-dimensional signals like images. In subband decomposition, the image is filtered
in each dimension separately [18] and decomposed into four frequency bands, namely LL, LH,
HL, and HH bands, where L stands for lowpass filter, and H for highpass filter. The first letter of L
or H refers to row filtering, and the second one to column filtering. The correlation of the two
images is then decomposed into the weighted sum of four in-band and twelve cross-band correla-
tions. The filtering of the subband correlation by the weighting filterFij(z) is also done in a sepa-
rable manner, row filtering followed by column filtering, or vice versa.

Each subband component of a signal can be decomposed iteratively using the same filter bank and
thus lead to wavelet or wavelet packet decomposition of the signal [8]. The subband correlation
theorem can also be applied iteratively in these cases.

3.  Adaptive Subband Correlation

Subband and wavelet decompositions preserve both partial spatial and frequency information.
Correlation in the subband domain provides the possibilities of combining these spatial-frequency
features for more efficient image matching or search. However, the straightforward implementa-
tion of Eq. (10) does not save computation. For example, suppose the image size isNxN and the
template size isMxM. In pixel domain correlation, the computation complexity is in the order of
(NM)2, while the computation for each of the subband correlation is (NM/4)2. Adding up the six-
teen correlations will result in the same computational complexity as the pixel domain correla-
tion, plus the overhead of the subband filtering byFij(z)s. Thus we need even more computation.
To solve this problem, we will show that it is not always necessary to compute the sixteen sub-
band correlations to reconstruct the original correlation. By adaptively choosing the important
terms in (10) we may reduce the computation of subband correlation significantly and keep the
result accurate.

3.1  Energy Based Adaptation

From Eq. (10) we see that the correlation of one-dimensional signals equals the weighted sum of
subband correlations. The contribution of each term to the original correlation depends on the sig-
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From Eq. (7) we can easily see that if  then we will have perfect reconstruction of
the original signal after the subband analysis and synthesis filters, i.e. . For orthogonal
systems where , the condition becomes .

We consider the correlation of two one-dimensional signalsx(n) andw(n). The correlation of the
signals can be represented inz-transform domain as . Suppose the subband decomposi-
tions ofx(n) andw(n) are {y0(n), y1(n)} and {z0(n), z1(n)}, respectively. Using above conditions
with reference to Figure 1(a), we have:

Note that we assume reconstruction signals,  and , are close enough to the original sig-
nals,  and . This is true for filter banks with perfect reconstruction property. Eq. (10)
shows that the correlation of two signals equals the weighted sum of their correlations in sub-
bands. The original correlation is decomposed into four terms of subband correlation weighted by
filters Fij(z) defined in Eq. (11). Hence the subband correlation theorem is proved. We define the
terms associated withF00(z) andF11(z) asin-band terms and the other two ascross-band terms.
As shown in Eq. (11), the weighting filterFij(z) corresponds to thez-transform of the correlation
of the impulse responses of analysis filtersHi(z) andHj(z). Note that thez2 in Eq. (10) corre-
sponds to upsampling by two in time domain.

Related work on subband convolver can be found in [15], in which intra-subband convolutions
(or correlations) are summed up to get a subsampled version of the original convolution (or corre-
lation). Here we explore the representation of the complete correlation in terms of both intra-sub-
band and cross-subband correlation, i. e., both in-band and cross-band terms in Eq. (10).
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ing overhead. Furthermore, because the subband domain keeps partial spatial information of the
images, we can find the locations of the image correlation peaks directly without inverse trans-
form. It is also convenient to combine other features (like texture and multiscale edges) in the
subband compressed domain with this method.

The size of template, the number of iterations of subband decomposition, and the type of filter
bank will all affect the accuracy and speed of the proposed method. These effects are discussed
with theoretical estimations and numerical results. Finally we discuss several image matching
methods where the adaptive subband correlation scheme can be applied. Their relations with
image correlation are explained and their levels of effectiveness are compared using an example.

2.  Subband Correlation Theorem

We prove that the correlation of two discrete signals can be decomposed into the correlations of
their subband components. Here we consider the case of one-dimensional signals and two-chan-
nel filter banks. The result can be generalized to two-dimensional signals and multi-channel filter
banks easily.

2.1  Notations

In the following discussion we useX(z) for thez-transform of a one-dimensional sequencex(n); ~
(tilde) for transposition of the matrix, followed by conjugation ofz-transform coefficients, and
substitution ofz by z-1 at last;Hi(z) for analysis filters andGi(z) for synthesis filters; subscript 0
for lowpass filters and low frequency signals and subscript 1 the contrary; upward arrow for 1:2
upsampler and downward arrow for 2:1 subsampler (decimator); bold face characters for matri-
ces.

2.2  Theorem

The subband decomposition and reconstruction of signals can be represented by the diagram in
Figure 1(a), in which we assume lossless coding and ignore quantization. The analysis of such a
subband system can be facilitated by using polyphase representation of the signals and the filters
[16, 17]. Figure 1(b) shows the polyphase component equivalence of Figure 1(a). The relations
between the two figures are:
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Output can be represented in terms of polyphase components as well
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Abstract

In this paper we discuss image matching by correlation in the subband domain with prospective applications. Theo-
retical proof is given to show that the correlation of two signals equals the weighted sum of the correlations of their
decomposed subband signals. We propose an adaptive method to compute image correlation directly in the subband
domain, which avoids decoding of the compressed data. Compared with pixel-domain correlation, this method
reduces computation by more than ten times with satisfactory accuracy. We also compare the effects of template size,
number of iterations of subband decomposition, and filter type on the speed and accuracy. Complexity estimations
and test results are given. In addition, several techniques which involve image correlation are investigated for appli-
cation in image matching.

1.  Introduction

As the contents of databases evolve from text to multimedia information, the search and query
methods of databases are also undergoing fundamental changes. Applying content-based search
and visual query techniques [5], the objective is to efficiently retrieve visual information from
large image and video databases with as little human involvement as possible.

Prominent visual features, such as texture, shape, and color, are usually used for query in image
and video databases [4, 5, 10, 11, 14]. Users may specify a query by textual descriptions or, most
likely, with the assistance of graphical user interface tools. In many other cases, they will give an
image example to search for visually similar images or video scenes in the database. One way to
achieve this is to extract features from the example and compare them with the visual features of
the images in the database. This may become hard when the example lacks distinct visual features
or accurate feature extraction is difficult. Another approach is to use the example itself as a tem-
plate without extracting the features and search for similar images by template matching.

Image matching has been studied extensively and several popular methods are based on the corre-
lation between the image and the template (i.e., the query example) [2, 6]. However, with two-
dimensional convolution involved, these methods are computationally complex. Although FFT
can be used to carry out the correlation in the Fourier Domain, there is no efficiency gain over the
direct implementation when the size of the template is much smaller than the image, which is usu-
ally the case in image database searching [3]. Another disadvantage in using FFT is the inverse
transform overhead at the end in order to find the correlation peaks, which correspond to possible
matching positions.

This paper proposes an adaptive method which achieves image correlation in the subband
domain. Compared with the conventional pixel-domain correlation, it reduces computational
complexity by more than ten times. Based on the energy distribution over different bands, the
adaptive method uses dominant subband correlation components to approximate the original cor-
relation. This method can be applied directly in the subband compressed domain without decod-


