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Abstract
The work reported in this paper addresses the issue

of automatically tracking the faces and facial features
of persons in head-and-shoulders video sequences.
We propose two totally automatic algorithms which
respectively perform the detection of head outlines
and identify rectangular \eyes-nose-mouth" regions,
both from downsampled binary thresholded edge im-
ages. Unlike ones that have been proposed recently, a
priori assumptions regarding the nature and content
of the sequences to code are minimal for our tech-
niques, and the algorithms operate accurately and
robustly, even in cases of signi�cant head rotation or
partial occlusion by moving objects.

1 Introduction

The motivation for this work was to investigate the
feasability of detecting and tracking speci�c moving
objects known a priori to be present in a video se-
quence, and to enable a low bit rate video coding
system to use this information in order to discrimina-
tively encode di�erent areas in \head-and-shoulders"
video sequences|an idea which has been recently
proposed in [11, 17, 13]. The encoder would, for ex-
ample:

� Encode facial features (such as eyes, mouth,
nose, etc.) very accurately.

� Encode less accurately the rest of the picture,
be it moving or still.

This requires that the encoder �rst models and
track face locations, then exploit this information to
achieve model-assisted coding [5, 6]. The location de-
tection algorithm should be of fairly low complexity;
in addition, if transmission of the model parameters
is required, the overhead bit rate should be mini-
mized.
The detection of head outlines as well as outlines

of persons (silhouettes) in still images has been the
object of active and recent research in computer vi-
sion [7, 3, 8, 9]. The task of detecting and tracking
head outlines in a sequence of images is facilitated
by both the fact that people's head outlines are con-
sistently roughly elliptical, including when the per-
sons appear in a pro�le, and by the temporal cor-
relation from frame to frame. Previous work [5, 6]
proposed an automatic algorithm for head outline
location tracking, as well as the design of a model-
assisted dynamic bit allocation strategy with object-
selective quantization, in the context of a 3D subband
based video codec operating at the total bit rate of
128 kbps. In this paper, we propose automatic algo-
rithms for the detection and tracking of both head

outlines and rectangular \eyes-nose-mouth" regions.
The former algorithm models face contours as el-
lipses. The latter exploits the symmetry with respect
to a slanted facial axis, which is inherent to a human
face appearing in a 2D projection provided that the
rotation of the head is slight.
In Section 2, we describe the models adopted for

the representation of face location information, and
the generation of edge data used as input to the
tracking algorithms. In Sections 3 and 4, we de-
scribe two automatic low{complexity algorithms re-
spectively for the tracking of head outlines and for
the tracking of eyes-nose-mouth regions. The algo-
rithms operate under minimal assumptions regard-
ing sequence content, and belong to a broad class of
pattern-matching algorithms used for object detec-
tion [16, 15]. Sample detection results and statistics
are presented in Section 5.

2 Location models and extraction
of edge data

2.1 Face and feature location models

The model we adopted in order to represent the lo-
cation of a face was simply that of an ellipse E, as
shown in Figure 1, characterized by a center (x0; y0),
the lengths of its minor and major axes A;B, and a
\tilt" angle �0. Although the upper (hair) and lower
(chin) areas in actual face outlines can have quite
di�erent curvatures, ellipses provide a good trade-o�
between model accuracy and parametric simplicitly.
Equivalently, an ellipse of arbitrary size and

\tilt" can also be represented by a quadratic, non-
parametric equation (implicit form) [2] of the form:

ax2+2bxy+cy2+2dx+2ey+f = 0; b2�ac < 0; (1)

where the negative value of the discriminant D =
b2 � ac is a necessary condition, as other values are
associated with di�erent quadratic curves.
Since an elliptical head outline can in some cases

provide only a rough estimate of the face location, we
have chosen to re�ne this elliptical location model by
identifying a rectangular region W inside the ellipse,
which tightly captures the eyes, nose, and mouth of
the person in the scene. This location model of an
\eyes-nose-mouth" region is similar to the one pro-
posed by Lavagetto et al. [10, 4], with a di�erence in-
troduced by allowing a slant of its vertical axis with
respect to the image vertical, as shown in Figure 2.
This additional degree of freedom ensures that the
detection will be robust in the (very frequent) case
of slight head motion (see Sections 4, 5). The upper
third of the window, denotedWu, is further identi�ed
to contain the eyes and eyebrows|two most reliably



symmetric features in a human face. The window W
is entirely characterized by a center (x1; y1), width
w, height h, and slant angle �1.

2.2 Generation of binary edge data

The binary input data to the automatic face loca-
tion algorithm of the next section are obtained at
the encoder through a preprocessing stage depicted
in Figure 3, consisting of the following cascade of op-
erations:

1. Temporal downsampling of the input luminance
video signal, consistent with the frame rate of
the input signal to the video codec.

2. Low{pass �ltering of input video frames of size
360 � 240 with a separable �lter with cut-o�
frequency at �=8, followed by decimation by a
factor 8 in both horizontal and vertical dimen-
sions, producing low-pass images of size 45�30.

3. Edge detection on these images. The Sobel op-
erator [14], represented in matrix form by hori-
zontal and vertical operators as:

�x =

"
�1 0 1
�2 0 2
�1 0 1

#
; (2)

�y =

"
1 2 1
0 0 0

�1 �2 �1

#
; (3)

is used to compute the two components of an
image gradient. A gradient magnitude image is
then obtained by computing the magnitude of
the gradient at each pixel.

4. Tresholding of the gradient magnitude images
to generate binary edge data.

The binary input data to the automatic location
algorithm for the eyes{nose{mouth region is gener-
ated in a similar way, albeit on images which are only
downsampled by a factor two, in order not to lose the
features of interest in the downsampling, namely eye,
nose, and mouth edge data.

3 Automatic detection and
tracking of head outlines

The algorithm detects and traces the outline of a face
location geometrically modeled as an ellipse, using as
preprocessed input data binary thresholded gradient
magnitude images of size 45 � 30. Our face location
detection algorithm was designed to locate both oval
shapes (i.e. \�lled") as well as oval contours partially
occluded by data. The algorithm is organized in a hi-
erarchical three-step procedure: coarse scanning, �ne
scanning, and ellipse �tting. A �nal step consists of
selecting the most likely among multiple candidates.
This decomposition of the recognition and detection
task in three steps, along with the small input image
size, make the algorithm attractive for its low com-
putational complexity; exhaustive searches of large
pools of candidates were thereby avoided. The dif-
ferent steps are described below, and are illustrated
in Figure 4.

Step 1: Coarse Scanning
The input signal is segmented into blocks of size

5 � 5. Each block is marked if at least one of the
pixels it contains is non-zero. The block array is
then scanned in a left-to-right, top-to-bottom fash-
ion, searching for contiguous runs of marked blocks.
One such run is shown in the small circle, in Fig-
ure 4.a. For each such run the following two steps
are performed.

Step 2: Fine Scanning
Figure 4.b shows the two circled blocks of the run

of Figure 4.a, appropriately magni�ed. The algo-
rithm scans the pixels contained in the blocks of a
run, again in a left-to-right, top-to-bottom fashion.
Here, however, the algorithm is not interested in con-
tiguous runs of pixels, but rather in the �rst line
that contains non-zero pixels. The �rst and last non{
zero pixels of that line, with coordinates (Xstart; Y ),
(Xend; Y ), de�ne a horizontal scanning region.

The �rst two steps of the algorithm act as a hori-
zontal edge-merging �lter. The size of the block di-
rectly relates to the maximum allowable distance be-
tween merged edges. It also has a direct e�ect on
the speed of the algorithm, which is favored by large
block sizes. The purpose of these two steps is to iden-
tify candidate positions for the top of the head, where
the edge data corresponding to the head outline is
generally unencumbered by data corresponding to
other objects. At the end of the second step, the
algorithm has identi�ed a horizontal segment which
potentially contains the top of the head.

Step 3: Ellipse Fitting/Data Reduction
In this third step, illustrated in Figure 4.c,

the algorithm scans the line segment de�ned by
(Xstart; Y ), (Xend; Y ). At each point of the segment
ellipses of various sizes and aspect ratios are tried-
out for �tness, with the top{most point of the ellipse
always located on the horizontal scanning segment.
Good matches are entered as entries in a list. Af-
ter the search is completed on the segment, the algo-
rithm continues at the point where it left o� in Step 1.
Only ellipses with \zero tilt" (�0 = 0) were consid-
ered here. The primary reason for imposing this re-
striction is that we could trade-o� an extra degree of
freedom (and hence algorithm simplicity) by extend-
ing the search range for the aspect ratio1. Another
reason is that the orientation of the facial axis (corre-
sponding to the major axis of the ellipse model) can
be much more reliably obtained by exploitng consid-
erations of facial symmetry, as described in Section 4.
The �tness of any given ellipse to the data is de-

termined by computing normalized weighted aver-
age intensities Ii and Ie of the binary pixel data on

1Typical face outlines have been found to have
aspect ratios in the range of (1:4; 1:6) [9]. More-
over, the face tilt has been found to be in the range
(�30o;+30o); a signi�cant constraint due to the hu-
man anatomy. Within these ranges for � and r, a
tilted ellipse can be reasonably covered by a non{
tilted one, albeit with a smaller aspect ratio (in the
range (1:0; 1:4)).
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the ellipse contour and border respectively. Although
the contour of an ellipse is well-de�ned by its non-
parametric form, the rasterization (spatial sampling)
of image data necessitates the mapping of the contin-
uous curve to actual image pixels. This is also true
for the ellipse border. These discretized curves are
de�ned as follows. Let IE(i; j) be the index function
for the set of points that are inside or on the ellipse
E. In other words,

IE(i; j) =

�
1 if (i; j) is inside or on E
0 otherwise

(4)

A pixel is classi�ed as being on the ellipse contour if
it is inside (or on) the ellipse, and at least one of the
pixels in its (2L+1)� (2L+1) neighborhood is not,
i.e.:

(i; j) 2 Ci () IE(i; j) = 1; and

i+LX
k=i�L

j+LX
l=j�L

IE(k; l) < (2L+ 1)2: (5)

Similarly, a pixel is classi�ed as being on the ellipse
border if it is outside the ellipse, and at least one of
the pixels in its (2L + 1) � (2L + 1) neighborhood
is inside the ellipse. The parameter L de�nes the
desired thickness of the ellipse contour and border,
and is a tunable design parameter.
Given the above de�nitions for contour and border

pixels, the normalized weighted average intensities Ie
and Ii are de�ned as follows:

Ii =
1

jCij

X
(m;n)2Ci

wm;n p(m;n); (6)

where p(m;n) are the (binary) image data, jCij is
the cardinality of Ci, and wm;n are weighting factors
introduced to enhance the contribution of the data
in the upper quarter of the ellipse (see Fig. 2)|the
most reliable region for �tting, i.e.

wm;n =

�
w > 1 if (i; j) 2 Qu

1 if (i; j) not in Qu,

In our experiments, a weight w = 1:5 was used, for
which consistenly reliable results were obtained. Sim-
ilarly, we de�ne:

Ie =
1

jCej

X
(m;n)2Ce

p(m;n): (7)

The normalization with respect to the \length" of
the ellipse contour and border is necessary, in order
to accomodate ellipses of di�erent sizes.
An ellipse will �t ellipse{shaped data well when-

ever the value of Ii is high (close to the maximum
value Imax = 3+w

4 ), and that of Ie is low (close to
zero). In order to translate this joint maximization-
minimization problem to the maximization of a single
quantity, we de�ne a model-�tting ratio R as:

R =
1 + Ii
1 + Ie

: (8)

The higher the value of R, the better the �t of the
candidate ellipse to the head outline2 .

2In the hypothetical situation of perfectly ellipse-
shaped data, the best-�tting ellipse aligned with the
data would correspond to Ii = 1, Ie = 0, and R = 2.

In order to �lter out false candidates, only ellipses
which satisfy:

Ii > Iimin and Ie < Iemax ; (9)

are considered, where Iimin and Iemax are tunable de-
sign parameters. Their use is necessitated by the fact
that R is mostly sensitive to the relative values of Ii
and Ie, and much less to their absolute values.
The above three{step procedure will in general

yield more than one ellipse with a good �t. If there
is a need to select a single �nal one (e.g. when it is
known that the sequence only includes one person),
then an elimination process has to be performed.
This process uses two \con�dence thresholds" �Rmin

and �Iemin . If the value of R for the best{�tting el-
lipse is higher from the second best by more than
�Rmin, then the �rst ellipse is selected. If not, then
if the border intensity di�erence between the two
ellipses is higher than �Iemin , the ellipse with the
smallest Ie is selected. If the border intensity dif-
ference is smaller than that (which rarely occurs in
practice), then the original best candidate (the one
with the maximum R) is selected.

4 Detection of eyes{nose{mouth
regions

The elliptical face location model described above
can be re�ned by including a segmentation of the
elliptical region into a rectangular window and its
complement. We require that the window be posi-
tioned so that it tightly captures the region of the
face corresponding to eyes and mouth; the features
of interest. Our identi�cation of eyes/mouth regions
follows the procedure described by Lavagetto et al.
in [10, 4], and �rst proposed by Badiqu�e [1], and
extends it to include tracking in cases where: i) the
subject does not directly face the camera, ii) the sub-
ject has facial hair and/or wears eyeglasses, and iii)
the subject is not caucasian. The algorithm is based
on exploiting the typical symmetry of facial features
with respect to a longitudinal axis going through the
nose and accross the mouth. Our algorithm allows
this symmetry axis to be slanted with respect to the
vertical axis of the image, thereby ensuring consider-
ably more robustness in the detection of an eyes-nose-
mouth region. In particular, detection of this region
is still possible when the subject does not look di-
rectly at the camera; a very common occurence in a
video teleconferencing situation. The algorithm op-
erates in two steps:

Step 1: De�nition of search region
The center (x0; y0) of the elliptical face location

model is used to get estimates for the positioning of
the eyes-nose-mouth window. The search region for
the center of this window is de�ned as a square region
of size S�S (S was equal to 12 in our experiments).
The window itself was chosen to be of �xed size w�h,
de�ned relatively to the minor and major axes of the
face location model.

Step 2: Scanning of search region
For each candidate position (xk; yk) of the window

center in the search region, a symmetry functional
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with respect to the facial axis is computed, where this
axis can be rotated by discrete angle values around
the center of the window. In our experiments, the
slant angle �k could take any of the discrete values
�10�; �5�; 0�; 5�; 10�. Let S(m; n) denote the
point which is symmetric to (m;n) with respect to
the axis D((xk; yk); �k). The symmetry functional is
computed as follows:

S(xk; yk; �k) =
1

A(R)

0
@ X

(m;n)2R\Wu

wam;n +

X
(m;n)2RnWu

am;n

1
A(10)

where A(R) denotes the cardinality (area in pixels) of
the trapezoid region R depicted in Figure 2, RnWu

denotes the set di�erence of R and Wu, am;n is the
function de�ned by:

am;n =

(
1 if p(m;n) = p(S(m; n)) = 1
1
2 if p(m;n) = p(S(m; n)) = 0
0 otherwise,

and w is a weighting factor greater than one. This
weighting factor w ensures that the edge data in Wu

which is symmetric with respect to the axis, signi�-
cantly contributes to the functional. The segmenta-
tion of the rectangular window into the regions Wu

and R ensures that only data corresponding roughly
to the eyes, nose and mouth be taken into consider-
ation in the positioning of the window, and that this
positioning is mostly enforced by \eye data", which
we have found to be the most reliably quantitatively
symmetric region.
As in the ellipse detection case, false candidates de-

�ned as windows for which the density of data points
in the upper third rectangle is below a minimum den-
sity Dmin, are �ltered out.

5 Experimental detection results

The output of sample test runs of the automatic face
location detection algorithm on sequences referred to
as \jelena," \roberto," and \jim," is shown in Fig-
ures 5, and 6. In these �gures, the images on the
left show binary edge images, magni�ed by a factor
two in both dimensions, with best-�tting eyes-nose-
mouth regions overlayed in gray.
The head location tracking algorithm performs ro-

bustly, even in di�cult situations such as partial
occlusion of the person's head/face by a hand{held
moving object. The tracking of eyes-nose-mouth re-
gions is also performed robustly as illustrated by
the examples given, where the two men in the im-
ages have facial hair and/or wear eyeglasses. The
rate of \correct tracking" of the eyes-nose-mouth
area|de�ned as the accurate capture of eyes-nose-
mouth region and correct estimation of the facial
nose-mouth axis|is approximately 95%, on average
over more than 80 seconds of video data. It was of
particular interest to observe that constraining the
rectangular window to be aligned with the image
frame resulted in an average correct tracking rate of
only 80%.

5.1 Conclusion and future work

We proposed two algorithm for the tracking of a facial
area in head-and-shoulders video sequences. Head
location detection is based on a low-complexity hi-
erarchical algorithm that models the head as an el-
lipse, and utilizes physical structure information to
robustly identify head contours, even in cases of se-
vere occlusion. Face location is then estimated start-
ing from the head position information, and exploit-
ing the natural symmetry that can be found in the
facial features with respect to a vertical axis.
Unlike algorithms that have been proposed re-

cently, ours do not assume a priori restrictions re-
garding the nature and content of the head-and-
shoulders sequences to code. The two algorithms op-
erate accurately and robustly respectively: i) in cases
of signi�cant head rotation and/or partial occlusion
by moving objects, ii) in cases where the person in
the image has facial hair and/or wears eyeglasses.
The tracking accuracy for eyes-nose-mouth regions

is high|more than 95% on average|which gives
hope for the future design of algorithms for the robust
tracking of individual facial features, such as eyes and
mouth corners. The tracking algorithms could also
be tailored to di�erent applications, i.e. to track any
object with a simple geometric outline known a pri-
ori to be present in the scene, and also be extended
to operate on multiple simultaneous objects.
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Figure 3: Block diagram of edge extraction system
for face location detection.
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Figure 4: Algorithm for automatic face detection and
tracking in video sequences.
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Figure 5: Automatically detected eyes{nose{mouth locations in sequences \jelena," and \roberto."
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Figure 6: Automatically detected eyes{nose{mouth locations in sequence \jim."
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