
Abstract1

As massive amount of visual materials are captured and stored in
visual information systems, effective and efficient image index-
ing and manipulation techniques are required. Most visual mate-
rials in visual information systems are stored in some
compressed forms. Therefore, it is desirable to explore image
technologies for feature extraction and image manipulation in the
compressed domain. In other words, image feature extraction
and manipulation are performed on compressed images/video
without decoding, or with minimal decoding only. Although the
compressed-domain approach imposes many constraints, it pro-
vides great potential for reducing computational complexity,
because of reduction of the amount of data after compression.
This paper provides an overview of our research in this area.
Specifically, it describes the results and the future directions of
our work on compressed-domain texture feature extraction,
image matching, image manipulation, and video indexing.

1.  Introduction

Effective techniques for image indexing/searching are
required for large visual information systems (such as image
databases and video servers). In addition to traditional methods
that allow users to search images based on keywords, image
query by example and feature-based image search provide pow-
erful tools to complement existing keyword-based search tech-
niques. Usually, prominent image features (such as texture,
shape, color, and object motion) are extracted and stored as side
information. Then, similarity retrieval is performed, based on the
comparison of the features associated with each image in the
database.

Another important image technology for general multimedia
systems and applications isimage manipulation. On a desktop
video editing system, users would like to have general tools for
image geometrical transformation, image filtering, multi-image
composition, and video segment cut-and-paste. In a networked
video application, users may want to subscribe multiple image/
video sources from different locations and combine them to a
single displayable format. In a multi-point video conferencing
application, a network device such as a video bridge may receive
multiple video sources and generate multiple video streams of
various forms to different end users.

As mentioned above, there is a general need for efficient
image searching and manipulation techniques for multimedia
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applications. However, these techniques are usually pursued inde-
pendently of the design of image compression algorithms. Most of
today’s image compression methods are concerned mainly with
optimization of signal distortion, bit rate, and coding complexity.
There is very little emphasis on visual content accessibility, which
is similar to the fourth criterion mentioned in [12]. We believe
there is great synergy among image compression, manipulation,
and feature extraction. Joint study of these issues should be pur-
sued in order to improve the overall system performance. Figure 1
shows the concept of incorporating image manipulation and fea-
ture extraction flexibility into the compression arena.

A timely and important research issue would be the following:
given today’s existing compression techniques, such as transform
coding and interframe predictive coding, what are the functional-
ities that one can possibly achieve in the existing compressed
domain? Pursuing the maximal functionalities in the compressed
domain has several advantages. First, there is great potential for
reducing overall computational cost, since there is less data in the
compressed domain than the original uncompressed domain. Sec-
ond, most stored visual materials are compressed. Applying image
searching and manipulation techniques in the compressed domain
can avoid the overhead of decoding and re-encoding of existing
compressed materials. In addition, many compression algorithms
actually perform some forms of information filtering (such as
motion estimation) and content decomposition (such as frequency
decomposition), which can provide good foundations for subse-
quent image content analysis.

This paper gives an overview of our research on compressed-
domain techniques for image/video indexing and manipulation.
Specifically, we will describe examples of visual feature extrac-
tion, image matching, image manipulation, and video editing in
the compressed domain. It should be noted that an ideal outcome
is to have techniques that operate on the compressed data directly
without any decoding. However, in some cases, some extent of
image decoding may be necessary, in order to extract useful data

FIGURE 1. Concept of Compressed-Domain Image
Manipulation and Feature Extraction.
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from the compressed images. The “compressed domain” in this
paper refers to both the ideal case without decoding and the sub-
optimal case with minimal decoding.

Our previous work has investigated general image manipula-
tion and feature extraction techniques in the transform domain
(e.g., DCT and subband) and the MPEG domain [1, 2, 5, 6, 9].
Independent work on DCT-domain image manipulation tech-
niques was reported in [17, 11]. Algorithms for video scene
change detection based on the DCT transform and/or motion vec-
tor distribution were described in [13, 14]. Techniques for achiev-
ing image special effects (such as picture in picture) were
described in [15]. Dynamic rate shaping of video streams in the
compressed domain has been studied in [10] as well.

2.  Compressed-Domain Image/Video
Indexing and Searching

2.1  Texture Discrimination & Search

In an effort to provide feature-based image query, we have
derived automatic algorithms for extracting low-level signal fea-
tures from the transform compressed images [6]. One specific
example is to define the texture features based on the spatio-fre-
quency decomposition of the images. Textures has been used to
describe content of many real-world images; for example, clouds,
trees, bricks, hair, fabric all have textural characteristics. Psycho-
physical studies have shown that humans perceive textures by
decomposing signals into components with different frequency
and orientation. We use the feature sets defined in transform
decomposition to approximate the texture feature. Transform
decomposition of images can be obtained by taking DCT, sub-
band transform, or wavelet transform of the images. From the
decomposed signal bands, texture feature sets are defined by mea-
suring each subband energy. For example, for a 5-level wavelet
decomposition, feature vectors with 16 terms are produced. For a
N × N DCT transform, N2 signal bands can be obtained by
regrouping transform coefficient (i.e., the DCT/Mandala trans-
form). Other statistical measures such as first-order moments can
also be derived from each subband in forming the transform-
domain texture features. Based on our experiment of texture clas-
sification, the energy measurement seems to be the most effective
one.

In order to reduce the search complexity, the above texture fea-
ture vector is further reduced by using the Fisher Discriminant
technique. The criterion is to maximize the class separability
among all different known texture classes in the chosen testset
(i.e., the Brodatz Texture Set) [4]. The testset contains 112 differ-
ent texture classes typically used in computer vision research.
Based on this 112 texture classes, we generated an image database
containing more than 2000 random cuts from the Brodatz set.
Given an input image key, the transform-domain feature elements
are mapped to a set of eigenvectors with the maximum separabil-
ity significance. The Mahalanobis distance in the transformed fea-
ture space was used to measure the similarity between the input
image key and every image in the database. Our experiment
shows satisfactory correct classification rate. Even with only 6-8
feature elements per image, the classification rate remains at
about the 90% level. In the comparison of different transform
algorithms, the wavelet subband and the uniform subband have
the highest classification rates compared to the DCT/Mandala

transform. The widely used DCT has a decent classification rate,
about 85%. The slightly lower classification rate by using the
DCT transform is basically due to its less effective energy con-
centration capability.

The above task of texture classification operates on the entire
image and does not require texture segmentation. However, in
order to discriminate distinctive local features, identification of
local image regions of prominent features is necessary. We recog-
nize that robust texture segmentation is a research issue still in
progress. We also argue that for texture-based image query appli-
cations, accurate boundary information is not really necessary.
Therefore, we relax the requirement and just aim to extract homo-
geneous image regions with prominent texture features. Using a
modified quad-tree and the threshold derived in [6], we were able
to use the transform-domain texture feature to extract prominent
regions from each image in the database. One image may have
zero or multiple prominent homogeneous texture regions. Given
the input image key, the texture feature vector is derived from the
transform domain and compared against every region contained
in every image in the database. Images containing the most simi-
lar image regions were returned as matches.

Compared to the traditional technique for texture extraction,
such as pixel-domain window-based Law filters, our transform-
domain texture features also include local window-based filter-
ing. For example, a 8×8 DCT transform has a local window size
of 64 pixels. Determination of the transform size actually
involves an interesting tradeoff between texture homogeneity and
statistical confidence. Larger transform block sizes give higher
statistical confidence, but potentially lower homogeneity of the
texture feature.

2.2  Image Matching

Image matching has been used in many applications including
image registration, pattern recognition, and stereoscopic image
correspondence matching. Two critical factors in image matching
are determination of the matching criterion and the search space.
One example is the minimal distortion matching used in the pop-
ular motion estimation algorithm for video coding. In [5], we
have derived algorithms for doing motion estimation and inverse
motion compensation in the DCT domain. For any orthonormal
transforms like DCT, the Euclidean distance is preserved in the
transform domain. However, because motion compensation is
pixel-based while DCT is block-based, computation of the DCT
of each reference block may involve significant overhead in
realigning the DCT block structure. To compensate for this over-
head, the search space may need to be reduced, using some heu-
ristics such as the 3-point motion estimation technique.

If the images are encoded by wavelet or subband transforms,
image matching can be implemented in an intelligent, hierarchi-
cal way as well. Suppose we adopt correlation as the matching
criterion and use the exhaustive search space. Searching for the
position with the highest correlation is equivalent to finding the
peak value in the convolution. One can prove that the correlation
criterion is closely related to the MSE or the correlation coeffi-
cient criterion. It has been shown that convolution of two 1-D
sequences can be decomposed to the summation of convolutions
of their subband components. Specifically, the summation of all
intra-subband convolutions equals a subsampled version of the



complete convolution. In [8], we took a similar approach to
implement a hierarchical image matching method. If {h1, h2}
and {g1, g2} are subsampled low-band and high-band signal
decomposition of the original sequences h and g. Their convolu-
tion can be calculated as (expressed in the z transform form)

h(z)g(z) = h1(z
2)g1(z

2) S11(z) + h2(z
2)g2(z

2) S22(z) +

h1(z
2)g2(z

2) S12(z) + h2(z
2)g1(z

2) S21(z) (EQ 1)

where Sij  are the product synthesis filters for each subband con-
volution. The above equation includes two intra-subband convo-
lutions and two cross-subband convolutions. If the analysis
filters are ideal half-band low-pass and high-pass filters, the
cross-subband terms will be zero. For practical filters, such as
the Harr filter and QMF filters, these terms are non-zero although
they are relatively small compared to the intra-subband convolu-
tions. In [8], we described an adaptive convolution scheme
which adaptively approximates the complete convolution with
the dominant subband convolutions. The criteria for choosing
the dominant subband convolutions are based on two possible
features — energy and feature. The energy-based approach
chooses the subbands with the highest energy and approximate
the complete convolution with the intra- and cross-subband con-
volutions associated with those dominant subbands. Note that
the subband decomposition can be iterated more times in a uni-
form, logarithmic, or adaptive way to create signal decomposi-
tions at more levels. The above adaptive, hierarchical
convolution can be easily repeated in each iteration. The hierar-
chical image searching method has been studied earlier in [7],
but only low-low band convolution was used to approximate the
complete result. One alternative criterion for choosing the signif-
icant subbands is to use the signal features, such as edge and tex-
ture, in each subband. For example, if one subband has strong
indication of edge or texture content, it is better to include that
subband in the approximation.

Another promising technique for image matching in the
wavelet subband domain is to incorporate the zero-crossing rep-
resentation. In [3], a stabilized zero-crossing representation was
used in stereo image correspondence matching. It was shown
that under certain conditions, the stabilized zero-crossing repre-
sentation is complete and stable. A unique signal can be recon-
structed from its stabilized zero-crossing representation. One
interesting application is to use the distance of the stabilized
zero-crossing representation to approximate the “distance”
between two signals. Zero-crossing representation can be com-
puted from the wavelet transform of a signal if the wavelet func-
tion is the second-order or first-order derivative of a smooth
function. Since the stabilized zero-crossing representation inher-
ently carries multi-scale signal features, typical hierarchical
coarse-to-fine image matching techniques can be applied as well.

2.3  Video Indexing and Editing

Compared to still images, a video sequence can be further
characterized by two additional “features” — (1)how the video
is captured (i.e., the camera operations such as zooming and pan-
ning)? (2) how image features change over time (e.g., object
motion and inter-scene temporal relationship)? There are exist-
ing techniques for extracting these dynamic visual features in the
uncompressed domain. Work has been reported in [13, 14] to
detect scene changes in the transform domain and the MPEG

domain. Independently, we have applied the compressed-domain
feature extraction principal and developed aCompressed Video
Editing and Parsing System (CVEPS), which allows automatic
parsing of the MPEG-1 and MPEG-2 compressed video streams
to detect scene changes, dissolve, and fade in/out. Abrupt scene
changes can be detected by image intensity variance discontinuity
and/or the distribution of the motion vectors in the B and P
frames (e.g., the ratio among the numbers of forward predicted
blocks, backward predicted blocks, and intraframe coded blocks).
Dissolve scene changes can be characterized by modeling the
image intensity variance with a quadratic form. Detection of
scene change and dissolve requires establishment of some thresh-
old values. We used an adaptive local threshold based on local
video activities instead of a global threshold value. There is other
useful information which can be derived from the compressed
data. For example, a technique was proposed in [16] to approxi-
mate the object motion trajectory based on the motion vectors.
Motion field has been used to detect and classify the camera oper-
ations as well [13].

Our CVEPS system currently also provides tools for cutting
and pasting video segments at any random point directly in the
MPEG compressed domain. Cutting and pasting MPEG video
streams require solving two technical issues. First, the first few
frames in the tail segment after cutting need to be re-encoded,
unless the cut is exactly on the I frames. Second, the connection
point in a paste operation may cause buffer overflow or underflow
in the decoders (due to the rate control constraint used in MPEG).
This can be solved by artificially inserting or deleting image
frames near the connection points.

3.  Compressed-Domain Image Manipulation

We extend the above compressed-domain approach to image
manipulation in this section. Image manipulation involves many
useful operations for general multimedia applications, as men-
tioned in Section I. In general, it includes linear and non-linear
operations. We have been focusing on the compressed-domain
solutions for linear operations, such as filtering, geometrical
transformation, multi-object composition, pixel multiplication,
and convolution.

In [1, 5], we have derived a set of algorithms for doing all
above operations in any separable orthogonal transform domain,
such as DCT. As an example, two dimensional separable linear
filtering of the images can be expressed as

, (EQ 2)

wherePi is the input image blocks,Hi andWi are filter coefficient
matrices in the horizontal and vertical directions respectively, and
Y is the output filtered image block. Using the distributive prop-
erty of separable orthogonal transform with respect to matrix
multiplication, we can perform the same linear filtering operation
in the transform domain directly, i.e.,

. (EQ 3)

In other words, given the transform coefficients of the input
images, we can directly calculate the transform coefficients of the
output filtered images directly in the transform domain by using

Y WiPiHi
i
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the above formula. If the transform coefficients of the input
images have been truncated (as done in quantizers of practical
coding methods), a great number of small coefficients may be
truncated to zeros. Therefore, the computational complexity
associated with the compressed-domain operations (EQ 3) could
be greatly reduced. In a test scenario which takes three input
image sources, scaled each of them to different sizes, and trans-
late them to different locations in the final composited scene, we
have been able to reduce overall computational complexity by
about 65% by using the proposal transform-domain image
manipulation approach, compared to the traditional uncom-
pressed-domain approach.

To extend the image manipulation techniques to the motion-
compensation domain is not directly feasible, due to the compli-
cation of the motion compensation algorithm. In [5], we have
provided a partial solution which applied the transform-domain
inverse motion compensation to convert the input video to the
transform domain and kept the manipulation operations in the
transform domain. This will incur some overhead associated
with the transform-domain (inverse) motion compensation,
whose net impact on the overall computation cost actually
depends on the motion vector distribution for each specific input
video stream.

Some operations, such as shearing and rotation, cannot be
directly modeled by a linear operation like that in EQ 2. In gen-
eral, they require different operations on different rows and col-
umns. This problem can be solved by using the divide-and-
conquer approach described in [18]. The idea is to extract each
row (or column) first and then apply the same linear operation
mentioned above.

4.  Conclusions and Future Work

We have presented an overview of various compressed-
domain image technologies for image manipulation and search-
ing in this paper. We believed by taking advantage of some nice
properties of existing compression algorithms we will be able to
provide some extent of content accessibility for today’s com-
pression algorithms. This will be a good evaluation criterion for
comparing various existing image compression techniques.

As a more long-term research challenge, the following issue
should be addressed. Given the desired image access and manip-
ulation functions, such as content extraction, template matching,
and image editing, how do we design the next-generation com-
pression algorithm enabling efficient implementations of these
functions directly in the compressed domain?

In the context of feature extraction for image query, one future
direction is to find effective ways for integrating multiple fea-
tures, such as color, texture, shape, and motion, in the same
domain and to test them on concrete, specific applications. We
believe by low-level signal features alone it will not be a suffi-
cient solution. One critical component will be the integration of
domain user knowledge and other complementary indexing tech-
niques, such as text keywords. On the image analysis research
front, techniques for defining visual features that are invariant to
geometry and noise will be crucial as well.
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