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Abstract:

Content-based indexing and query has been considered as a powerful technique for accessing
large visual information systems (databases and video servers). By extracting and indexing the
visual contents of the images such as texture, color, and shape, users may search desired images
by specifying the image contents directly. However, a practical and economical solution cannot
afford extensive user involvement.  This paper proposes an approach in which image processing
technology is explored to the limit of its capability for automatic extraction and indexing of image
features.  We relax the criterion of image content recognition that concrete 3D objects can be suc-
cessfully segmented from 2D images.  Instead, we aim to index the prominent image regions with
distinctive features only.  By combining multiple modalities of useful signal features, we hope to
characterize the prominent image objects efficiently and effectively.  In order to further explore the
maximum synergy between feature extraction and other image processing tasks required in image
databases, we also propose to extract the visual features directly from the compressed images.
For existing large image archives, decoding of compressed image data is hence not necessary.
For new image database design, merging feature extraction intelligence into the compression algo-
rithm has recently been recognized as an important issue for image processing research. We use
texture, shape, and video scene change detections as examples in describing this compressed-
domain approach.  All the proposed research are being incorporated into practical applications in
Columbia University’s Multimedia testbed.
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1.0  Introduction
Content-based indexing and query has been considered as a powerful technique for

accessing large visual information systems (VIS, such as image databases and video servers) [1].
It complements well the existing, more or less mature  text-based  indexing technique. One crucial
component of content-based query is recognition and extraction of “content” from the visual data.
In describing the content of images and video, one may find many different levels of possible inter-
pretation and description, as shown in figure 1. Entities in different levels of the hierarchy are asso-
ciated with different levels of attributes, ranging from low-level signal features to high-level context-
specific semantics. Starting from the bottom level, we may associate attributes such as illumination
intensity and color to individual image pixels.  Image regions comprise of  a group of pixels with
distinctive attributes such as texture, color, and shape. In the object level, semantics begin to
appear.  An image object usually corresponds to a physical object which actually exists, such as a
person, a car, or a building.  Such objects usually are composed of several regions (for example
house is composed of door, window, and roof).  Some exceptions do exist (such as background
objects, sky, sea, grass field) and cannot be easily characterized by separate disjoint physical
components.  On top of objects, an image is composed of several image objects, and video is
composed of a sequence of images, usually associated with some camera control operations
(such as scene cut, zoom, and pan).

In another dimension of content interpretation, relationships between entities or occur-
rences of entity mentioned above play an important role.  Actions may be associated with each
individual object (e.g., a person is running), and relationships may exist between objects (e.g., per-
son A is talking to person B).  Spatial and temporal relationships are also typical between entities
or occurrences of entity in every level.  For example,  object A on the right of object B, picture-in-
picture, a large white graphic area in the bottom are all typical spatial relationships. Compositions
of scenes in video (scene cut, dissolve) are typical temporal relationships.

All these aspects of image contents are fundamental to human’s perceptions towards infor-
mation of visual form.  Human can recognize the attributes and relationships of different visual
entities naturally and easily.  However, for computers, many of these tasks still remain very difficult,
if not impossible at all.  Our effort in this paper aims to answer the following question, how far can
we push for computers to recognize the visual contents automatically without human interventions.
Study of image feature extraction for pattern recognition has been studied for many decades, but
the application to VIS for content-based query is still in its infancy.  We envision that all semantic-
level contents need to be provided by users.  We also envision that with 2D image representation
of 3D real-world objects, computers will not be able to recognize objects automatically in general
unrestricted settings.  However, we believe that pushing upward in the content hierarchy of figure 1
by applying innovative image processing techniques is still worthwhile and will provide promising
avenues in accessing and indexing images and video.

Specifically, our goal is to explore the maximum usefulness of applying image processing
techniques in automatic visual feature extraction.  Although today’s technologies still cannot teach
computers to recognize image objects from 2D images, we think it will suffice to some extent if
“prominent regions” with “distinctive features” can be extracted and indexed.  For example, we will
extract regions with specific texture and color from green grass field images, even without recog-
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nizing its semantics.  The definition of “prominence” can be based on some attributes of the region,
such as size, feature uniqueness.  The immediate advantage is that prohibitive cost of manual
indexing is now avoided. In addition, we can minimize the dependence of feature indexes on spe-
cific applications and make them more universally applicable. In some sense, we only aim at low-
level signal features opposed to high-level semantics.  On the other hand, we do not envision this
automatic feature indexing method to supplant higher-level user-assisted alternatives. Instead, to
achieve the highest system performance, we think this low-level feature recognition framework
should be integrated with high-level alternatives, such as knowledge-based assistance and user
provided semantics, which most people consider indispensable.

Another goal of our research is to explore the maximum synergy among different aspects
of image database design — feature extraction/indexing, compression, manipulation, and storage.
Traditional study of image compression only concerns with performance of rate reduction, signal
quality distortion, and implementation complexity.  Traditional image manipulation techniques also
focus on efficiency and image quality only.  Little attention has been paid to the integration of these
tasks in the context of image databases.  To overcome this shortcoming, we propose an important
principle here — extract visual features in the compressed domain whenever possible.  Imagine
that huge collections of images and video need to be compressed when being stored in the data-
bases.  It will greatly reduce the implementation cost if the image features are extracted directly
from the compressed format.  Not only that decoding of existing compressed data can be avoided,
moving feature extraction to the compressed domain also allow us to take full advantages of the
compressed domain, in which data size is much reduced and visual features usually have been
somewhat revealed through signal decomposition and information filtering. We will describe tech-
niques for defining texture and shape features for still images, and scene cut features for video in
the compressed domain in later sections.

Content-based image query has been first demonstrated in an comprehensive way in [2],
where image features are extracted with the assistance of user intervention. Although using a sim-
ilar set of features (texture, shape, and color) for still images, we explore two new distinctive
research fronts — (1) automatic tools for feature extraction and region recognition, and (2) com-
pressed-domain feature extraction whenever possible.

Content-based visual query will not be deemed practical without actual evaluation in practi-
cal concrete applications.  Techniques described in this paper are being prototyped in actual image
databases and video servers in Columbia University’s multimedia projects, such as medical, art
image databases, and the video on demand testbed [3].

2.0  Image Features
Texture, shape, and color are considered important underlying primitives in human visual

perceptions of the real world.  We discuss techniques for extracting prominent regions with distinc-
tive texture, shape, and color in this section.  We will demonstrate the feasibility of extracting visual
features such as texture and shape from the compressed image formats, and the feasibility of
extracting prominent features without user assistance.
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2.1  Texture
Texture is an important element to human vision. Texture features have been used to

identify contents of aerial imagery such as bodies of water, crop fields, and mountains.  Tex-
tures may be used to describe content of many real-world images; for example, clouds, trees,
bricks, hair, fabric all have textural characteristics.  Particularly when combined with color and
shape information, the details of image objects important for vision are provided.

Texture Discrimination:

Two major approaches have been used in the study of texture discrimination — statisti-
cal and structural.  Psychophysical studies have also shown that signal decomposition by
Gabor filter banks can approximate the mechanisms of human vision in texture discrimination
[8].  In order to explore the advantage of deriving texture features from the compressed image
format, we use several typical image compression techniques, such as wavelet transform, Dis-
crete Cosine Transform (DCT), and subband transform,  to approximate the feature extracted
from the Gabor filter banks.  All these image compression techniques decompose the image
into different frequency bands, from which energy distribution and statistics parameters can be
used to define the texture feature.  For example, texture feature sets can be extracted from the
wavelet images by measuring the first-order and the second-order statistics of each wavelet
subband.  For a 3-level wavelet decomposition, feature vectors with 20 terms will be produced.

Additional techniques, such as Fisher Discriminant Analysis, may be further used to
maximize the separation capability among different textures [10]. In order to get texture classes
as complete as possible in the process of determining the optimal texture discriminant function,
we obtain the complete set of 112 Brodatz texture images [9]. We hope that using the complete
set of Brodatz textures will construct a discriminant function general enough to discriminate
between new and unknown textures.  The Mahalanobis distance in the transformed feature
space was used to measure the similarity between textures.  In response to a “Query-by-tex-
ture,” all textures in the database will be sorted by distance from the texture-key.  This doesn’t
require that a threshold to be established.  However, to decide whether two textures are similar
or not, as in the quad-tree segmentation described in the next section, does require a threshold
in distance.

As mentioned above, the above texture extraction technique can be applied to various image
compression algorithms, such as uniform subband and the popular DCT.  Using more than 2000
texture cuts from the Brodatz collection, we found that all these signal compression algorithms
produce satisfactory classification accuracy rate (about 90%), while wavelet transform does
slightly better. The wavelet compression algorithm also provides an ideal platform for support-
ing multi-resolution image representation in the image database.  A subset of the encoded data
can be used to reconstruct the image with a smaller size, lower quality, or lower resolution.  We
will also describe a technique using the wavelet compression technique in extracting the shape
feature in the next section. Figure 2 shows a texture classification scenario from our  texture
image database including more than 2000 texture cuts from the Brodatz collection.
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Prominent T exture Region Extraction:

A natural image usually consists of many different regions with distinctive textures.  To
extract these texture regions, we use the texture discriminant function defined above to match
blocks within each image to perform the texture segmentation. Because the goal of this segmenta-
tion is to provide indexing of  images, we relax the constraint that segmentation provides perfect
boundary extraction.  Texture segmentation is considered successful in this context when texture
regions of the images are represented accurately enough to provide the expected matches upon a
“Query-by-texture”.  More accurate boundary information can be obtained in a boundary-sensitive
feature such as shape.

The spatial quad-tree provides an efficient representation for region segmentation. Each
quad-tree node points to a block of image data.  Child nodes are merged when the discriminant
function indicates that the child blocks contain sufficiently similar textures. For each quad-tree
node, signal decomposition for texture derivation can be performed independently, or obtained
directly from the decomposition of the full image. If the decomposition of the full image is already
available (as in the case where images have been compressed),  decomposition of each quad-tree
image block can be readily obtained.

Typically in a top-down approach, a full quad-tree data structure is formed by splitting a sin-
gle parent node into four children, then recursively splitting all descendants into four children, until
some minimum size is reached.  The quad-tree decomposition can be used to perform image seg-
mentation by assigning a condition by which nodes are split.  Conversely, in a bottom-up approach
using a fully-grown tree, conditions may be assigned by which children are merged.  In general,
the two approaches will not give identical results in application towards image segmentation.
Post-processing routines for adjoining similar spatially adjacent nodes with different parents may
be added. Also, modification of the quad-tree structure to allow each parent node to have two,
three or four children may be beneficial.   When all four children cannot be merged together, sub-
sets of the children may be paired horizontally or vertically depending on which arrangements
group the most similar children.

Choosing the distance threshold for determining whether two textures are sufficiently simi-
lar is not trivial.  A fixed distance threshold will not be optimal for all types of textures. Based on the
examination of the training texture cuts taken from the Brodatz collection, we have found that the
distance threshold depends heavily on the block size from which the features are extracted and on
the energy of the feature set. There is an inverse relation between block size and the accuracy in
statistical measures produced from the blocks.  Since smaller texture blocks will contain fewer
data points from which to derive statistical features, there will be a larger deviation in features
extracted from these blocks of similar textures.  This results in a greater variance in distance
between possibly similar textures necessitating a higher distance threshold for comparing textures
of smaller block size.  Likewise, features extracted from larger blocks produce smaller within-class
variation, necessitating a lower distance threshold for comparing textures of larger block size.

Texture-Based Query:

A “Query-by-texture” can be formulated to search through the image database, returning
images found to contain regions of similar texture.  Here there is no restriction that the textures
belong to predefined classes.  The texture key may be produced by the user’s cutting an arbitrarily
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shaped region from an image or selecting from samples of provided textures; it may be synthe-
sized through texture descriptions; or it may be drawn using graphics tools.

One implementation trick is worth mentioning for improving the query efficiency. The tex-
ture key provided by the user to initiate a texture-based search can be examined for information on
the scale of the texture process.  The texture process scale is determined by the size of the funda-
mental elements which are repeated in some way to form the texture.  By performing a quad-tree
based texture segmentation on the key, ideally a single quad-tree node will be produced, indicating
one texture present.  Starting from some initial small block size, and performing quad-tree bottom-
up decomposition on the texture key at successively larger starting block sizes, eventually a com-
plete merge will result.  If this is not the case, then it is most likely that the texture key does not
contain a single texture, or the scale of the texture process is larger than the texture key size.  If a
single texture is found, then the smallest block size that produces a full merge of the texture key
indicates the minimum block size in the database to be examined.  This scale information obtained
by processing the texture key can reduce the number of searches for a “Query-by-texture”.  Blocks
in the database that are smaller than the minimum block size obtained will not have to be consid-
ered. This “minimal block size” concept is illustrated in Figure 3.

We have conducted some experiments on the composite image database to test the above
proposed approach to texture-based image matching.   A typical result from a “Query-by-texture”
using a cut from Brodatz texture D101 is indicated in Figure 3.   Currently, we are in the process of
applying this texture region extraction technique to an art image database.

2.2  Color
Psychophysical research has been studying how human vision system discriminates differ-

ent colors.  There also has been research applying color features as query keys to image data-
base applications. Typical approaches use single color, color pairs, and color histograms to index
the color information contained in the images.  Each approach has different advantages and disad-
vantages. Usually, given the well-defined image objects, color histograms can well describe char-
acteristics of the unique color distributions of the physical objects. For example, the relative amounts
of brown and white, combined with oval shape description, may describe what may be nearly uniquely, a
“football.”  However, today’s image processing technologies still cannot generate concrete image objects
corresponding to physical objects without human assistance.  As an alternative, we relax the require-
ment and only aim to index  prominent image segments that have consistent color distributions but may
not accurately correspond to actual physical objects.   In addition, as an answer to the need for auto-
matic color feature extraction and quick and efficient indexing, we have also developed a single color
extraction method for image data indexing.

2.2.1  Color Space Consideration

One major issue every color study faces is the choice of color space.  In the following
descriptions about single color region extraction and color histogram definition, appropriate repre-
sentation of colors (i.e. color space), sampling/quantization in the color space, and similarity mea-
surement are required. There are many choices for color space, each providing some benefit in
terms of image representation and color differentiability.  While image data is usually presented in
RGB space, such as to allow display on color monitors, a quantized RGB space does not provide
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a visually uniform sampling of colors.  As a result, the distance between any two colors is not
based on Euclidean distance.  Other color spaces give better color space compaction, such as
YCrCb and YIQ, whereas RGB provides none.  As such, there is greater opportunity of attaining a
desirable sampling of the color space, however the distance function in these spaces is not simply
Euclidean.  On the other hand, color spaces, such as CIE-Lu*v*, CIE-La*b* and Munsell have
been derived to approach a uniform sampling of the visible color gamut, and use a Euclidean dis-
tance function to determine the visible difference between colors.  While these color spaces have
these desirable properties, the forward transform from RGB color space is highly non-linear.  The
reverse transforms are not straightforward or do not exist in closed form.

2.2.2  Single Color Query and Indexing

The single color indexing technique described here is most similar to the file inversion
approach of data indexing.  This works well for image colors, because the full gamut of visible col-
ors can be represented without much visible distortion using a fixed finite set of colors.  For great
accuracy, thousands of colors may be needed, but usually hundreds of colors will suffice.  Since
there will be a finite total number of colors, the file inversion approaches requires that a query find
through one index the right color and then the matches within the database may be read off
straightforwardly.  This technique can be easily extended to extract occurrences of pairs of colors.

When the user can describe a specific color region to be contained in an image, the images
can be quickly retrieved using the single color index.  Here the identification of a single color region
should be distinguished from the general presence of a color in an image.  For example, a color
histogram may identify that a color occurs with certain frequency within an image, but does not
determine whether the color was dispersed throughout the image or indicates that a region exists
that contains a single color.  The single color index will point to regions within the image that con-
tain single colors.  The regions however, will not correspond directly to objects.  But, the flexibility
exists to allow the color regions to represent isolated objects, in terms of further allowing queries to
be formulated that specify spatial relationships between color regions.  For example, queries can
be formulated such as, “Select images containing a blue region above and touching a red region,”
or “Select images containing a black region inside a hazel brown region inside a white region,”
such as to describe hazel brown eyes.  To execute this query, the images containing these three
color regions will be selected, then the spatial characteristics will be examined to identify matches.
This approach provides a different type of query expression than using color histograms of image
segments.  In the complete system, the techniques complement each other in providing a full set
of tolls for color-based queries.

Color Region Extraction:

The color regions are extracted by sampling the images using the quantized gamut colors.
Once the collection of colors is produced, such as by uniform sampling of CIE-La*b* color space,
any distance function may be used.  The extraction process proceeds as follows, also see
Figure 4:  first, a color histogram is generated for each image using the bins that correspond to the
quantized color gamut.  Then by iterating over the non-zero bins, the color distance is compute
between the image and each non-zero bin color.  Again the distance function may be chosen to
match the human visual system.  This produces a series of distance images, see Figure 5(b) for
distance from the color pink.  Simple thresholding of each distance image gives a binary mask that
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when fitted over the original image identifies the occurrences of the color within the image.  How-
ever, immediate application of the mask does not always give good results.  This is because noise,
lighting and other artifacts give spots within color regions and outside of color regions.  To compen-
sate for the spatial aberrations, we use a rank-order filter on the distance image.  This has the
quality of eliminating isolated points of color, and closes over regions that have holes or are dis-
connected. Linear filters, such as low-pass filters are not appropriate for this task because while
artifacts might disappear, important information is also lost, such as boundary information being
blurred. The thresholded, rank-order filtered distance image appears in Figure 5(c).

Once the filtered distance image is obtained, it is thresholded.  The threshold may be con-
stant for all colors, if the distance function and color space give uniform spacing between visibly
similar colors.  Otherwise, the threshold will be a function of the color.  After thresholding, a mask
image is obtained.  Next follows a sequential labelling routine, whereby unconnected regions are
distinguished and labelled.  This also provides for computation of region attributes, such as area.
Finally, a threshold is applied at this stage, based on region area.  This threshold is not a function
of color, but more likely a constant for the database.  This threshold corresponds for the minimum
size of the areas the color indexes should point to.  An area threshold, of approximately 256 seems
to provide desirable results.  The size of the color region index for the database is inversely propor-
tional to this threshold.  A labelled image corresponding to all pink regions appears in Figure 5(d).

Color Region Indexing and Color Agents:

After the color regions have been identified using the above process, the database is pop-
ulated with the color region data.  The color, an image pointer, position and size of each color
region are kept as attributes of each color region.  The database query is initiated with the user
selecting a color from a color picker, see Figure 6, or from image.  A color index is then searched
for the match to the selected color.  The user may also specify tolerances for the color, see
Figure 6(b), such as for the channels of  a particular color spaces.  We call the definition of the
color and the tolerances, the color agent.  For example in YIQ space, the user may specify a color
agent that has a larger tolerance in the luminance (Y) channel, if the brightness of the desired color
is not a significant factor.  This may allow, say all shades of the “blue” to be retrieved.  The values
of the tolerances will determine how many and which colors will be selected in the index.  Once the
colors in the index have been identified, the file inversion now allows the images containing
matches to be read off directly.  Therefore, the only delay in query execution will be the initial deter-
mination of the colors in the index that match the user specified color agent.

2.2.3  Color Histogram Indexing and Query

Color histograms can provide more complete color descriptions than other alternatives,
such as single color, average color, and color pairs. Actually, average color and color pairs can
both be derived from the color histogram information. However, color histograms also pose new
implementation issues.  First of all, it’s more difficult for users to directly specify color histograms
quantitatively. While users could describe a color histogram by pointing out some dominant colors
and their percentages in the image, or by using a graphical interface to adjust the shape of the
color histogram, it is still more feasible for users to simply use sample images or image segments.
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Furthermore, one big concern of color histogram design is the huge dimensionality.  A 24-
bit RGB space without quantization will produce histograms with 224 dimensions. Quantization of
color space is hence needed to reduce the dimensionality of color histograms. As a  compromise
between complexity and accuracy, we quantize the La*b* space uniformly into 64 bins.  If we use
RGB space instead, we will have larger quantization errors because of the color nonuniformity.
Lastly, standard transformation from RGB to La*b* requires RGB values to be transformed into
XYZ components, followed by the XYZ to La*b* transform.  Since XYZ to La*b* transform is non-
linear, we have to carefully determine the dynamic ranges of the three new components to get the
optimal quantization and normalization effects.  We also found that another uniformity-preserving
color space Lu*v* will produce color histogram distributions similar to that for the  La*b* space.

Determining the optimal distance functions for measuring the similarity between color histo-
grams is also critical. Both color histogram intersection and color pairs approach have been pro-
posed as good measures. An effective approach is proposed in [7], which uses a full quadratic
form of the color histogram difference and adds a modulating matrix. It guarantees positive dis-
tances and, most importantly,  takes into account the crosstalk between different quantized colors.
The distance between two histograms  and  can be defined as follows

(EQ 1)

where elements  of matrix A represents the “cross correlation” between color i and color j.  If A
is the identity matrix, then (EQ 1) becomes the standard Euclidean distance between.  The com-
pensation by  coefficients is important because usually colors are not orthogonal.  For exam-
ple, the distance between red and orange should be smaller than that between red and blue.  Note
that using uniformity-preserving color space also provides advantages in simplifying the determi-
nation of A matrix.

Using color histograms to discriminate colors provides much flexibility. For example, the
average color of an image region can be obtained easily by calculating the mean of the color histo-
gram. In addition,  intersections of color histograms can provide useful measurement of color simi-
larity, such as “30% of the color distribution of image A is similar to the color distribution of image
B”.

Color-Histogram Based Region Extraction:

As in texture region extraction, we want to extract image regions with consistent color his-
tograms and use them as image indexes.  The quad-tree based segmentation technique proposed
above and the distance function defined above can be used to perform color “segmentation”.
Neighboring image blocks pointed by corresponding quad-tree nodes are merged whenever their
color histograms are similar enough.

One nice feature of using quad-tree segmentation for color indexing is that we can index
each intermediate node and terminal node of a quad-tree with its representative color histogram.
Each terminal node of a quad-tree points to an image region with homogeneous color distribution.
In other words, all the image blocks below this terminal node have color histograms within some
distance threshold and are thus merged.  For the intermediate nodes, although the underlying

x y
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child nodes do not have homogeneous color patterns, the color histograms are still useful in some
applications, such as queries of “30% red, 70% green”.

There are different ways to segment images into square blocks. We can choose different
block size or use adaptive block size, or we may choose overlapping blocks of the image instead
of non-overlapping segments. At this stage, we segment the whole image into non-overlapping
blocks of 64 pixels x 64 pixels and generate color histograms for each block. The block size should
be large enough to maintain the accuracy and reduce the sensitivity to noises. The block size can-
not be too large either, for we will then lose the accuracy of image region boundaries.

Query Examples and Results:

Now the color histogram query proceeds as follows. Given a sample image segment pro-
vided by users, we transform it into La*b* color space,  compute its color histogram, and threshold
small value bins to reduce noises. The distance function in EQ 1 is used to calculate the color his-
togram distance between the input image key and all possible candidate image regions, which are
extracted and populated during the indexing stage. As matches to the similarity query, images con-
taining most similar image regions are returned.  Note that there may be more than one single
match regions occurring in the same image.  Figure 7 illustrates the procedure. Figure 8 shows
two query examples. The image region with red border highlight is the one with the highest color
histogram similarity.  Other match image regions are highlighted with green borders, with bright-
ness proportional to the degree of similarity.

There are still many open issues in the color histogram approach toward image content-
based query. One shortcoming of the color histogram approach is that it does not contain any spa-
tial information of color distribution in an image. Also, unlike the single color for which we can use
file inversion to avoid exhaustive search, color histograms do not work well with file inversion.   The
index file size is simply too large if we do not quantize bin values.  Accuracy requirement, however,
prohibits any substantial histogram quantization.

2.3  Shape
Shape feature is extremely useful in many image databases (such as electronics sche-

matic matching) and pattern matching applications (such as military target recognition).  Traditional
approaches for recognizing shapes in the images can be classified into edge based, region based,
or feature based.  Edge based approaches detect edge points by finding the intensity discontinuity.
Concrete shapes are then obtained by performing closing and filtering operators on the edge
points.  We use this approach here, however, applying the edge/shape extraction algorithms in the
compressed domain.

We have mentioned in section 2.1 that the wavelet transform provides a suitable compres-
sion format for multi-resolution image representation and texture feature extraction. Actually,
wavelet decomposition has been used as an effective technique for detecting edges as well.  Mal-
lat and Zhong used the derivative of Gaussian function as the wavelet function and  detect edge
points at the maxima or zero-crossing points in different scales [11].  The same technique has
been applied to signal approximation and image coding as well [11].  Many works of edge detec-
tion in the multi-scale space have been reported also.  These prior efforts have provided an excel-
lent framework for shape extraction in the wavelet compressed domain.  Using multi-scale edge
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detection also provides additional advantages for image database applications.  Usually, edges
and shapes obtained from the higher scales are more clean and less sensitive to noises.  It fits the
characteristics of image database applications well, where prominent shape features are required,
as opposed to highly accurate boundary information.

In determining the similarity between different shapes, usually higher-level attributes are
used, such as area, center position, perimeter, orientation, or X-Y aspect ratio [12].  These high-
level representations of shapes can also grant nice invariance property with respect to size, rota-
tion, shifting.  However, they don’t really capture the characteristics of shapes accurately.  Interme-
diate-level representations and similarity measurement such as Fourier Descriptors, Chain Code,
Hough transform, and principle component decomposition may alleviate these shortcomings to
some extent at the cost of sacrificing invariance property.  We think the choice of optimal represen-
tation and similarity measurement in the context of content-based image query is worth further
study. Currently, we are experimenting the wavelet-compressed-domain shape recognition tech-
nique for content-based image query application.

2.4 Integrated Feature Map  for Content-Based Visual Query
With all the above low-level signal features available in indexing the prominent regions of

images, the following concept of integrated feature map  becomes very interesting and useful.

First, independent signal features can now be integrated to detect and index image objects
more effectively.   Consistency in segmentation results from different features increases the confi-
dence level of the object extraction results.  For example, combining the brown/white color histo-
gram region with the oval shape, we should be able to recognize a football more easily. Indexing
each image object by multiple features  also provides higher flexibility in the query stage.  For
example, the same object can be searched by any or all of the associated features.  A query
example could be

“find images containing regions with this texture AND/OR this color pattern AND/OR this shape”.

Secondly, boundary alignment between objects extracted by different features provides a
new arena of image query. Some image regions may have well-aligned segmentation boundaries
from different features; some objects may not, depending on the physical appearance of the image
objects. For example, with the integrated feature map, the system will allow users to issue queries
like

“find image regions with this texture, this homogeneous color pattern in the center, but a random
color distribution around the boundary”,

or

“find all image regions with homogeneous texture and well enclosed color patterns within the
boundary (or with a color pattern spread over several texture regions)”.

Region alignment can be easily implemented if a consistent data structure (such as the
modified quadtree described earlier) in region extraction and representation.  Color regions, tex-
ture regions, and shapes can all be represented by the quadtree structure, for which various effi-
cient manipulation operations are already available.
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Lastly, feature extraction results from different channels may complement each other in
improving the individual accuracy.  For example,  inference from segmentation results by features
like color and texture can improve the edge accuracy and find the missing edge segment of an
image object.

3.0  Video Features
Video carries much richer information than still images.  Research on video indexing and

content-based access is still in its infancy.  As shown in the content hierarchy of figure 1, besides
the above features typical of still images, a video sequence can be further characterized by two
additional channel of “features” — (1) how the video is made (the camera manipulation functions)?
(2) how still image features change over time (e.g., object motion and temporal relationships)?

Applying the compressed-domain feature extraction principle, we have developed a set of
algorithms and an interactive system for users to detect scene changes (direct and dissolve)
directly from the compressed video format.  Assuming that the content during each scene is more
or less consistent, this “divide and conquer” approach can be used to filter and index the tremen-
dous amount of visual information in video.  Once a video sequence is segmented into different
scenes, we index each individual scene with its representative features, such as texture, color,
shape, and motion.  Other high-level attributes such as scene length can be automatically indexed
as well.

In several practical video coding standards such as MPEG-1/MPEG-2 and H.261, image
sequences are converted to the motion vectors (for prediction of current image blocks based on
neighboring image frames) and frequency decomposition of prediction errors. Ideally, the former
variable can be used to model the motion of the image objects or regions, while the latter the dis-
similarity between image frames.  Some video sequence features can thus be readily derived from
the compressed data directly.

Our compressed-domain video feature extraction technique takes advantages of the above
characteristics of video compression technologies. The distribution of motion vectors and trans-
form of the motion compensated residual errors in the compressed streams are used as cues in
detecting the dissimilarity between image frames.  Since a full decode of the compressed bit-
stream is not necessary, computation time can be thus greatly reduced.  There have also been
recent research studying detecting other camera operations (e.g., zooming, panning, and wiping)
from the compressed streams as well. Figure 9 shows the graphic interface of our interactive video
on demand system in which the above video indexing technique has been incorporated.

4.0  Application in Columbia’s Multimedia Testbed
All the above mentioned research and proposed technologies are being incorporated into

Columbia University’s Multimedia testbed, which is a research and development platform for
accommodating various multimedia applications such as digital libraries, Video-on-Demand, and
interactive multimedia systems.  The underlying infrastructure includes campus-wide ATM net-
works and a graphic supercomputer as servers. Projects have also been initiated to apply the pro-
posed feature-based indexing and access techniques to a practical art image database including
about 2000 art images from museums and galleries.
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5.0  Conclusions and Future Work
Content-based image query will be an extremely powerful technique for accessing future

huge image/video archives.  However, if every single image still needs to be inspected by users for
content extraction and indexing, the implementation cost is too high.  Recognizing the fact that cur-
rent image processing technologies still cannot perform automatic image object recognition suc-
cessfully, this paper describes a practical and efficient approach aiming at automatic extraction
and indexing of prominent image regions. Although high-level semantics will not be able to be cap-
tured at this level, automatic generation of multi-channel visual features such as texture, color, and
shape can provide an efficient and flexible foundation to be connected with high-level alternatives.
Also, by combining multiple modality of features into an integrated feature map, we can improve
the effectiveness of each individual feature channel and move further upward in the visual content
hierarchy.

We envision this low-level signal feature indexing technique will complement nicely high-
level image indexing methods, such as user-provided descriptions, semi-automatic image seg-
mentations and feature indexing, and domain knowledge applications.

Another technical thrust discussed is feature extraction directly in the compressed image
format.  There is great synergy between image compression and image feature extraction.  Many
existing image compression algorithms have provided potential platforms for defining useful signal
features.  We used texture, shape, and video scene changes as examples in the context.

Many new research issues arise in this challenging area.  Among them are efficient data
structures for representing multi-dimensional signal features, efficient comparison and search
algorithms in the feature space, subjective quality based distance measurement, and  integration
with knowledge-based applications.

6.0  References
1. Ramesh Jain, NSF Workshop On Visual Information Management Systems,  Redwood, CA, Feb. 24-25,

1992.
2. W. Niblack, et al, “The QBIC Project: Querying Images by Content Using Color, Texture, and Shape,” IBM

Research Report, RJ 9203 (81511) Feb. 1, 1993.
3. S.-F. Chang, D. Anastassiou, A. Eleftheriadis, J. Meng, S. Paek, S. Pejhan, and J.R. Smith, “Develop-

ment of an Advanced Video on Demand Testbed,” IEEE Workshop on Visual Signal Processing and
Communications, New Brunswick, NJ, June, 1994, also submitted to Journal of Image Communication,
Special Issue on Video on Demand and Interactive TV, 1994.

4. A. Netravali and B. Haskell, Digital Pictures, Plenum Press, 1988.
5. M. Swain and D. Ballard, “Color Indexing,” International Journal of Computer Vision, 7:1, 1991, p. 11 -- 32
6. A. Nagasaka and Y. Tanaka, “Automatic Video Indexing and Full-Video Search for Object Appearances,”

Visual Database Systems, II, IFIP, Elsevier Science Publishers B. V., October, 1992, p. 113 -- 127.
7. Mikihiro Ioka, “A method of defining the similarity of images on the basis of color information”, Technical

Report RT-0030, IBM Tokyo Research Lab, 1989.
8. A.K. Jain and F. Farrokhia,” Unsupervised Texture Segmentation Using Gabor Filters,” Pattern Recogni-

tion, Vol. 24, No. 12, pp. 1167-86, 1991.
9. P. Brodatz, Textures: a Photographic Album for Artists and Designers, Dover, New York, 1965.
10.J.R. Smith and S.-F. Chang, “Texture Classification and Discrimination Using Wavelet Subband Features

for Image Databases,”   Intern. Conference on Image Processing, Austin, Nov. 1994.
11.S. Mallat and S. Zhong, “Characterization of Signals from Multiscale Edges,” IEEE T-PAMI, Vol. 14, No. 7,

July 1992, pp. 710-32.
12. Keinosuke Fukunaga, Introduction to statistical pattern recognition, 2nd ed, Academic Press, Boston,

1990.



13

Pixel

Region

Object

Image

Video

intensity, color

texture, shape, color

person, car, building

source (art, satellite, scenery), perceptual quality

source (news, movie, commercial),
camera control (scene change, zoom, pan, wiping)
type (action, drama, news, medical)

Entities Attributes

spatial/temporal

spatial/temporal

spatial/temporal,
action, compositional

spatial/temporal

Relationship

FIGURE 1.  A hierarchy of different levels of visual content description.
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(a) (b)
FIGURE 2. (a) Interface Showing Texture Keys, (b) Results of Query-by-Texture using Brodatz
texture 23 as the texture-key.
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FIGURE 3. “Query-by-Texture” -- using a cut from Brodatz texture D101 as a texture-key to
search through the image database.  The three closest  matches shown at the bottom are returned
to user using multi-resolution retrieval.
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FIGURE 5. (a) Color Flowers image, pink regions to be extracted, (b) distance image from flowers image
to pink point in color space, (c) after rank-order filtering and distance thresholding of distance image, (d)
after sequential labelling and size thresholding -- isolated color regions now used to populate the database.
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(a) (b)
FIGURE 6. (a) Color Space Navigator — a tool that allows users continuous navigation through 3-D
color space; the 6x6 color pane displays local space.   (b) Color Agent — another tool that allows user
to define single color query by using text description and multiple color space navigation.

(RGB to L a*b*)
(Quantize)

(Threshold)

Sample Image
  Segments  La*b* space

Color histogram in La*b*

( A )

The distance matrix

Images regions in the database with
             color histogram indexes

Calculate histogram distances

 2

  Result image with
   candidate blocks

Sorting

 1

FIGURE 7. Procedure for color histogram indexing.
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 (a)

(b)

(c)

(d)
FIGURE 8. Query examples and results. (a) query sample - human face, (b) query result- abba.ppm, (c)
query example - launching shuttle, (d) query result - gerboth.ppm.
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FIGURE 9. Current user interface of Columbia’s interactive video browsing tools. This snapshot
shows the video scene cut browser, the video playback interface, the QoS setup panel, and the
bibliographic search database.


