
Some New Algorithms for Processing Images in the
Transform Compressed Domain

1. Introduction

In many advanced multimedia applications such as video servers, image databases,
and video conferencing, image and video data are often compressed. Interactive retrieval
and visualization of vast amount of visual data require efficient image manipulation
algorithms. Typical manipulation functions include rate/format conversion, special
visualization effects (e.g., image scaling, translation, rotation, warping), and multi-object
compositing (e.g., video mixing in the video bridge for multi-point video conferencing).

A major underlying component in the image/video compression algorithms (such as
JPEG, MPEG and H.261 [8,9,10]) is the Discrete Cosine Transform (DCT). In the transform
domain, lots of coefficients are small and are often quantized to zeroes. To take advantage of
this lower data rate in the transform domain, our prior work has studied techniques for
manipulating image in the transform compressed domain [1,2,3]. Given transform
coefficients (e.g., DCT coefficients) of the input images, we can calculate the transform
coefficients of the desired output images without converting images back to the
uncompressed spatial domain. The overall implementation cost can thus be greatly reduced.
In particular, we have derived a whole set of algorithms for performing image filtering,
scaling, translation, and overlapping directly in the transform domain. These algorithms are
applicable to any orthogonal separable transforms such as DCT, DFT, and discrete wavelet
transform. Independent work [4,6,7] have proposed the transform-domain approach for a
subset of operations mentioned above.

This paper expands our prior results to advanced image manipulation functions such
as rotation, shearing, and line-wise special effects widely used in video production. These
manipulation functions requires more sophisticated mathematical modeling because they
cannot be treated as regular 2D separable filtering. We derive mathematical formulas for
doing these manipulations in the transform domain and discuss their impact on
computational complexity and image quality.

2. Background

Block-based transforms such as DCT can be described as the following

(1)

Shih-Fu Chang

Department of Electrical Engineering

& Center for Telecommunications Research

Columbia University

New York, NY 10027

T A() A CACt= =

CU/CTR Technical Report 390-94-37
also submitted to SPIE Visual Communications and Image Processing, ‘95

2

where T is the transform operation, A is the input image block (say N pixels by N pixels), is
the image transform1, C is the transform matrix, and Ct is the matrix transpose (Ct = C-1 for
unitary transforms). This type of orthogonal transform have some nice properties. First, the
orthogonal transform is distributive to matrix multiplication, i.e.,

T(AB) = T(A)T(B) (2)

This property is useful in deriving many transform-domain manipulations. Second, the corre-
lation operation can be done equivalently in both the spatial and the transform domains, i.e.,

(3)

where ⋅ stands for the correlation operation. This property is useful in image pattern match-
ing based on the transform coefficients, although the boundary effect requires some special
considerations [3].

3. Linear Filtering and General Geometrical Transformation of Images

Linear filtering can be used to model many useful manipulation functions such as scaling and
smoothing. A convenient way to describe 2D separable linear filtering of images is via pre-
matrix and post-matrix multiplications. For example, a filtered output image block, B, can be
calculated as

(4)

where Ai are neighboring image blocks which have contribution to the target output block, Vi
are the vertical filters and Hi the horizontal filters. The summation range depends on the filter
length. Scaling is a special case of linear filtering. For example, a 1/2 by 1/2 down scaling (for
N=8) can be implemented by using the following filter matrices.

(5)

1. Regular capital letters represent the spatial image blocks. Letters with the upper bar represent
their transform coefficients.

A

A B• A B•=

B ViAiHi
i

∑=

V1

0.5 0.5 0 0 0 0 0 0

0 0 0.5 0.5 0 0 0 0

0 0 0 0 0.5 0.5 0 0

0 0 0 0 0 0 0.5 0.5

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

= V2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0.5 0.5 0 0 0 0 0 0

0 0 0.5 0.5 0 0 0 0

0 0 0 0 0.5 0.5 0 0

0 0 0 0 0 0 0.5 0.5

=

H1 V1
 t

= H2 V2
 t

=

3

Scaling of different factors can also be easily implemented in the transform domain by
choosing appropriate filter matrices (Vi and Hi) of Equation 4. Translation with arbitrary dis-
tance (not necessarily integral multiples of the block size) can be done in the transform
domain as well [3].

However, advanced image manipulations such as rotation, shearing, and line-wise irregular
operations cannot be modeled in the form of separable matrix multiplications of Equation 4.
For example, in a horizontal shearing operation, different rows of an image block are shifted
by different amount, as shown in Figure 1. This is contrary to the constant scaling factor and
filtering effect applied to each row of an image block. To overcome this problem associated
with the line-wise irregular operations, we adopt the divide and conquer approach. We first
extract each row from an image block by multiplying with a special pre-matrix Wi , defined as

(6)

There is only one non-zero element in the matrix. WiA extracts the i-th row of image block A
and set all remaining rows to zeros. After this step, we shift each row independently with the
correct distance (as required by the shearing operation) by post-multiplying with a column
shifting matrix. For example, the following N by (i+N) matrix Mi shifts the original N by N
matrix to the right by i columns and pad zeroes in the first i columns.

Mi = [i zero columns | I | . . .] (7)

where I is the N by N identity matrix. In practical implementations of shearing and rotation,
interpolation (i.e., filtering) and resampling are also performed. In that case, the identity
matrix in Equation 7 may be simply replaced by the filter matrix, as shown in Equation 4. The
complete output image after shearing becomes

(8)

where Bi are N by N square matrices. The actual width of the output image depends on the
exact shearing parameter. Each output target image block now can be calculated as a matrix
product sum. For example,

(9)

where Wi extract individual rows, Si shifts each row with different distances, and the summa-
tion combines contributions from different rows. Note that Si are simply sub-matrices of Mi.
For example, to calculate B1 , Si is simply the first N columns of Mi.

Wi k l,() δ k i– l i–,()=

B1 B2 … WiAiMi
i

∑=

A B1 B2 . . .

FIGURE 1 One-dimensional horizontal shearing by 1 pixel per line. The result is spread over several
target blocks.

horizontal shearing
by 1 pixel per line

different
rows

B1 WiASi
i

∑=

4

By combining the row-extraction and row-wise shifting operations, we now are able to
model the shearing operation with regular matrix multiplications. We can use the same
equation in the transform domain by simply applying the distributive property of orthogonal
transform in Equation 2. As a result,

(10)

where is an N by N matrix and is equal to the sum of N column-row product matrices.
Coefficients of can be calculated in advance and stored in a table. It is worth mentioning
that the final summation in Equation 10 involves non-zero coefficients only. The num-
ber of non-zero transform coefficients is usually small in practical compression. In addition,
many elements of are small (since in the transform domain) and thus can be approxi-
mated by zeroes. Both these two facts imply that there is great potential to reduce the overall
implementation complexity of this transform-domain equation.

In practice, image rotation can be implemented by multi-pass techniques such as a horizon-
tal shearing-scaling followed by a vertical shearing-scaling, as shown in Figure 2 [5]. In gen-
eral, one image block in the rotated coordinate space has contributions from 4-6 neighboring
image blocks in the original coordinate space. Since shearing and scaling can both be imple-
mented in a matrix product form of Equation 9. The composite function of these multi-pass
processes can also be modeled by the matrix product form. As a result, one output block of
the rotated image can be calculated as

(11)

where are transform coefficients of those blocks which contribute to the output target
block. In other words, given transform coefficients of the original images blocks Ai, we can
use the above equation to calculate the transform coefficients of the rotated image blocks B
directly without decoding.

B1 WiASi
i

∑ A k l,() Wi - k,() Si l -,()
i

∑

k l,
∑ A k l,() φk l,

k l,
∑= = =

φk l,
φk l,

A k l,()

φk l,

vertical
shearing horizontal

shearing &

FIGURE 2 Image rotation implemented by multi-pass shearing and scaling, which can be directly
implemented in the transform-compressed domain.

& scaling
scaling

B Ai k l,() φk l,
 i

k l,
∑

i
∑=

Ai

The above concept of line extraction followed by regular linear filtering can be applied to
other general line-wise image manipulations (e.g., image warping) as well.

4. Performance Analysis and Extensions

Due to the much lower data rate in the transform domain, the transform-domain manipula-
tions provide great potential in reducing overall computational complexity. The actual compu-
tational complexity of the proposed transform-domain algorithms depends on the image
compression rate (i.e., the number of non-zero transform coefficients) and the sparsity of
manipulation matrices . We are currently conducting simulations to get actual statistics
of these critical factors. Special strategies can be explored to find optimal approximation of
image manipulation matrices () to increase the matrix sparsity and thus reduce the over-
all complexity.

The proposed transform-domain manipulation algorithms will not affect the image quality
except for the minor effect of the computing round-off errors. The transform-domain
approach will possibly reduce the latency since the processing delay is reduced.

For video coded by orthogonal transform plus inter-frame motion compensation, we have
proposed a modified decoding algorithm to partly decode the video back to the transform
domain and then apply the transform-domain manipulation techniques [2,3].

5. References
1. S.-F. Chang, W.-L. Chen and D. G. Messerschmitt, “Video Compositing in the DCT domain,”IEEE Work-

shop on Visual Signal Processing and Communications, Raleigh, NC, pp. 138-143, Sep. 1992.

2. S.-F. Chang and D. G. Messerschmitt, “A New Approach to Decoding and Compositing Motion Compen-
sated DCT-Based Images,” IEEE ICASSP, Minneapolis, Minnesota, April, 1993.

3. S.-F. Chang and D. G. Messerschmitt, “Manipulation and Compositing of MC-DCT Compressed Video,”
accepted for publication in IEEE Journal of Selected Areas in Communications, 1994.

4. B. Chiptrasert and K.R. Rao, “Discrete Cosine Transform Filtering,”Signal Processing, Vol. 19, No. 3, pp.
233-45, Mar. 1990.

5. J.D. Foley, A. V. Dam, S. K. Feiner and J.F. Hughes,Computer Graphics: Principles and Practice, 2nd ed.,
Addison-Wesley, 1990.

6. J.B. Lee and B.G. Lee, “Transform Domain Filtering Based on Pipelining Structure,” IEEE Transactions on
Signal Processing, pp. 2061-4, Vol. 40, No. 8, Aug. 1992.

7. B.C. Smith and L. Rowe, “Algorithms for Manipulating Compressed Images,” IEEE Computer Graphics and
Applications, pp. 34-42, Sept. 1993.

8. G.K. Wallace, “The JPEG Still Picture Compression Standard,” Communications of the ACM, Vol. 34, No.
4, April 1991.

9. M. Liou, “Overview of the p×64 kbits/s Video Coding Standard,” Communications of the ACM, Vol. 34, No.
4, April 1991.

10.D. Le Gall, “MPEG: A Video Compression Standard for Multimedia Applications,” Communications of the
ACM, Vol. 34, No.4, April, 1991.

φk l,

φk l,

