
Manipulation and Compositing of MC-DCT Compressed Video1

(For publication in IEEE JSAC Special Issue on Intelligent Signal Processing, 1994)

Abstract

Many advanced video applications require manipulations of compressed video signals. Popular video manipula-

tion functions include overlap (opaque or semi-transparent), translation, scaling, linear filtering, rotation, and

pixel multiplication. In this paper, we propose algorithms to manipulate compressed video in the compressed

domain. Specifically, we focus on compression algorithms using the Discrete Cosine Transform (DCT) with or

without Motion Compensation (MC). Compression systems of such kind include JPEG, Motion JPEG, MPEG,

and H.261. We derive a complete set of algorithms for all aforementioned manipulation functions in the trans-

form domain, in which video signals are represented by quantized transform coefficients. Due to a much lower

data rate and the elimination of decompression/compression conversion, the transform-domain approach has

great potential in reducing the computational complexity. The actual computational speedup depends on the spe-

cific manipulation functions and the compression characteristics of the input video, such as the compression rate

and the non-zero motion vector percentage. The proposed techniques can be applied to general orthogonal trans-

forms, such as Discrete Trigonometric Transform. For compression systems incorporating MC (such as MPEG),

we propose a new decoding algorithm to reconstruct the video in the transform domain and then perform the

desired manipulations in the transform domain. The same technique can be applied to efficient video transcoding

(e.g., from MPEG to JPEG) with minimal decoding.

1 Introduction

Advanced video services have emerged as a focus of interest as the technologies of digital signal

processing, VLSI, and broadband networks advance. Examples of such services include multi-point video

conferencing, interactive networked video, video editing/publishing, and advanced multimedia workstations.

1. Part of this work has been presented at IEEE ICASSP, Minneapolis, Minnesota, 1993.

Shih-Fu Chang *

*Department of Electrical Engineering

& Center for Telecommunications Research

Columbia University

New York, NY 10027

David G. Messerschmitt **

**Department of EECS

University of California, Berkeley

Berkeley, CA 94720

2
Usually, video signals are compressed when transmitted over networks or stored in databases. After video

signals are compressed, there are still many situations where further manipulations of such compressed video are

needed. For example, in a multi-point video conferencing, multiple compressed video sources may need to be

manipulated and composited within the network at the so-calledvideo bridge [26]. Figure 1 shows a typical

video conferencing scene, in which input video signals are arbitrarily manipulated (e.g., scaled to arbitrary size,

translated to arbitrary locations) and composited into a single output video sequence. Typical video manipulation

functions include translation (block-wise or pixel-wise), scaling, linear filtering, rotation, overlapping (opaque

or semi-transparent1), and pixel multiplication. Many applications require only a subset of these features.

There are two possible ways to manipulate compressed video. The first approach fully decodes each

compressed input video and then manipulates them in the spatial domain [26]. The output video needs to be re-

encoded again if the compressed format is required. Alternatively, we can derive equivalent manipulation

algorithms in the compressed domain and manipulate compressed video directly in the compressed domain

[4,5,6,32]. Due to a much lower data rate and the removal of the unnecessary decoding/coding pair, the

compressed-domain approach has great potential in reducing the computational complexity. In addition,

manipulation in the compressed domain provides the flexibility to accommodate dynamic resources and

heterogeneous Quality of Service (QoS) requirements. Users with low-end computing/communication resources

can process the signal components with the highest significance only (e.g. lower-order DCT coefficients, or

lower bands in subband coding) to maintain as high video quality as possible within the resource limit. This

prioritized significance of signal components is not available in the uncompressed domain.

This paper shows that many video manipulation functions can be performed in the compressed domain

more efficiently (i.e., with less computations) than in the uncompressed domain. This statement is particularly

true when both input and output video signals need to be compressed, as in the case of network video

compositing. We focus on the Motion Compensated Discrete Cosine Transform (MC-DCT) format, which is

widely used in many image/video compression standards(e.g. H.261, MPEG, HDTV [2,13,16,35]). In

specific, we derive one set of algorithms to perform all above mentioned manipulations in the transform domain,

in which video signals are represented by transform coefficients (such as quantized DCT coefficients) [5]. Our

derivations are based on the linearity of the manipulation functions and the orthogonality of the transform

algorithms. The proposed techniques can be applied to general orthogonal transform coding algorithms, such as

Discrete Sine Transform (DST) and DFT.

1. By semi-transparent overlapping, we mean that the background image pixels can be partly seen
through the foreground image pixels (e.g., fade-in and fade-out special effects).

3
For the case where MC is incorporated (such as MPEG and H.261), we will discuss the obstacles

preventing the MC-domain manipulation [4]. To avoid these difficulties, we propose a new decoding technique

to convert the MC-DCT video to the DCT domain and then perform desired manipulation functions in the DCT

domain. The same approach can be applied to efficient video transcoding (e.g., from MPEG to JPEG) with

minimal decoding.

Video manipulation in the compressed domain is new. There is some independent related work. Smith

and Rowe studied a subset of manipulation functions in the DCT domain [32], such as linear combination and

pixel multiplication. However, they used a coefficient mapping approach without deriving underlying

mathematical formulae. Based on a little different derivations, Lee and Lee derived the transform-domain

filtering algorithms and proposed a pipelined hardware architecture [21]. Martucci derived the symmetrical

convolution routines for the Discrete Trigonometric Transform [36]. The concept of compressed-domain

manipulation can also be applied to other compression algorithms, such as subband coding. Lee and Woods

proposed some subband-domain algorithms for simple operations such as picture in picture and text overlay

[22]. However, border boxes are used along the overlap boundary to cover some artifacts.

This paper is organized as follows. Section 2 includes review of MC-DCT compression systems and

some terminology definitions. We derive the proposed DCT-domain manipulation algorithms in Section 3. We

explain the difficulties for video manipulation in the MC domain and propose some techniques to reduce

computations of MC recalculation in Section 4. Manipulation of MC-DCT compressed video in the transform

domain is proposed in Section 5. Performance analysis is presented in Section 6.

2 Background and Domain Definitions

Figure 2 shows the block diagram for hybrid compression systems based on the MC-DCT algorithm.

Input images are segmented into small blocks, each of which is motion compensated and transformed into DCT

coefficients. TheMotion Estimation (ME) procedure finds theoptimal reference block from the previous frame

and also outputs the motion vector. The DCT coefficients are quantized and then run-length coded (RLC) to

redundance in long sequences of zeroes. In addition, the statistically-based variable-length code (VLC), such as

the Huffman code or arithmetic code [24], is applied to exploit any remaining data redundancy. For compression

systems using intra-frame coding only, the ME block is not needed.

In this paper, we use thespatialdomain to refer to the raw pixel data format before encoding or after

decoding. Sometimes for the purpose of contrast, we also refer to it as theuncompresseddomain. TheDCT or

DCT-compressed domain refers to the quantized DCT coefficients1, which can be obtained after the inverse

4
quantizer in the decoder of Figure 2. Note that a video signal can be transformed into the DCT domain either by

applying the DCT on raw image data or by partially decoding the interframe MC-DCT encoded video, as will be

described later. Through the context, we will also use the“transform domain” to refer to the frequency domain

of general orthogonal transforms, such as DST, DFT, and DCT.

The MC or MC-compresseddomain refers to the encoded data format after the MC algorithm. Basic

components in the MC domain include the motion vectors () and the prediction errors (), as shown in Figure

2. TheMC-DCT-compressedor MC-DCT domain refers to the hybrid interframe encoded format shown in

Figure 2. It contains the motion vectors and the DCT coefficients of the prediction errors.

3 Video Manipulation in the DCT Domain

We describe one set of video manipulation primitives — overlap, scaling, translation, linear filtering,

rotation, and pixel-multiplication, and their DCT-domain equivalents in this section. Most video services require

only a subset of these primitives.

3.1 Overlap

Opaque overlapping of two video objects requires substituting pixels of the foreground video object

for those of the background object.Semi-transparent overlapping requires a linear combination of the

foreground and background pixels, i.e.,

Pnew(i,j) = α⋅Pa(i,j) + (1-α)⋅Pb(i,j) , (1)

where Pnew, Pa, Pb, andα are new pixels, foreground pixels, background pixels, and the transparency factor [30].

Since it’s a linear operation, we can apply the same technique in the DCT domain, i.e.,

, (2)

where represents the block-wise data format in DCT.

3.2 Pixel Multiplication

If the α coefficients vary from pixel to pixel, semi-transparent overlapping becomes a pixel-wise

operation, i.e.,

Pnew(i,j) = α(i,j) ⋅ Pa(i,j) + (1-α(i,j)) ⋅ Pb(i,j) . (3)

This operation involves a basic operation calledpixel-multiplication , i.e.,

1. Without otherwise specified, we assume the transform coefficients are by default quantized, so
that we can take advantage of the fact that many coefficients are truncated to zero after
quantization.

d ê

DCT Pnew 
  α DCT Pa 

  1 α–() DCT Pb 
 ⋅+⋅=

P

5
Pnew(i,j) = Pa(i,j) ⋅ Pb(i,j) . (4)

Pixel-multiplication is also required in situations likesubtitling (adding text on top of an image),anti-aliasing

(removing the jagged artifacts along the boundaries of irregularly-shaped video objects), and special-effect

masking (for special graphic patterns). To compute the pixel-wise multiplication in the DCT domain, we derive a

multiplication-convolution relationship for the DCT similar to that for the DFT, except that the order for the con-

volution is increased to 2⋅N points. We leave the proof in [7] and present the final result here. Similar symmetric

convolution routines were studied in [36] independently.

Suppose Xc is the DCT of image block X. First, we form an extended symmetrical version of the DCT

coefficients as the following

Then, the 2Dmultiplication-convolution theorem can be described as follows.

(5)

X̂c k1 k2,()

Xc k1 k2,() C k1 k2,()⁄

Xc k– 1 k2,() C k– 1 k2,()⁄

Xc k1 k– 2,() C k1 k– 2,()⁄

Xc k– 1 k– 2,() C k– 1 k– 2,()⁄

0












=

k1 k2, N– 1+ … 1–, ,=

k1 k2, 0 … N 1–,,=

k1 N or,=

k1 0 … N 1–, ,= k2 N– 1+ … 1–, ,=,

k1 N– 1+ … 1–, ,= k2 0 … N 1–, ,=,

k2 N=

where C k1 k2,()
1
2
--

1




=
k1 k

2
0= =

otherwise

y i j,() x i j,() h i j,() ,⋅= i j, 0 … N 1–, ,=

k
1

k
2

, N– … N 1–, ,=

If

then

α k() 1

1–



=

α k
1

l
1

–() α k
2

l
2

–()

Ŷc k
1

k
2

,() 1
2N
------ X̂c l

1
l
2

,() Ĥc k
1

l
1

–()()
2N

k
2

l
2

–()()
2N

,
 
 ⋅ ×∑∑⋅=

l1,l2 ∈[−Ν, Ν−1]

k N N 1–,–[]∈
otherwise

6
For convenience we use the notation “((n))2N” to denote (n modulo2N). If we ignore theα term, the above equa-

tion is equivalent to a 2D 2N-point circular convolution. In other words, we expand the N×N DCT coefficients

of an image block to an extended symmetric 2N×2N block. The pixel-wise multiplication of two image blocks in

the spatial domain corresponds to the two-dimensional 2N-point circular convolution-like operation of the

extended blocks in the DCT domain.

3.3 Translation (block-wise and pixel-wise)

In a video scene containing multiple video objects, as in the case of multi-source video conferencing,

users may want to move each video object around flexibly. We refer to this general position control operation as

translation. Two types of translation should be considered separately—block-wise (i.e., fixed block boundary

positions) andpixel-wise (i.e. arbitrary positions). If we restrict both the horizontal and vertical translation

distance to be an integral multiple of the block width, then the DCT coefficients are always aligned with the

same block structure. (Byblock structure, we refer to the grid lines used to segment the images into small

blocks.) Moving a video object around requires updating the origin point of the video object only.

Aforementioned manipulation functions such as overlapping and pixel multiplication can be performed in the

DCT domain as described if the block structures of input video objects are aligned.

However, if we allow translation by an arbitrary number of pixels, the block structures of the input

video objects could be mismatched. Figure 3 illustrates mismatched block structures of objects A and B. In the

spatial domain, this mismatch problem is easy to solve. In the transform domain, due to the rigid block structure,

it’s no longer a trivial issue. Suppose we want to composite object A and object B as shown in Figure 3 and we

choose the block structure of object A as the final reference block structure. Therefore, we need to re-segment

object B with respect to the block structure of object A. A new image block of object B, say B′, contains

contributions from four original neighboring blocks (B1-B4), namely the lower-left corner (B13) of block B1, the

lower-right corner (B24) of block B2, the upper-right corner (B31) of block B3, and the upper-left corner (B42) of

block B4. We supplement these four contributions with zeroes as illustrated in Figure 3 to form N pixels by N

pixels image blocks. Then, the new block can be calculated as

B′ = B13 + B24 + B31 + B42 . (6)

The same method cannot be applied in the DCT domain. We cannot simply assembly four subblocks from the

original DCT blocks to form the DCT of the new block. Instead, it should be calculated as

 . (7)

Therefore, if we can find the relationship between the DCT of subblocks (B13 - B42) and the DCT of the original

blocks (B1 - B4), then we can calculate the DCT of the new block directly from the DCT of the original blocks.

DCT B‘() DCT B13 
  DCT B24 

  DCT B31 
  DCT B42 

 + + +=

7
In other words, the conversion processes back and forth between the DCT domain and the spatial domain can be

eliminated. Kou and Fjallbrant [18] proposed an algorithm to compute the DCT of a signal block from two orig-

inal adjacent blocks when the overlap length is one half of the block size. However, the complexity becomes

quite high for an arbitrary overlap length. Here, we propose a direct computation method applicable to any arbi-

trary overlapping length.

Figure 4 shows a mathematical model for obtaining a subblock from an original block (e.g., B42 from

B4) in the spatial domain. Note that the upper-left corner of B4 is extracted, supplemented by zeroes, and moved

to the lower-right corner, as required in Figure 3. A matrix-form equation for this subblock extraction procedure

is

, (8)

where Ih and Iw are identity matrices with size h×h and w×w respectively; h and w are the number of rows and

columns extracted. As shown in Figure 4, multiplying B4 with a pre-matrix H1 extracts the first h rows and trans-

lates them to the bottom; multiplying B4 with a post-matrix H2 extracts the first w columns and translates them

to the right.

It can be shown that all unitary orthogonal transforms such as the DCT are distributive to matrix

multiplication [15], i.e.,

DCT(AB) = DCT(A)DCT(B) . (9)

Using this property, we can compute the DCT of B42 directly from the DCT of B4, i.e.,

DCT(B42) = DCT(H1)DCT(B4)DCT(H2) . (10)

Summing all contributions from four corners, we can obtain the DCT coefficients of the new block B′ directly

from the DCT of old blocks B1 - B4. In other words,

 . (11)

The DCT of Hi1 and Hi2 can be pre-computed and stored in memory. With a block width equal to N, only 2⋅N-2

H matrices need to be stored. Given DCT of Bi and Hij , Equation 11 can be implemented by matrix multiplica-

tions. The required computation can be reduced by using sparse matrix multiplication techniques since many

DCT coefficients are zeroes. Detailed complexity analysis will be presented in Section 6.1.

, where H1
0 0

Ih 0
= H2

0 Iw

0 0
=B42 H1B4H2=

DCT B'() DCT Hi1 
  DCT Bi 

  DCT Hi2 
 

i 1=

4

∑=

8

3.4 Linear Filtering

Two-dimensional separablelinear filtering can also be done in the DCT domain [5, 9, 21, 29]. Linear

filtering of images in the horizontal direction can be achieved by multiplications with post-matrices:

 , (12)

where Xi is the input image block, Hi is the filter coefficients represented in the block form, and Y is the output

image block. Each output image block has contributions from several input blocks. The number of contributing

input blocks depends on the length of the filter kernel. Since the DCT algorithm is distributive to matrix multi-

plication, we can calculate DCT(Y) in the following way:

(13)

Similarly, image filtering in the vertical direction can be achieved by multiplication with pre-matrices. Detailed

derivation of the transform-domain filtering algorithm can be found in [7,21].

3.5 Scaling

Another important image manipulation technique isscaling. Each pixel in the final scaled image is a

linear combination of several neighboring pixels in the original image [12]. Thus, it can be treated in a way

similar to linear filtering. For example, if we use the simple box area averaging method to implement the

1/2×1/2 down scaling operation [34], a new block can be computed as H1B11W1 + H2B21W1 + H1B12W2 +

H2B22W2, where Bi are the original neighboring blocks, Hi are the vertical scaling matrices, and Wi are the

horizontal scaling matrices. For example,

(14)

for a block width of 4 pixels. The same linear operations can be performed in the DCT domain as described

above.

3.6 Other manipulation functions

In addition to the above operations,rotation andshearing are also useful in creating visual special

effects. Strictly speaking, both these two operations are linear geometrical transformations and should have

equivalent counterparts in the transform domain. For example, the horizontal shearing can be implemented as

 , (15)

where X is the input image block, Wi extracts the ith row and supplements the remaining rows with zeroes, and

Si performs the horizontal 1D shifting and interpolation [12]. Again, applying the distributive property of DCT,

Y X iHi
i

∑=

DCT Y() DCT Xi 
  DCT Hi 

 
i

∑=

H1 W1 
  '

0.5 0.5 0 0

0 0 0.5 0.5

0 0 0 0

0 0 0 0

= = H2 W2 
  '

0 0 0 0

0 0 0 0

0.5 0.5 0 0

0 0 0.5 0.5

= =

Y WiXSi
i

∑=

9
we can derive the shearing algorithm in the DCT domain. For rotation, a typical implementation is based on a

column-reserving shearing and a row-reserving shearing, plus some appropriate scaling [12]. Thus, based on the

derived DCT-domain scaling and DCT-domain shearing, the DCT-domain rotation algorithm can be derived as

well. However, for such complicated operations as rotation, the matrix structure in the DCT domain could

become too cumbersome and thus their DCT-domain algorithms may not be attractive, compared to the conven-

tional spatial-domain approach.

4 Manipulation of MC-Compressed Video

Video signals in the MC-compressed domain consist of two components: motion vector (d), and

prediction error (e), denoted as theMC data. Given the MC data of input video streams, it would be desirable to

compute the MC data of the output video of the manipulation functions directly in the MC domain without any

decoding. Unfortunately, the MC algorithm does not have the same linear and orthogonal property as that for the

transform algorithms discussed above, thus making the MC-domain video manipulation impossible. In this

section, we illustrate this obstacle by using two examples: overlapping and scaling. Given the MC data of the

input video streams, we need to convert them back to the uncompressed domain before any manipulations.

Recalculation of the MC data is required if the output video needs to be encoded in the MC format again. In

order to avoid the intensive computations involved in theMC data recalculation process, we propose an

inference principle to calculate the new motion vector with minimal computations.

4.1 Obstacles for Video Manipulation in the MC domain

Figure 5 showsoverlapping of two video objects. Assume both the foreground and background objects

are MC-encoded and their block structures are aligned. The MC data of the foreground object can be kept in the

composited video since it is not affected by the background object. However, part of the background object is

obscured by the foreground object. We need to consider two different areas of the background object

separately— thedirectly affected area(DAA) and theindirectly affected area (IAA). The difference has to do

with thesearch area1 in the MC algorithm. In the DAA, part of its search area is replaced by the foreground

object. If the motion vector is from the obscured area, the original prediction block is destroyed. The MC data

thus becomes invalid and needs to be recalculated. In the IAA, though the search area is not overlapped by the

foreground object, the MC data may still need to be recalculated since its prediction block could be modified

througherror propagation. In other words, the MC data of the composited video cannot be directly obtained

1. The search area is the area in the previous frame where the optimal prediction block is
searched.

10
from the MC data of the input video streams. Both the foreground and background video need to be fully

decoded so that new MC data can be calculated.

Another example isdown scaling. Suppose every four original image blocks are scaled down to one

new image block. The motion vectors of these four original blocks in general are different. Although the new

motion vector can be inferred from the original four motion vectors, decoded images still need to be

reconstructed so that the correct prediction errors can be recalculated.

4.2 Simplification of MC Data Recalculation

As discussed above, all MC-encoded video needs to be decoded first so that the new MC data of the

composited video can be calculated. But the MC process is very computation-intensive. In order to keep low-

cost manipulations of MC-coded video feasible, we propose some techniques here to simplify the indispensable

MC recalculation. The first approach is to reduce the frequency of MC recalculation. The second approach is to

minimize the computations associated with the ME process, by inferring the new motion vectors from the

original input motion vectors. We will use the overlap example in Figure 5 to verify the effectiveness of these

two approaches. The underlying concept can be applied to other situations as well. For example, new motion

vectors can be interpolated from old motion vectors in the down scaling scenario mentioned above.

Approach I: Reducing the Frequency of Recalculation

The first principle for simplifying the MC recalculation process is to reduce the number of image

blocks requiring MC recalculation. For example, in the opaque overlapping situation in Figure 5, we can assume

that only image blocks in the DAA may need recalculation of the motion vector. If the motion vector comes from

the foreground area, then the original prediction block is obscured and a new motion vector is needed. Our

experiments on some test sequences show that only 5-15% of the directly affected blocks require MC

recalculation [4]. Compared to blind recalculation of every block in the background object, the frequency of MC

recalculation is greatly reduced. Of course, this number varies with video sequences and depends on the specific

manipulation scenario as well.

Approach II: Obtaining New Motion Vectors by Inference

To further reduce the computation cost associated with the MC recalculation, we apply the second

principle — inferring new motion vectors from the old ones. Our objective is to simplify the ME procedure,

which is the most computation-demanding process in the MC algorithm.

11
To reduce the computational complexity of ME, Jain and Jain [14] have proposed a two-dimensional

binary search approach by assuming that the block distortion function is monotonically increasing along the

horizontal or vertical direction when the search position moves away from the optimal prediction point. For the

overlap scenario considered. if we adopt the same assumption, we can reduce the number of search positions to

two only! Figure 6 shows the spatial relations of these search positions, where B represents the current block, D

the optimal prediction point, and D1, D2 the crossing points when the search position moves away from D

horizontally and vertically respectively. Jain and Jain’s assumption assures that any search position to the right of

D1 has a larger distortion than D1, and any search position lower than D2 has a larger distortion than D2. So, if

we assume that the new optimal prediction location is still from the background object, then either D1 or D2

should have the minimal distortion and be the new optimal prediction. Compared to the full-search ME (which

needs (2⋅d_max+1)2 search positions), the computational complexity is much lower.

4.2.1 Impact on Video Quality

Whenever MC recalculation (including quantization) is performed, video quality will be further

degraded even the full-search ME is used. This issue is very similar to the error accumulation issue in repetitive

coding of video signals [37]. In the overlap scenario of Figure 5, the average SNR among the directly affected

blocks which require MC recalculation is decreased by 2.88 ~ 5.45 dB if the full-search ME is used. This quality

loss depends on the image content and the distribution of the distortion function. The additional SNR loss due to

our proposed two-point ME procedure is usually small (within 1 dB). Significant loss occurs in very few frames,

where the assumption about the monotonic distribution of the distortion function does not seem to hold.

It is worth mentioning that there is also quality degradation for background pixels outside the directly

affected area. For these pixels, we can reasonably assume their motion vectors are unchanged. But their

prediction errors may need to be updated because their prediction blocks in the previous frame may be located

inside the DAA and need to be recalculated. The change of prediction values will propagate to more outside area

as the video sequence proceeds. Our simulations show the average SNR loss among pixels affected by the error

propagation effect ranges from 2.38 to 6.19 dB. The percentage of background pixels affected by this error

propagation effect remains low in our test, though in reality it could vary with different video streams. Some

sparse spots with significant SNR loss are visually noticeable. We have proposed techniques to partially rectify

the error propagation problem by updating the prediction errors only, without recalculating the motion vectors

[4]. These techniques are proved to be effective in removing abrupt severe quality loss in many frames.

12

5 Manipulation of MC-DCT Compressed Video

The obstacles preventing the MC-domain video manipulation also exist for the MC-DCT encoded

video. In order to keep the benefits of the compressed-domain video manipulation, we propose to keep the video

signals as much in the compressed form as possible. In specific, we propose to partially decode the MC-DCT

video to the DCT domain first, and then perform desired manipulations in the DCT domain. One potential

problem with this approach is that conventional MC-DCT decoding first decodes the DCT part and then the MC

part. The non-linear MC is at the bottom of the compression stack. Our solution is to swap the order of the

decoding stack, namely inverse MC first, then inverse DCT. Note that the encoding stack doesn’t have to

change, meaning that regular MC-DCT encoders can be used. Figure 7 illustrates the proposed transform-

domain manipulation system.

As shown in Figure 2, the decoding process for MC-DCT video can be described as

Prec(t, x, y) = DCT-1(DCT(e(t, x, y))) + Prec(t-1, x-dx, y-dy) , (16)

where Prec is the reconstructed image,e is the prediction error, andd is the motion vector. We skip quantization

of DCT(e) for simplicity here. With a simple reordering, we can rewrite it as

DCT(Prec(t, x, y)) = DCT(e(t, x, y)) + DCT(Prec(t-1, x-dx, y-dy)) . (17)

Now, the inverse MC is performed before the inverse DCT. In other words, the inverse MC is performed in the

DCT domain, denoted as “(MCD)-1” in Figure 7. The (MCD)-1 procedure first locates the optimal reference

block in the previous frame (by using the received motion vector) and then adds the DCT of the reconstructed

optimal reference block to the DCT of the prediction errors. By doing so, the received video is reconstructed in

the DCT domain.

However, the DCT of the optimal reference block may not be immediately available. In general, the

motion vector of each block is an arbitrary number of pixels. Therefore, the optimal reference block generally

overlaps with four blocks, whose DCT coefficients are already available. The situation is the same as that for the

pixel-wise translation discussed in Section 3.3. In both places, we need to calculate the DCT of a new arbitrary-

position block from the DCT of four original neighboring blocks. Therefore, the same formula in Equation 11

can be used here to obtain the DCT of the optimal prediction block, i.e., DCT(Prec(t-1, x-dx, y-dy)).

The same approach can be used in the forward MC as well when the manipulation output needs to be

MC encoded again. The DCT of the prediction error can be calculated as

DCT(e(t, x, y)) = DCT(Prec(t, x, y)) - DCT(Prec(t-1, x-d′x, y-d′y)) , (18)

whered′ is the new motion vector for the output video sequence.

13
If the motion vectors are zero (as in DPCM interframe coding) or integral multiples of the block width,

the block structure alignment procedure is not needed, and motion compensation in the DCT domain requires

simple additions only, as in the spatial domain. If only one motion vector component (dx or dy) is zero or integral

multiples of the block width, the DCT coefficients of the new block can be computed from the DCT coefficients

of two original overlapping blocks, instead of four.

6 Performance Analyses

We analyze performance of the proposed transform-domain video manipulation techniques both

analytically and numerically in this section. Two major performance factors considered arecomputational

complexity, andvideo quality. Other considerations such as hardware implementation are also briefly discussed.

Numerical simulations are done by non-real-time software prototyping. Three different test scenarios are

considered. Scene 1 is the scenario with multiple small inputs and a large output display, as shown in Figure 1.

Input videos are down scaled, translated, and then composited together. Scene 2 has multiple input videos and an

output display of the same size as the input. Every input video object needs to be scaled down in this case. Scene

3 represents the picture-in-picture scenario. One input video is scaled down and overlapped on top of another

video stream, which does not require any scale change. Video sequences used are head-and-shoulder images. We

consider the case where both input and output are MC-DCT encoded. Different quantization tables are tested,

including those listed in the JPEG and MPEG standards.

6.1 Computational Complexity

The computational complexity of the transform-domain video manipulation techniques strongly

depends on the number of zero DCT coefficients, which in turn depends on the compression rate of the input

video. When the MC algorithm is included, the complexity is also significantly depends on the motion vector

distribution. As far as manipulation functions are concerned, in general, block-wise operations benefit more

from the transform-domain approach, compared to the pixel-wise operations. But since the decoding/coding

conversion is avoided, the DCT-domain approach may still provide a net efficiency gain for many cases

involving pixel-wise operations.

In Table 1, we list the number of multiplications and additions required in each major operation, such as

the DCT, DCT-1, MCD, MCD-1, pixel-wise translation, scaling, quantization, and inverse quantization.

Interested readers are referred to [7] for detailed derivations. An important property we assume in deriving the

complexity is that the run-length-code (RLC) of the quantized DCT coefficients can indicate the locations of the

non-zero DCT coefficients so that the redundant operations associated with zero coefficients can be skipped. In

14
addition, we exploit optimization in spare matrix multiplication, which is the basic computation module in

various transform-domain manipulation functions, such as linear filtering and translation. A straightforward

implementation of matrix multiplication, A⋅P⋅B (where A and B are N×N matrices, and P represents an N pixels

by N pixels image block), requires 2⋅N3 multiplications and 2⋅(N-1)⋅N2 additions. Based on some assumption of

the non-zero DCT coefficient distribution and optimization techniques for sparse matrix multiplication, the same

operation needs (1/β + 1/)⋅N3 multiplications and (1/β + 1/)⋅N3 additions only, whereβ is the

compression rate1 of the input image. Since matrix multiplication is the basic building block in many DCT-

domain operations, many complexity figures in Table 1 are closely related to the above formula.

Table 1 shows that the MCD (MCD-1) operation has the highest computational complexity. This is due

to the need of block structure alignment in both directions. If one of the motion vector components is an integral

multiple of the block width, then the associated computation can be reduced, as discussed in Section 5. The

overall computations required for MCD depends on the non-zero motion vector percentage,α1 andα2 (defined

in Table 1). Typical values of (α2, α1) are shown in Figure 8. The composited scenes usually have lower (α2, α1)

values than input video signals due to the involved down-scaling operations. The compression ratio (β) is about

7-8 for the salesman sequence, 20 for the Miss USA sequence (high compression ratio due to its flat

background), and 7-9 for the composited sequence.

Pixel-wise translation in the DCT domain also requires block structure adjustment in both directions.

But since some matrix multiplications can be shared, its complexity is lower than that of MCD. The scaling

operation, like linear filtering, can be implemented by multiplications with a pre-matrix and a post-matrix in the

DCT domain. In general, the DCT-domain scaling operation has a lower computational complexity than MCD

and pixel-wise translation. Also, the 1/3× 1/3 down scaling in the DCT domain requires a little bit less

computation than 1/2× 1/2 down scaling because more image blocks share the same matrix multiplication.

For the spatial-domain operations, the major computations are from the coding/decoding conversion,

i.e., the DCT and its inverse. Chen’s fast algorithm [8] has a complexity of 2⋅log2N-3+8/N multiplications per

pixel, which is about one half of that using the 2N-point FFT [10]. There have been many new fast DCT

computation methods reported in the literature [3,27, 20], but all have a similar complexity order. The spatial-

domain 1/2× 1/2 down-scaling operation needs 1/4 multiplication per pixel. (i.e., Pnew = (P11+P12+P21+P22)/4

1. Strictly speaking, β defined here is the ratio between the total number of the DCT coefficients
and the number of non-zero DCT coefficients. It’s more or less proportional to the commonly
used compression ratio. We use them interchangeably in the context, except in the detailed
calculation of computational complexity.

β β

15
by using the simple box area averaging algorithm described in [34]). It becomes 1/9 multiplication per pixel for

1/3 × 1/3 down scaling.

One interesting note is that the major component for the transform-domain operations increases linearly

with the block width, N, while it increases with the order of log2N for the spatial-domain approach (although

when the block size increases, the image compression ratios may change as well.) Therefore, the transform-

domain approach is more suitable for cases using a small block size, which is usually true in image compression.

Simulation Results:

Comparisons of computational complexity for three test scenarios are shown in Table 2. Manipulation

features demonstrated here include overlapping, scaling with various factors, and block-wise translation.

Compression characteristics such asβ, α2, α1 are collected through simulations and substituted into the

analytical formulae in Table 1. Results show that for these scenarios (with both input and output MC-DCT

compressed), the DCT-domain approach is faster than the spatial-domain approach by about 10% to 30%. We

also compare the speed of the software implementations. The CPU time reported in Table 2 approximately

confirms the above speedup with the DCT-domain approach. However, note that we assume translations in these

scenarios are all block-wise. If pixel-wise translation is allowed, then the DCT-domain approach will suffer from

the overhead of block structure alignment. One trick to minimize the overhead of pixel-wise translations is to

perform down-scaling before translation, if size reduction is needed. Thus, the relative complexity contribution

from pixel-wise translation can be reduced.

If the original input videos are compressed without the MC algorithm, namely DCT-encoded only as in

the JPEG or Motion JPEG standards, the computational speedup by using the DCT-domain approach will

increase significantly since the complicated MCD process is not required. Table 3 shows computational

complexity for the case where only DCT coding (without MC) is used. The net computational speedup factor

ranges from 3 to 6.

6.2 Image Quality

One would think that since the DCT-domain approach does not need a second coding pass after

manipulation, the video quality should be better than that of the spatial-domain approach. However, this is not

true in general. The DCT-domain manipulation algorithms are mathematically equivalent to their counterparts in

the spatial domain. Even we keep all operations in the DCT domain, the final DCT coefficients still need to be

quantized. Therefore, the quality degradation suffered in the second quantization still applies to the DCT-domain

approach.

16
The second quantization will introduce quality degradation whenever the image content is modified

(e.g., scaled or filtered) in the intermediate operations between two coding passes. This problem is described as

theerror accumulation problem in multi-pass image coding [37]. Table 4 shows the SNR values of reconstructed

videos before and after the second coding process. The extent of quality degradation depends on the

manipulation functions between two coding passes. For example, modification of image content in Scene 2 is

more dramatic than that in Scene 3. Therefore, the SNR loss caused by re-coding is much larger in Scene 2 (7.7

dB) than in Scene 3 (1.2 dB).

In our implementations, the DCT-domain approach suffers an additional minor quality degradation due

to the need of thresholding DCT coefficients after each intermediate manipulation. The thresholding process is

used to reconstruct the RLC structure of the DCT coefficients, which would be destroyed in each intermediate

manipulation. The RLC structure is important because it can indicate the positions of the non-zero DCT

coefficients so that redundant computations can be skipped. From Table 4, we can see that this additional quality

degradation is very minor, about 0 ~ 0.7 dB. Our simulations show that images obtained both by the DCT-

domain approach and by the spatial-domain approach suffer some subjective quality degradation due to lossy

quantization twice. But there is no noticeable quality difference between images reconstructed from these two

approaches.

6.3 Other Considerations

6.3.1 Worst-Case Throughput

The DCT-domain operations produce variable throughput, as opposed to the constant throughput of the

spatial-domain approach. The higher the compression ratios and the lower the non-zero motion vector

percentages the input videos have, the faster the manipulation functions can be executed in the DCT domain. For

real-time implementations which need to consider the worst-case situation, this variable throughput may be a

shortcoming. But in the DCT domain, we have the flexibility to skip high-order DCT coefficients whenever the

maximal processing delay bound is exceeded. The image quality degradation can thus be minimized since the

high-order coefficients are usually less subjectively important. In essence, the amount of non-trivial DCT

coefficients requiring processing is determined based on the hardware processing capability, as opposed to the

rate-based criterion used in the constant-rate video encoders. The relationship between the compression rates

and computational complexity shown in Table 1 can assist in allocation of required computing capacity when we

design real-time video manipulations.

17
6.3.2 Techniques for Computation Reduction

As we can see in Table 1, the most complex operation in the transform domain is the MCD (MCD-1)

algorithm. This is mainly due to its need of block structure realignment.We also notice that the computational

complexity of the MCD algorithm strongly depends on the non-zero motion vector percentages, i.e.α2 andα1. If

α2 andα1 are both equal to zero, the MCD algorithm can be easily implemented by simple additions. However,

with the regular MC algorithm, these percentages vary with different video sequences, as shown in Figure 8.

One way to reduce the non-zero motion vector percentages is to modify the MC encoder to give some preference

to zero motion vectors. For example, we can add a fractional weighting factor to the distortion associated with

the zero motion vector. We refer to this algorithm as theweighted MC algorithm. Our simulations show that if

we set the weighting factor associated the zero motion vector to 80%, the non-zero motion vector percentages

(α2, α1) can be greatly reduced (from (52%, 38%) to (30%, 19%) for “Miss USA” video, and from (8%, 19%) to

(6%, 7%) for the “salesman” video). The SNR values of reconstructed images using the weighted MC algorithm

are very close to those using the regular MC algorithm. In terms of the computational efficiency, the weighted

MC can raise the computational speedup by 10% to 20%, compared to the regular MC.

Another possible technique to reduce the computational complexity in the DCT domain is to combine a

sequence of operations into a single operation. For example, for MC-DCT compressed videos, we may need to

perform F(DCT(e) + G(DCT(Pref))), where G represents the MCD-1 operation and F represents the scaling

operation. Since scaling is a linear operation, we can apply the distributive law to change the above formula to

F(DCT(e)) + H(DCT(Pref)), where H represent the composite function F⋅G. The computations associated with

function F can thus be reduced since it can operate on a much more sparse matrix now (DCT(e) vs. (DCT(e) +

G(DCT(Pref)))).

7 Conclusions

Many advanced video applications require manipulations of compressed video. We have explored the

freedom of performing video manipulation in the compressed domain. In specific, we have derived efficient

algorithms in the transform domain for many useful video manipulation functions such as overlapping,

translation, scaling, pixel multiplication, rotation, and linear filtering. These algorithms can be applied to general

orthogonal transforms, like DCT, DFT, and DST. Compared to the spatial-domain approach which converts

compressed video back to the spatial domain and manipulates video data in the spatial domain, the proposed

transform-domain approach can increase the computation efficiency, with a factor depending on the compression

characteristics of the input videos. For hybrid MC-DCT encoded video, we have proposed a new decoding

18
algorithm to convert the encoded video to the DCT domain and perform manipulation functions in the DCT

domain. This new decoding algorithm can also be applied to efficient transcoding from MPEG to JPEG.

We have derived the formulae for estimating the computational complexity of major DCT-domain

manipulation algorithms. We have also evaluated the efficiency of the DCT-domain techniques by software

simulations. The DCT-domain compositing approach can reduce the required computations by 60% ~ 75% for

DCT-compressed images (without MC), 10% ~ 23% for MC-DCT-compressed images in various simulated

scenarios without complicated pixel-wise operations (such as pixel-wise translation). If pixel-wise

manipulations are incorporated, the efficiency of DCT-domain operations will drop to some extent, depending

on the specific manipulation scenarios. Considerations of the recovered video quality and some real-time

implementation issues have been discussed as well.

As shown in this study, compression algorithms have significant impact on the efficiency of the video

manipulation techniques. Orthogonal transforms provide great flexibility for pursuing manipulation techniques

in the transform domain, but non-linear coding algorithms such as MC do not. The close interplay between the

compression algorithms and the manipulation techniques strongly motivates a joint approach to optimal

algorithm designs for video compression and manipulation. For example, we may want to compromise some

compression performance in order to provide greater flexibility in video compositing and manipulation in the

compressed domain. Currently, we are actively working in this area.

8 References
1. N. Ahmed, T. Natarajan, and K.R. Rao, “Discrete Cosine Transform,” IEEE Transactions on Computers, Vol.

C-23, pp.90-93, Jan. 1974.

2. J. A. Bellisio and K.-H. Tzou, “HDTV and the Emerging Broadband ISDN Network,” SPIE Vol. 1001,

Visual Communications and Image Processing ‘88, pp. 772-86.

3. S.C. Chan and K.L. Ho, “A New Two-Dimensional Fast Cosine Transform Algorithms,” IEEE Transactions

on Signal Processing, Vol. 39, No.2, Feb. 1991, pp.481-5.

4. S.-F. Chang and D.G. Messerschmitt, “Compositing Motion-compensated video within the Network,” IEEE

4th Workshop on Multimedia Communications, Monterey, CA, April, 1992.

5. S.-F. Chang, W.-L. Chen and D. G. Messerschmitt, “Video Compositing in the DCT domain,”IEEE Work-

shop on Visual Signal Processing and Communications, Raleigh, NC, pp. 138-143, Sep. 1992.

6. S.-F. Chang and D. G. Messerschmitt, “A New Approach to Decoding and Compositing Motion Compen-

sated DCT-Based Images,” IEEE ICASSP, Minneapolis, Minnesota, April, 1993.

19
7. Shih-Fu Chang,Compositing and Manipulation of Video Signals for Multimedia Network Video Services,

Ph.D. Dissertation, University of California at Berkeley, August, 1993.

8. W.-H. Chen, C.H. Smith, and S.C. Fralick, “A Fast Algorithm for the Discrete Cosine Transform,” IEEE

Transactions on Communications, Vol. COM-25, No. 9, Sep. 1977, pp. 1004-9.

9. B. Chiptrasert and K.R. Rao, “Discrete Cosine Transform Filtering,”Signal Processing, Vol. 19, No. 3, pp.

233-45, Mar. 1990.

10.R.J. Clarke, “Transform Coding of Images,” Academic Press, 1985.

11. T. Duff, “Compositing 3-D Rendered Images,”Siggraph, vol. 19, November 1985, pp. 41-44.

12.J.D. Foley, A. V. Dam, S. K. Feiner and J.F. Hughes,Computer Graphics: Principles and Practice, 2nd ed.,

Addison-Wesley, 1990.

13.CCITT Recommendation H.261, “Video Codec for Audiovisual Services at px64 kbits/s”, 1990.

14.J.R. Jain and A.K. Jain, “Displacement Measurement and Its Application in Interframe Image Coding,” IEEE

Transactions on Communications, Vol. COM-29 (12), pp.1799-1808, Dec. 1981.

15.A. Jain, “Fundamentals of Digital Image Processing,” Prentice-Hall Inc., 1989.

16.Standard Draft, JPEG-9-R7, Feb. 1991

17.Ronald K. Jurgen, “The Challenges of Digital HDTV,” IEEE Spectrum, April, 1991, pp.28-30.

18.W. Kou and T. Fjallbrant, “A Direct Computation of DCT Coefficients for a Signal Block from Two Adjacent

Blocks,” IEEE Transaction on Signal Processing, Vol. 39, No. 7, pp. 1692-5, July 1991.

19.M. Kunt, A. Ikonmopoulos, and M. Kocher, “Second-Generation Image Coding Techniques,” Proceedings of

IEEE, Vol. 73, pp. 549-574, Apr. 1985.

20.B.G. Lee, “FCT - A Fast Cosine Transform,” IEEE ICASSP, San Diego, March, 1984, pp.28A.3.1-4.

21.J.B. Lee and B.G. Lee, “Transform Domain Filtering Based on Pipelining Structure,” IEEE Transactions on

Signal Processing, pp. 2061-4, Vol. 40, No. 8, Aug. 1992.

22.Y.Y. Lee and J.W. Woods, “Video Production with Compressed Images,” submitted to the SMPTE journal.

23.D. Le Gall, “MPEG: A Video Compression Standard for Multimedia Applications,” Communications of the

ACM, Vol. 34, No.4, April, 1991.

24.G.G. Langdon and J. Rissanen,” Compression of Black-White Images with Arithmetic Coding,” IEEE Trans-

actions on Communications, June 1981, pp.858-67.

25.M. Liou, “Overview of the p×64 kbits/s Video Coding Standard,” Communications of the ACM, Vol. 34, No.

4, April 1991.

20
26.M. Lukacs, “An Advanced Digital Network Video Bridge for Multipoint with Individual Customer Control,”

Private Communication, Bell Communications Research, NJ, May 1992.

27.M. Narasimha and A. Peterson, “On the Computation of the Discrete Cosine Transform,” IEEE Transactions

on Communications, Vol. COM-26, No. 6, June 1978, pp.934-6.

28.A.N. Netravali and J.D. Robbins, “Motion-Compensated Television Coding: Part I,” The Bell System Tech-

nical Journal, Vol. 58(3), pp.631-670, Mar. 1979.

29.K.N. Ngan and R. J. Clarks, “Lowpass Filtering in the Cosine Transform Domain,” Intern. Conference on

Communications, pp.31.7.1-31.7.5, Seattle, WA, June 1980.

30.T. Porter and T. Duff, “Compositing Digital Images,” Computer Graphics, Vol. 18, pp. 253-259, 1984.

31.P.V. Rangan, H.M. Vin, and S. Ramanathan, “Communication Architectures and Algorithms for Media Mix-

ing in Multimedia Conferences,” IEEE/ACM Transactions on Networking, Vol.1, No.1, Feb., 1993.

32.B.C. Smith and L. Rowe, “Algorithms for Manipulating Compressed Images,” IEEE Computer Graphics and

Applications, pp. 34-42, Sept. 1993.

33.G.K. Wallace, “The JPEG Still Picture Compression Standard,” Communications of the ACM, Vol. 34, No.

4, April 1991.

34.C.F.R. Weiman, “Continuous Anti-Allseed Rotation and Zoom of Raster Images,” SIGGRAPH 80, 286-293.

35.Standard Draft, MPEG Video Committee Draft, MPEG 90/ 176 Rev. 2, Dec. 1990.

36.S.A. Martucci, “Symmetric Convolution and the Discrete Sine and Cosine Transforms,” IEEE Transactions

on Signal Processing, Vol. 42, No. 5, pp. 1038-51, May, 1994.

37.S.-F. Chang and A. Eleftheriadis, “Error Accumulation in Repetitive Image Coding,” IEEE International

Conference on Circuits and Systems, London, May, 1994.

