

FIGURE 1 A typical composited scene in the multi-point video conferencing application. (Scene 1)

Encoder:

FIGURE 2 Block diagram for hybrid MC-DCT based compression systems. ME: Motion Estimation, FM: Frame Memory, VLC: Variable Length Code.

FIGURE 3 Re-assembling the image blocks of video object B based on a new block structure, which mismatches object B's original block structure. After re-alignment, a new image block, B', consists of contributions $(B_{13}, B_{24}, B_{31}, and B_{42})$ from four original neighboring blocks $(B_1 - B_4)$.

FIGURE 4 Using matrix multiplication to extract a subblock and translate it to the opposite corner.

FIGURE 5 An example showing the problem with video compositing directly in the MC domain. d_{max} is the maximum search distance.

FIGURE 6 Reducing the number of search positions to two by using Jain and Jain's assumption. B is the location of the current image block. D is the optimal reference location. The shaded area represents the search area.

FIGURE 7 Manipulation of MC-DCT compressed video in the DCT domain. The output video is MC-DCT encoded as well.

FIGURE 8 Experimental results of non-zero motion vectors. α_2 , α_1 are defined in Table 1, $\alpha_0 = 1 - \alpha_2 - \alpha_1$.

	operation	# of multi. / pixel	# of add. / pixel
DCT Domain:	MCD, MCD ⁻¹	$\begin{array}{c} (4/\beta+2/\sqrt{\beta})\cdot N\cdot\alpha_2+(2/\beta)\cdot N\cdot\alpha_1 \end{array}$	$ \begin{array}{l} [(4/\beta + 2/\sqrt{\beta})\cdot N + 3] \cdot \alpha_2 + \\ [(2/\beta)\cdot N + 1] \cdot \alpha_1 + 1 \end{array} $
	pixel-wise translation	$(2/\beta+2/\sqrt{\beta})\cdot N$	$(2/\beta+2/\sqrt{\beta})\cdot N+3$
	scale 1/2×1/2	$(1/\beta+1/(2\sqrt{\beta}))\cdot N$	$(1/\beta+1/(2\sqrt{\beta}))\cdot N+3/4$
	scale 1/3×1/3	$(1/\beta+1/(3\sqrt{\beta}))\cdot N$	$(1/\beta+1/(3\sqrt{\beta}))\cdot N + 8/9$
	pixel multiplication	$N^2/(\beta_1 \cdot \beta_2)$	$N^2/(\beta_1\cdot\beta_2)$
	semi-transparent block- wise overlapping	$<(1/\beta_1+1/\beta_2)$	$<2\cdot(1/\beta_1+1/\beta_2)$
Spatial Domain:	FDCT, FDCT ^{1 b}	2·log ₂ N-3+8/N	$3 \cdot (\log_2 N \cdot 1) + 4/N$
	MC, MC ⁻¹	0	1
	scale 1/2×1/2	1/4	3/4
	scale 1/3×1/3	1/9	8/9
	pixel multiplication	1	0
	semi-transparent block- wise overlapping	1	2
Common:	opaque block-wise overlap- ping	0	0
	Inverse Quantization	1/β	0
	Quantization	1	0

Table 1 Computational complexity of major video manipulation functions^a

a. Notations:

 α_2 : the percentage of image blocks which need block boundary adjustment in both directions, i.e., both d_x and d_y are not integral multiples of the block size.

 α_1 : the percentage of image blocks which need block boundary adjustment in only one direction, i.e., only one of d_x and d_y is an integral multiple of the block size.

N: the block width (8 in our experiments).

b. We use the fast DCT algorithm of Chen & Smith [8]. If we use the 2N-point FFT approach, the computational complexity will be doubled.

Table 2 Comparison of computational complexity for MC-DCT coded video
manipulations
(the DCT domain vs. the spatial domain)

	Spatial Domain		DCT Domain	
	# op/pixel	CPU time ^a	# op/pixel	CPU time
Scene 1	33.28 mul. 57.57 add	40.72 sec.	26.63 mul. (1.25 ^b) 38.96 add. (1.48)	31.46 sec. (1.29)
Scene 2	17.99 mul. 32.53 add	22.53 sec.	16.10 mul. (1.12) 23.89 add. (1.41)	20.29 sec. (1.11)
Scene 3	13.41 mul. 23.39 add	16.57 sec.	13.76 mul. (0.97) 20.39 add. (1.15)	14.69 sec. (1.13)

a. CPU time on a SPARC I machine.

b. Each highlighted score in the parenthesis represents the ratio between the DCT-domain result and the corresponding spatial-domain result. A score greater than one means that the DCT-domain implementation is more efficient than the spatial-domain approach.

Table 3 Comparison of computational complexity for DCT-coded video
manipulations (*without MC*)
(the DCT domain vs. the spatial domain)

	Spatial Domain	DCT Domain
	# op/pixel	# op./pixel
Scene 1	33.28 mul, 50.35 add	9.66 mul (3.45), 11.23 add (4.48)
Scene 2	17.99 mul, 28.53 add	7.36 mul (2.44), 8.01 add (3.56)
Scene 3	13.41 mul, 20.39 add	3.3 mul (4.06), 2.89 add (7.06)

Table 4 Impact of Video Manipulation on Video Quality (the DCT-domain approach vs. the spatial-domain approach) ^a

	After Manipulation (before the 2nd coding)	After the 2nd coding		
		Spatial-domain Compositing	DCT-Domain Compositing	
Scene 1	31.5 dB	28.8 dB (-2.7 ^b dB)	28.5 dB (-3.0 dB)	
Scene 2	34.7 dB	27.0 dB (-7.7 dB)	26.3 dB (-8.4 dB)	
Scene 3	30.7 dB	29.5 dB (-1.2 dB)	29.5 dB (-1.2 dB)	

a. all input video streams are MC-DCT encoded.

b. these highlighted scores show the extra quality degradation introduced in the 2nd coding pass.