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ABSTRACT

We extend the iterated transformation theory (ITT )
fractal image coding algorithm proposed by A. Jacquin
[1] to generate a pyramid image representation. An
ITT � coded image is modeled as the solution of a sec-
ond kind functional equation. This representation is
iterated to form an ITT � chain of functional equa-
tions which can serve as the framework for a multi-
scale signal decomposition. This formalism can be ex-
tended to accommodate hybrid ITT representations
and, in the limit, ITT � coded signals as a solution
of a homogeneous functional equation. Existence of
the ITT � chain signal representation is shown to be
connected to the eigen-structure of the linear operators
of the associated functional equations. At each level of
the ITT � chain representation, the signal is decom-
posed into two parts which are not orthogonal. We use
this decomposition to build an ITT � pyramid repre-
sentation for gray-tone images as well as for RGB color
images.

1. INTRODUCTION

The fractal image compression ITT �coding algorithm
proposed by A. Jacquin [1] can be seen as an extension
to automated image coding of the work of M. Barns-
ley [2] on iterated function systems (IFS). Several
groups have worked to improve this method, mostly in
reducing the encoding complexity [3]. Fractal coding
is known for high compression and natural image ap-
pearance at very low bit rates and can be the preferred
choice in some image applications. The algorithm has
been used for color or video coding, in the form of in-
dividually compressed components/frames.

The ITT signal representation is usually explained us-
ing �xed-point theory [1]. A lossy ITT � coded image
�f is the unique �xed-point of a contractive operator T
in I, the metric space of images: �f = T �f : �f 2 I. The
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operator T has a special structure which can be de-
scribed as an a�ne transformation in I, de�ned block-
wise. The linear part of T maps blocks from two dif-
ferent scale representations of the signal, to exploit the
self-similarity present in many natural phenomena. In
image coding, the operator T is the code for the origi-
nal image f . Encoding f means �nding an operator T
having a �xed-point �f � f ;while decoding is equivalent
to �nding the �xed-point �f by iterating T starting with
an image selected at random. When the self-similarity
of the signal is well modeled by the linear part of T ,
the description of T is much shorter than that of f ,
resulting in high signal compression.

Preserving the a�ne structure of the operator T we for-
mulate the ITT signal representation in terms of a two-
scale functional equation of the second kind [4]. This
representation can be iterated to obtain an ITT�chain
of functional equations which is used to build coding al-
gorithms. We investigate the general properties of the
ITT � chain signal representation and connections to
other methods. As an application example, we present
a pyramid image coding algorithm for gray and color
images.

2. THE ITT �CHAIN SIGNAL

REPRESENTATION

Images are usually modeled as a real function of two
variables with compact support. The case of interest in
applications is that of image representations in digital
computers, such that an image f belongs to a Hilbert

or, in general, a metric space I which is discrete and
�nite dimensional.

2.1. The ITT algorithm

The ITT representation [1] described brie
y in sec-
tion 1 can be written in the form of a two-scale func-
tional equation:

f(x) = Tf(x) = ULf(x) + b = ALf(2x) + b (1)



in a metric space, where x is the space coordinate,
AL; UL are linear operators and f; b 2 I. Coding f

is equivalent to �nding equation (1) parameterized by
fAL; bg, while decoding means solving the equation,
usually using an iterative algorithm. In a digital coder
AL is a very sparse matrix and has a special structure
generated by the well known self-similar block encoding
algorithm. The free term b represents the gray levels
o�set at each range block in the original fractal com-
pression algorithm [1] and can be seen as an image with
constant gray levels at each range block. The unique-
ness of the decoded image �f depends on the spectral
structure of the linear operator AL [4]. We have two
cases, depending if b = 0 or not, where 0 2 I is the
image with all entries equal to zero.

In the case b 6= 0, equation (1) has an unique solution

�f = (I � UL)
�1b; (2)

if no eigenvalue of UL is equal to 1. When UL is a
contractive operator, equation (1) can be solved us-
ing the successive approximations method fn+1(x) =
ALfn(2x) + b, which is also the preferred method in
ITT decoding. The contractivity condition jjALjj < 1
depends on the metric which de�nes the space I. A
more general result holds [4] and is connected to the
eigen-structure of the linear operator. The iterative al-
gorithm can be used when the spectral radius of the
linear operator is less than one: �(UL) < 1. Then, the
successive approximations method (indexed by n) will
converge for any choice of the initial conditions f0 and
any b. When �(UL) > 1, we have to obtain the solution
directly using (2). In a practical digital image coding
algorithm where I is �nite dimensional, decoding the
ITT representation (1) is equivalent to solving a large
sparse system of linear equations. This type of prob-
lems are studied in numerical analysis and solutions
are usually obtained using iterative algorithms such as
Jacobi or Gauss-Seidel [5].

In the special case b = 0 the formal solution (2) does
not exist. A solution of the homogeneous linear equa-
tion f(x) = ULf(x) can be seen as an eigenfunction
associated with the eigenvalue � = 1. It is possible to
use the homogeneous equation for ITT signal represen-
tation. Decoding in this case is equivalent to solving
an eigenvalue problem, which is well known in numer-
ical analysis [6]. When a linear operator has a dom-
inant eigenvalue with multiplicity one, the associated
eigenvector is uniquely de�ned except for a multiplica-
tive constant. From the various algorithms used to re-
cover the dominant eigenvector, we describe the power
method which is probably the simplest and best known.
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Figure 1: Hybrid ITT pyramid signal representation.
A dotted arrow means that the component is not
present at that pyramid level.

We use the iterative method

fn+1(x) = knALfn; n = 0; 1; : : : ; (3)

where kn is a renormalization factor. Assuming �1 = 1
is simple, kn = 1 and f0 is not orthogonal to the eigen-
subspace of �1, the sequence ffng converges to the
dominant eigenvector. In practice �1 � 1 and we have
to normalize at each iteration. An example of a signal
de�ned by a linear operator is the scaling function in
wavelet theory [7]. The two-scale di�erence equation is
a homogeneous linear functional equation having a sim-
ple dominant eigenvalue equal to one and the mother
wavelet (scaling function) is the associated eigenfunc-
tion.

2.2. Signal representation using the ITT �chain

We can iterate representation (1) to obtain a chain of
functional equations:

f0(x) = A1
Lf0(2x) + f1(x)

f1(x) = A2
Lf1(2x) + f2(x)

: : :

fN�1(x) = AN
L fN�1(2x) + fN (x):

(4)

Assuming we know fn, Ak
L (k = 1; 2; : : : ; n � 1) and

that each equation is solvable, we can �nd f0 and the
intermediate solutions fk. A pictorial representation of
the 
ow of information in (4) is given in the lower part
of Fig. 1. It looks very similar to the synthesis chain in
a pyramid signal representation [8]. In image coding, if



�f0 is the high detail image, and fN is the coarsest ap-
proximation at level N , we add at each level r the detail
information �fr which is coded in the linear operator
Ur . We can rewrite the ITT �chain decomposition (4)
in a form similar to equation (2)

f0 = (I � U1)
�1(I � U2)

�1 � � � (I � UN )
�1fN ; (5)

where I is the identity operator. Clearly the top of the
pyramid fN has to be obtained using a di�erent rep-
resentation. An option is the eigenfunction approach
described in the previous section, which in Fig. 1 is de-
termined by UN+1. Another choice is a representation
using a di�erent algorithm which is shown as hN+1 in
the same �gure.

2.2.1. Hybrid representations

At each level r in the ITT � chain we can add to the
free term an element hr 2 I such that we have an ITT
representation of the form (1). We obtain then a hybrid
ITT �chain which is pictured in Fig. 1. A hybrid term
hr is present or absent at a particular level, as dictated
by the encoding algorithm.

2.3. Signal decomposition

The ITT � chain representation (4) can be seen as a
decomposition of the signal into several layers which
are not orthogonal. For illustration we look at the rep-
resentation (1) in the �nite dimensional space I. In
applications, most of the eigenvalues of UL are zero.
Assume that the nonzero eigenvalues �i are distinct.
Let ei be the eigenvector associated with �i and as-
sume we can complete the collection feig with the vec-
tors fgig such that fei; gig is an orthonormal basis in
I. We expand f; b 2 I as f =

P
ciei +

P
djgj and

b =
P

�ei +
P

�jgj. After substituting in (4) and
some algebra we obtain

X �i

1� �i
ei +
X

�jgj =
X �i�i

1� �i
ei + (6)

X
�iei +

X
�jgj:

The left side of the equality sign in (6) is �f , the solution
of the ITT equation. We see that spectral components
which are not present in UL are passed unchanged from
the free term b to the solution �f . When �i 6= 0 there
is a contribution from the term �i�i

1��i
ei, determined by

UL. This contribution is signi�cant when �i is close
to one, since in the limit, the coe�cient of ei grows
without bound as �i ! 1. To have an orthogonal de-
composition b and ULf must be orthogonal or b must
be orthogonal to the subspace spanned by feig. In this

level/ block size bit rate PSNR

5. 32x32 pels .0236 bpp 22.38 dB
4. 16x16 pels .0956 bpp 25.9 dB
3. 8x8 pels .41 bpp 29.02 dB
2. 4x4 pels .81 bpp 33.08 dB
1. 2x2 pels 1.02 bpp 33.51 dB

Table 1: Pyramid fractal coding of \Lena" (512� 512
pixels).

case, the only possible solution has �i = 0 for all i.
Another possibility is that UL is a projection operator
which means that �i can be only 0 or 1. This case is
also ruled out because we loose the uniqueness of the
representation �f .

3. APPLICATIONS TO IMAGE CODING

The ITT � chain representation (4) can be seen as a
predictive coder. At each level r, fr is composed of the
term fr+1 obtained from the previous level and addi-
tional information stored in Ul. In image applications
we can run the ITT �chain in various ways. For inter-
frame video coding the index r is the time or frame
number [9]. In this work r indexes the scale, to gener-
ate a pyramid image representation.

3.1. Pyramid image coding

In a pyramid gray image coder, we use at each level r,
a tiling of the image support with equal size (2r � 2r

pixels) range blocks. At level r = 0, the size of a range
block is 1 pixel and lossless reconstruction is possible.
Each range block is coded with 26 bits at each level. If
a good approximation is obtained from level r+1 then
the range block is not encoded and only a 
ag bit is
set.

In simulations we use 5 levels for r = 2 � 5 for a
lossy representation. The top of the pyramid f5 (range
blocks of size 32 � 32 pixels is encoded using the ho-
mogeneous equation method described in section (2.1).
The fractal pyramid image representation combines in
the same code the progressive and hierarchical modes
described in the JPEG image compression standard.
The method described above corresponds to the pro-

gressive mode where we have a coarse representation
which is updated at each step, keeping the image size
constant. It can be shown that the same code in a
fractal representation can be decoded at an arbitrary
scale and the same is true for the chain representation
(4). In the hierarchical mode we increase the resolu-
tion when adding a new level of detail. In the fractal
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Figure 2: Multiscale pyramid used in the coding of
RGB color images. It was found that using the second
level of the Green image as the prediction for the other
color components improves compression.

pyramid we have to redecode all the levels previously
displayed which seems to be computationally intensive
but it is not. Since decoding is an iterative process,
using an upsampled version of a low resolution image
as a starting image, reduces the number of iterations.

A sample coding of the well known \Lena" (no entropy
coding) is presented in Table 1. The quantitative eval-
uation of the algorithm is in the same range as the
JPEG standard at moderate bit rates and is better at
very low bit rates. Visual quality is much better at low
bit rates (it is well known that at low bit-rates PSNR
is meaningless).

3.2. Color image coding

An example of an ITT � chain image coding in the
RGB colorspace is presented in Fig. 2. The chain rep-
resentation is used in two ways. Each color component
is coded using the still image pyramid representation
presented in the previous subsection. The GREEN

component is individually coded and then it is used
to predict the other color components. Various combi-
nations for other color space representations are pos-
sible. Quantitative coding results are consistent with
the ITT � pyramid image simulations presented pre-
viously.

4. CONCLUSIONS

We have shown that the fractal image coding method
proposed by A. Jacquin [1] can be extended using the

framework of functional equation representations. The
proposed ITT � chain representation is used to build
a multiscale pyramid coding algorithm for still gray
and color images. We discuss the general properties of
the representation and connections to other methods.
Implementation in software show compression results
comparable to other state-of-the-art methods.

There are many open problems in ITT � coding. Our
formulation does not show how to build an e�cient
encoder, but can be used with any ITT encoding al-
gorithm. We are currently investigating a di�erent
class of mappings Ul possibly nonlinear, optimal bit-
allocation among the di�erent levels of the ITT�chain
and applications to other areas such as pattern recog-
nition.
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