
Abstract

This paper proposes a method for classification and discrimina-
tion of textures based on the energies of image subbands.  We
show that even with this relatively simple feature set, effective
texture discrimination can be achieved.  In this paper, subband-
energy feature sets extracted from the following typical image
decompositions are compared: wavelet subband, uniform sub-
band, discrete cosine transform (DCT), and spatial partitioning.
We report that over 90% correct classification was attained using
the feature set in classifying the full Brodatz [3] collection of 112
textures.  Furthermore, the subband energy-based feature set can
be readily applied to a system for indexing images by texture con-
tent in image databases, since the features can be extracted
directly from spatial-frequency decomposed image data.

In this paper, we also show that to construct a suitable space for
discrimination, Fisher Discrimination Analysis [5] can be used to
compact the original features into a set of uncorrelated linear dis-
criminant functions.  This procedure makes it easier to perform
texture-based searches in a database by reducing the dimensional-
ity of the discriminant space.  We also examine the effects of
varying training class size, the number of training classes, the
dimension of the discriminant space and number of energy mea-
sures used for classification.  We hope that the excellent perfor-
mance for texture discrimination of these simple energy-based
features will allow images in a database to be efficiently and
effectively indexed by contents of their textured regions.

1. INTRODUCTION

With the increased prevalence of digital image and video
archives, new techniques are being investigated to perform
efficient searching and retrieval of visual data.  It is being
realized that traditional text-based indexing schemes alone
are not sufficient when the data is visual.  Upon translation
of visual features into textual description, problems of con-
sistency and completeness arise.  Since information exists
at many semantic levels within a visual scene, it is impossi-
ble to describe all levels sufficiently.  Furthermore, text-
based schemes require human assistance in describing tex-
tually the pertinent information contained in visual
scenes.  While this would require tremendous human effort
for large image collections, the sheer number of unique
frames or scenes in a video sequences makes any human-

assisted indexing scheme impractical.  Consequently, there
has been a new focus on automated visual content-based
approaches towards indexing images and video.

1.1  Content-Based Visual Query

With content-based techniques, the important visual fea-
tures of image and video data are described mathematically
using feature sets that are derived from the digital data.  If
chosen properly, the feature sets may coincide well with
intuitive human notions of visual content while providing
effective mathematical discrimination.  Furthermore, the
features may be extracted automatically by computer with-
out requiring human assistance.  This approach allows the
database to be indexed using the discriminating features
that characterize visual content and searched using visual
keys.  A content-based search of the database proceeds by
finding the items most mathematically and visually similar
to the search key.

Characterizations oftexture, color and shape using feature
sets are beginning to find application towards content-
based approaches for large image and video databases
[8][9].  Other features such as object spatial relationship
and object tracking and motion in video also seem promis-
ing in content-based systems.  This paper focuses solely on
the efficient characterization oftexture as a first step
towards a visual content-based query system.

The feature sets for texture examined here are computed
directly from image spatial-frequency blocks which can be
obtained from several popular image decompositions.
When these feature sets are combined with image segmen-
tation, each uniquely textured region of the images in the
database can be characterized and added to a texture-based
index for the database.  We hope that the feature sets
derived here can be generalized to universal unconstrained
image and video database applications.

1.2  Texture Classification Experiments

In the experiments reported in this paper, each of the 112
Brodatz [3] texture images was randomly cut into rectangu-
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lar pieces of random sizes.  A fraction of the texture cuts
were used for training to produce Fisher discriminant func-
tions used for classifying the remaining texture cuts.  Using
this procedure, the classification performance of the
energy-based feature sets was measured using subbands of
several image spatial-frequency decompositions.  Classifi-
cation rates of over 90% were obtained for both wavelet
subband and uniform subband image decompositions.
DCT reported just over 80% classification rate, while sim-
ple spatial block features gave only 34% correct classifica-
tion.

2. IMAGE TRANSFORM FEATURES

The following image decompositions were used to produce
the energy-based features sets, see Figure 1:

• wavelet subband (5 iterations, 16 subbands),

• uniform subband (4x4, 16 subbands),

• DCT (4x4, terms sorted to produce 16 subbands),

• spatial partition (4x4, 16 blocks).

Each of the decompositions produced 16 subbands or
image blocks.  For each decomposition the energies were
measured by calculating the variance and mean absolute
value of each subband.  This produced a feature vector of
32 terms to describe each texture image.  For each type of
image decomposition, the 32 term feature vectors gener-
ated by the training data were mapped into a reduced space
using Fisher Discriminant Analysis.  In addition to com-
pacting the feature space, this also sets up the mechanism
by which the remaining test texture cuts are classified.  By
measuring the success rate of classification, the efficacy of
the original features in providing texture discrimination can
be determined.

3. FISHER DISCRIMINANT ANALYSIS

Fisher Discriminant Analysis generates a family of linear
composites from the original feature vectors that provide
for maximum average separation among training classes.
Although the resultant composites are not orthogonal, they
are uncorrelated with each other [5].  Fisher Discriminant
Analysis works by finding the eigenvectors of scatter
matrices which describe class separability.  The criteria of
class separability is formulated using thewithin-class (W),
between-class(B), andtotal (T) scatter matrices such that

 represents the ratio ofbetween-class to within-class
sum-of-squares forK classes.  This matrix is then used in
place of traditional feature covariance matrix through the
procedure of Principal Component Analysis [5].

The classification is performed by using the subset of the
resulting eigenvectors, or discriminant functions, that
account for the largest total variation.  A minimum distance
rule, such as the square distance in the discriminant space,
is used to assign new observations to the nearest classes,
see Figure 2.  Overall, to classify an unknown texture cut, it
is first decomposed using the appropriate filter bank or
image transformation.  Next, the subband energies are mea-
sured to produce a feature vector that describes the texture.
Then the Fisher discriminant transformation maps the fea-
ture vector to the trained discriminant space.  Finally, the
distance function is used to assign the texture cut to the
appropriate class.

4. CLASSIFICATION RESULTS AND DISCUSSION

From each of the 112 Brodatz texture images, 20 randomly
sized and positioned rectangular cuts were made to produce
2240 total texture cuts.  For training purposes, from 1 to 10
cuts from each class were used in the experiments.  The
remaining 10 cuts from each class which were set aside for
later classification, comprised the test set.
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FIGURE 1. Image decompositions, (a) Wavelet, (b) Uniform subband, (c) Mandala DCT and (d) Spatial block.
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The collection of Brodatz textures consists of textures of
both statistical and structural natures.  Structural textures
are considered to consist of texture primitives which are
repeated systematically within the texture.  In statistical
textures usually no repetitive structure can be identified.
Typically, to describe textures mathematically, different
techniques have been applied separately to characterize
structural and statistical textures.  The spatial-frequency
subband energy approach used in the paper was applied to
both types of textures.

The cuts made from the Brodatz texture images to produce
the training and testing sets were much smaller than the
original images.  Since the cuts grabbed only part of the
original textures, the cuts did not always capture the origi-
nal textures well.  In a database of real images, there may
be similar difficulty in obtaining homogeneous representa-
tives of textured regions.  Even though this has a negative
impact on the texture classification, we did not eliminate
any Brodatz textures from the classification experiments.

4.1  Comparison of Transform Feature Sets

The classification performance of the energy-based feature
sets is summarized in Table 1.  Here, five training cuts from
each texture class were used for training.  Testing was per-
formed using the discriminant functions based on the sub-
band-energy feature set to classify the remaining ten cuts
from each class.

Notice that energy-based features derived from wavelet
subband and uniform subband decompositions performed
equally well.  This is interesting considering that they parti-
tion the frequency plane differently.  The similarity in per-
formance is due to the fact that textures contain a
significant amount of energy in the middle frequencies in
addition to low frequencies.  By iterating on the lowest fre-
quencies, the wavelet decomposition does not capture the
mid-frequency range well.  Likewise, by splitting the fre-
quency spectrum into uniformly spaced bands, the uniform
decomposition resolves the middle frequencies better than
wavelet decomposition, but does not capture low frequen-

cies well.  In our experiments for textures, the trade-offs
are comparable.

A slight reduction in performance was seen with the Haar
two-tap filter wavelet decomposition compared to the
QMF16c [7] wavelet.  This is a result of the inferior stop-
band characteristics for the Haar filter.  The DCT decompo-
sition produced even further reduction in performance.
Since the DCT originates from spatial blocks, the resulting
frequency spectrum suffers from inter-band energy leakage
[1], which produces a poorer feature set for texture discrim-
ination.  The spatial block case used for comparison shows
the worst performance.  This makes apparent that texture
information cannot be captured well from simple spatial
block measures.

4.2  Effect of Training Class Size

As should be expected, the classification rates increase as
the number of texture cuts from each class used for training
increases.  This is indicated in Figure 3 for the different
image decompositions.  As more training cuts are used per
class, each class is more accurately defined.  And as the
sample statistics approach the true underlying distributions
for each class, the classification performance increases.  In
these experiments good performance was reached using
relatively few training samples (2 to 4) per class and the
subband-energy feature set.

4.3  Effect of Number of Training Classes

In an image database application, all possible texture
classes cannot be available to generate the discriminant
functions.  Therefore, one would like to find discriminant
functions from a subset of texture classes that are useful in

Wavelet
QMF16c

Wavelet
Haar

Uniform
Subband
QMF16c

4x4 DCT
Mandala

block
4x4

Spatial

92.14% 90.17% 92.14% 85.18% 34.65%

TABLE 1.  Classification performance of various
transform feature sets.

FIGURE 2. Texture classifier for Brodatz textures cuts using subband-energy based features.
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general for most textures.  To determine how well the
trained discriminant functions might extend to other tex-
tures, a random subset of Brodatz texture classes was used
for training.  Then the discriminant functions were used to
classify cuts from all 112 Brodatz texture classes.  The
results are shown in Figure 4.  Notice that even when only
a quarter of the number of classes were used for training,
performance shows only slight degradation.  This indicates
that the subband-energy feature might generalize well to
textures outside the Brodatz collection.

4.4  Effect of Number of Discriminant Functions

The Fisher discriminant functions that account for the larg-
est separation are indicated by having the largest normal-
ized eigenvalues [5].  By using a subset of the discriminant
functions that still significantly separate the training
classes, the dimension of the feature space can be reduced.
This reduces the computation needed to measure texture
similarity, and also reduces the dimension of the search
space in a database application.  It is advantageous to find
feature sets which allow for the highest energy packing
possible for classification.  Figure 5 shows the results of
classification, using most significant subsets of the discrim-
inant functions for classification.  Notice that performance
dropped only slightly, even when using just a quarter of the
discriminant functions.

4.5  Effect of Number of Features

When correlated features are added to the feature set,
Fisher Discriminant Analysis removes redundancy and
produces a set of uncorrelated discriminant functions.  In
general, any measures that provide some degree of class
separation should be included in the feature set [6].  How-
ever, as more features are added, there is a trade-off
between classification performance and computation.

In these experiments, both mean absolute value and vari-
ance of frequency bands were used as energy measures in
the feature sets.  However, these features show some corre-
lation.  In fact, when using zero mean filters, the high fre-
quency subbands have zero mean.  In this case, the
variance measure is actually just the sum-of-squares, which
makes it even more similar to the sum of magnitudes mea-
sure.  Never-the-less, when both energy measures were
included in the feature set here, the overall classification
rate increased over the performance using just one energy
measure, see Figure 6.

5. CONCLUSION

In this paper, texture classification was performed using
subband energy-based feature sets from several image
decompositions.  We used the entire set of 112 texture

classes and were able to achieve over 90% correct classifi-
cation.  We showed that classification performance depends
on the underlying decomposition used to obtain the spatial-
frequency blocks.  We also showed the dependency on the
number of training cuts used per class, number of discrimi-
nant functions and number of features used.  We also
reported classification results using a subset of texture
classes for training, which more closely matches the envi-
ronment of a database of real images.  In future work, we
will extend these results to real images for the purpose of
performing texture segmentation and indexing in image
and video database applications.
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FIGURE 3. Effect of training class size on
classification rate for 112 Brodatz texture classes.

FIGURE 4. Effect of number of training classes on
classification rate for 112 Brodatz texture classes
(QMF16c Wavelet decomp).
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FIGURE 5. Effect of the number of discriminant
functions used for classification on classification rate
for 112 Brodatz texture classes.

FIGURE 6. Effect of feature set size on classification
rate for 112 Brodatz texture classes (QMF16c
Wavelet decomp).
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