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ABSTRACT

In this paper we propose a technique for segmenting images by
texture content with application to indexing images in a large
image database.  Using a quad-tree decomposition, texture features
are extracted  from spatial blocks at a hierarchy of scales in each
image.  The quad-tree is grown by iteratively testing conditions
for splitting  parent blocks based on texture content of children
blocks.  While this approach does not achieve smooth identifica-
tion of texture region borders, homogeneous blocks of texture are
extracted which can be used in a database index.   Furthermore,
this technique performs the segmentation directly using image spa-
tial-frequency data.  In the segmentation reported here, texture fea-
tures are extracted from the wavelet representation of the image.
This method however, can  use other subband decompositions
including Discrete Cosine Transform (DCT), which has been
adopted by the JPEG standard for  image coding.   This makes our
segmentation method extremely applicable to databases containing
compressed image data.  We show application of the texture seg-
mentation towards providing a new method for searching for
images in large image databases using “Query-by-texture.”

1. INTRODUCTION

There is growing demand for database systems which sup-
port indexing, searching and retrieval of image, video and
multimedia data.  Approaches towards these databases have
included:

• multiresolution image representations for  browsing and
retrieval at various scales [9][19],

• textual descriptions of data for keyword indexing [8],

• feature sets for searching by content, e.g.,texture, color,
shape, spatial relationships, etc. [2][16].

Multiresolution image representations allow the user to
browse through databases by viewing thumbnail sketches of
image data.  They also enable incremental transmission and

multiple decision points for data retrieval.  But even with
multiresolution browsing and retrieval, it is still difficult to
search through large amounts of data.  Keywords can be
used to index the images in the database.  However, this
requires textual description of visual data, which in general
can be neither complete nor consistent.  The keyword
approach cannot be automated because humans must view
and interpret each image in order to ascribe text to it.
Lastly, content-based approaches have been investigated
which allow searching based on visual features of the image
data.  Here, the characteristics of the data which correspond
to intuitive visual notions can be exploited using feature sets
extracted from the data.  This can allow searching to be per-
formed using color-keys, texture-keys and shape-keys much
the same way that keyword indexing is used.

This content-based approach towards image, video and mul-
timedia databases allows the user to devise creative ways of
formulating queries to produce both anticipated and seren-
dipitous results.  While this technique may not replace key-
word and other indexing schemes entirely, it can certainly
be used to compliment text-based schemes.  We envision
that content-based approaches to searching through  image
databases will add a new dimension of expressiveness for
users to formulate queries and search for visual data.

2. CONTENT-BASED QUERY

We are currently developing the Content-Based Visual
Query (CBVQ) System to provide access to image, video
and multimedia databases using feature sets that describe
the visual characteristics of the data.  Furthermore, the
CBVQ System will be part of the Video-On Demand
(VOD) prototype being developed at Columbia University.
In addition to supporting multiresolution retrieval and key-
word indexing, the CBVQ and VOD systems will support
searching based on image and video visual content, includ-
ing texture, color and shape.  Currently we are using image
collections from the fields of medicine, art, photojournal-
ism, astronomy, and movies on laser disc.  The interface for
the CBVQ System in browsing mode showing thumbnail
sketches of art images appears in Figure 1.
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FIGURE 1. Columbia University’s Content-Based Visual Query System -- Graphical User Interface, showing collection of art images.

A major concern with implementing the texture query sys-
tem is the availability of useful texture keys.  Currently, our
system  provides users with three ways of utilizing keys for
searching: by selection from collections of sample texture
swatches, using texture synthesis and manipulation tools
and using cutting tools for extracting regions of texture
from images.  The images may be obtained from results of
previous retrievals or be provided by user.

There are many research issues involved with implementing
this feature-based retrieval system, such as feature set iden-
tification, feature space compaction, image segmentation
and multidimensional point indexing.  This paper focuses
on the image segmentation and indexing aspects.  We make
reference to other work of ours on texture feature set identi-
fication combined with feature space compaction [22].

Image segmentation is essential in the implementation of
feature-based techniques for searching image databases.
Effective segmentation will isolate the important homoge-
neous regions of the images in the database, from which an
index can be established for searching.  In most previous
attempts at developing query methods for image databases,
researchers have not chosen to automate the segmentation
process [2].  Instead, they have relied on human interven-
tion to mark the separate regions within each image.  How-
ever, manual segmentation of all images in a database is a
very time-consuming process.  There will be much gained
from a procedure that automates segmentation.  However,
automatic texture segmentation is a difficult problem.  It
requires unique mathematical operators that discriminate
between an unlimited number of textures while providing
precise identification of borders between textured regions.
It has been found that these are conflicting objectives [22].
Therefore, in our approach to this problem, segmentation is
only roughly estimated using a block-based approach based

on quad-tree spatial decomposition of images.  We maintain
that spatial blocks of homogeneous texture will be sufficient
in an image database system supporting “query-by-texture.”

2.1  TEXTURE-BASED IMAGE QUERY

The visual characteristics of homogeneous regions of real-
world images are often identified as texture.  These regions
may contain unique visual patterns or spatial arrangements
of pixels which regional gray-level or color alone may not
sufficiently describe.  Typically, textures have been found to
have statistical properties, structural properties, or both
[13].  Moreover,  due to the diversity of textures appearing
in natural images it is difficult to give a universal definition
of texture.

Texture is an important element to human vision.  Belesz
[15] has reported that a “preattentive visual system” exists
which can almost instantaneously identify “textons”, the
preattentive elements of textures.  The human visual system
has also been found to decompose the retinal image into
narrow bands of frequency and orientation which are impor-
tant for discerning texture primitives [3].  Textures also
have been used in 3-D visual recognition systems to provide
cues to scene depth and surface orientation.  In graphics sys-
tems, greater “realism” is achieved when textures are
mapped to 3-D surfaces.  Human beings also tend to relate
texture elements of varying size to a plausible 3-D surface
[1].  Texture features have been used to identify contents of
ariel imagery such as bodies of water, crop fields and moun-
tains.  Finally, textures may be used to describe content of
many real-world images: for example, clouds, trees, bricks,
hair, fabric all have textural characteristics.  Particularly
when combined with color and shape information the
details important for human vision are provided [6].



important regions of texture of the images are obtained.
Using the spatial quad-tree approach, each quad-tree node
points to a block of image data.  Children nodes are merged
when the discriminant functions indicate that the children
blocks contain sufficiently similar textures.  A “Query-by-
texture” examines the blocks identified by the final quad-
tree structures to test the similarity to a texture-key used for
the search.

3. TEXTURE FEATURE EXTRACTION

3.1  BLOCK-BASED FEATURES

Some approaches to texture segmentation fall under the cat-
egory of pixel-based schemes.  In general, pixel-based seg-
mentation schemes evaluate the texture features in a
neighborhood surrounding each pixel in an image.  When
neighboring pixels are classified similarly, regions of tex-
ture are formed.  Of course, a difficulty results when image
pixels border several textured regions.  Then the features
may not resemble those of the nearby textures.  Sophisti-
cated techniques are often adopted to decipher this border
information between textures.  However, in an image data-
base application, precision in border extraction may not be
necessary as long as a block of each texture is identified.
Since the blocks of texture may suffice for matching, we
adopt a computationally less expensive quad-tree approach
for image segmentation which can use traditional texture
discriminant functions to group blocks within the image.
By utilizing a block-based approach towards feature extrac-
tion, the loss in boundary localization is a direct result of the
uncertainty principle [25].  However, since we use blocks of
data from which to compute texture features, the spatial
localization can be traded off for better spectral selectivity
and statistically computed features.

3.2  WAVELET SUBBAND FEATURES

Effectively, we treat each block as a separate image of tex-
ture.  Any features extracted from the blocks that provide
discrimination may be used.  The features we use are com-
puted from the mean absolute value and variance measures

Because of the fundamental importance of texture informa-
tion for human vision, texture can provide a meaningful tool
for searching image databases.  By indexing on the texture
contents of images in the database, a user may search
through large volumes of images using texture keys.  Ide-
ally, there is no restriction that the textures belong to pre-
defined classes.  Furthermore, the “Query-by-texture” can
be combined with other descriptions of color and shape, to
formulate overall image content-based queries.

2.2  TEXTURE DISCRIMINATION AND SEGMENTATION

Towards the development of “Query-by-texture,” it is nec-
essary to find a meaningful measure of the similarity of tex-
tures (texture discrimination) and to develop a procedure for
segmenting images based on textural content (texture seg-
mentation).  Furthermore, discriminant functions are needed
to gauge the similarity between textured regions and the
texture key used for searching.  Likewise, the discriminant
functions can be used to match blocks within each image to
produce thetexture segmentation.

Using a quad-tree data structure, we carry outtexture seg-
mentation by grouping image spatial blocks.  In our
approach, all feature sets are computed directly from the
Quadrature Mirror Filter (QMF) wavelet representation of
the images.  While the QMF wavelet features have been
found to provide good classification of Brodatz textures, we
found in our previous work [20], that feature sets derived
from other image representations, such as DCT and uniform
subband representation, are also effective.  Since an image
database may contain hundreds of thousands of images,  it is
beneficial when segmentation can be performed using data
directly available in the given image representations.  We
have focussed on QMF wavelet features keeping in mind
the application to large image databases.  Although, our
approach is general enough to use instead other  features
sets that discriminate between textures.

Because the goal of this segmentation is to provide indexing
of  images in the database, we relaxed the constraint that the
segmentation provide perfect boundary identification.  Our
segmentation is successful when representations of the

FIGURE 2. Texture classifier using wavelet subband features.
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FIGURE 3. (a) typical Gabor filter tilings used for texture discrimination, and (b) frequency tiling produced by orthogonal separable
(QMF) wavelet decomposition, and (c) QMF wavelet decomposition of the Barbara image.
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on the subbands produced from three iterations of QMF
wavelet decomposition.  This feature set was found to give
93% correct classification of the complete set of 112 Bro-
datz textures [22].  The wavelet feature-based texture classi-
fication process is illustrated in Figure 2.

The QMF wavelet subband decomposition is an orthogonal
approximation to that produced by Gabor filters.  Gabor fil-
ters have been applied to texture segmentation by Bovick
[4] and Jain [14].  The advantage of these wavelet spatial-
frequency approaches is that simple statistics computed
from the subband images may be used because the subbands
have limited spectral information [14].  Gabor filters have
found particular application in texture discrimination
because a filter set can consist of arbitrarily scaled and
rotated filters.  Gabor filter banks have also been found to
approximate the mechanisms of human vision [14].  The fil-
ters also meet the minimum combined uncertainty in the
spatial and frequency domains.  Most Gabor filter banks
used for texture discrimination do not provide a complete
basis for decomposition as shown in Figure 3(a).  The QMF
wavelet decomposition does provide an orthogonal basis
but does not provide as much granularity for identifying fre-
quency directional components as shown in Figure 3(b).  A
QMF wavelet decomposition of the Barbara image appears
in Figure 3(c).

We combine the quad-tree data structure with wavelet sub-
band representation to perform image segmentation as fol-
lows: for each quad-tree block, features are extracted by
computing the wavelet decomposition of the block, as indi-
cated in Figure 4(a).  Features are obtained by measuring
statistics from the wavelet subbands.  However, in general,
to perform wavelet decomposition, image borders require
padding before filtering is carried out.  Typically, padding
information is taken from within the image based on some
rule, such as mirror extension of borders.  Since we are

dealing with image blocks and not actually separate image
entities, the border information can be extracted from neigh-
boring image blocks by borrowing border pixels in the fil-
tering operation.

Done this way, the wavelet decomposition and feature
extraction processes are no longer independent for each spa-
tial block.  But the exchange offers an elegant solution for
padding, and the order of operations can be reversed.  First,
the entire image is decomposed using wavelet filtering, then
quad-tree spatial blocks point to appropriate regions in the
full wavelet image, as shown in Figure 4(b).  Furthermore,
features can be extracted directly from the wavelet images,
if the wavelet representation is used to store images in the
database.  We placed some focus on this representation
since the wavelet representation has a number of beneficial
qualities in the image database application, such as provid-
ing a multiresolution structure and energy compaction to
enable compression.

4. TEXTURAL SIMILARITY

4.1  TRAINING

The Brodatz texture collection was used to obtain discrimi-
nant functions using Fisher Discriminant Analysis.  This
procedure constructs linear composites of the features
which provide for maximum average separation among
training classes [10].  In our previous work, discriminant
functions generated from a fractional subset of Brodatz tex-
tures were found to provide effective discrimination among
the whole set [22].  We hope that using the complete set of
112 Brodatz classes in training will construct discriminant
functions general enough to discriminate between new and
unknown textures.  The Mahalanobis [12] distance, which is
the squared distance in the transformed feature space, was
used to measure the similarity between textures.  In ordinary



a lower distance threshold for comparing textures of larger
block size.

4.2.2  FEATURE SET ENERGY

The within-class variation is also correlated to the magni-
tude of the transformed feature sets, as depicted in
Figure 5(a).  For a texture classi, the distance  in feature

space for a member of that class to the centroid  of that

class is a function of the energy of the feature set .  Tex-

tures that produce high energy features sets typically belong
to classes with the largest within-class variance.  Likewise,
textures producing low energy features typically belong to
texture classes with small within-class variance.
Figure 5(b) shows the energy plot of four Brodatz textures
that illustrate this relationship.  The distance threshold can
be determined from information about the textures being
compared, namely image region size and energy of the fea-
ture set.

4.2.3  DISTANCE THRESHOLD COMPUTATION

To develop the distance threshold to be used for quad-tree
segmentation, we examined the training texture cuts taken
from Brodatz collection previously, and observed a strong
positive correlation (0.75) between the quotient of feature
energy and image size, and distance to correct class.  Per-
forming a linear regression analysis on this data, the thresh-

old function in EQ 1 was obtained.  Here  is the threshold

to be used in the Mahalanobis distance,  is the energy of
the transformed feature vector ands is the number of pixels
in the image block.

(EQ 1)

di

χi
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υ
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FIGURE 4. (a) Quad-tree decomposition followed by wavelet-based feature extraction performed on quad-tree blocks, (b) Quad-tree
blocks point to regions in wavelet image for feature extraction.
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classification of textures or comparisons of many textures,
the relative rankings of the Mahalanobis distances are used
to identify closest matches.  Subsequently, in response to a
“Query-by-texture,” all textures in the database will be
sorted by this distance to the texture-key.  This search
requires no threshold to be established to determine when
textures are no longer “similar.”  However, to decide
whether two textures are similar or not, as in quad-tree seg-
mentation, requires a threshold in distance.  In general it can
be difficult to set this threshold for all textures.  We have
used observations made on the distributions of the 112 Bro-
datz texture classes in feature-space to estimate an effective
threshold for similarity between textures.

4.2  DISTANCE THRESHOLD

Using a fixed distance threshold for determining whether
two textures are sufficiently similar will not be optimal for
all types of textures.  Depending on the characteristics cap-
tured by the extracted feature sets and the particular derived
non-singular mapping to a transformed feature space, the
within-class variance for visibly similar textures will vary
from class to class.  We have found that the distance thresh-
old depends heavily on the block size from which the fea-
tures are extracted and on the energy of the feature set.

4.2.1  BLOCK SIZE

There is a relationship between block size and the estima-
tion of the features probability distribution produced from
the blocks.  Since smaller texture blocks will contain fewer
data points from which to derive statistical features, there
will be a larger deviation in features extracted from these
blocks of similar textures.  This results in a greater variance
in distance between possibly similar textures, necessitating
a higher distance threshold for comparing textures of
smaller block size.  Likewise, features extracted from larger
blocks produce smaller within-class variation, necessitating



4.2.4  THRESHOLD FOR QUAD-TREE SPLITTING

Beginning with the complete image as the first node, the
quad-tree is formed by iteratively splitting each node into
children nodes.  Four children are spawned by each parent
and based on the texture features extracted for each child,
conditions for merging are tested.  The distance threshold is
computed for each child as a function of the child feature
energy and block size using EQ 1.  Then the distances in
feature space are measured from the parent node to each
child.  If the distances to all four children fall within the
respective thresholds of the children, a single texture is
declared in the parent node, as illustrated in Figure 6(a).
Then the parent is marked as a terminal node and the chil-
dren are deleted.  If a single texture is not present, then tests
for pair-wise grouping of children are performed.  When the
distance between the next two closest children falls below
both respective thresholds, the children are merged, see
Figure 6(b).  When no children are close, all children are
kept as nodes, and quad-tree iteration continues on each
child, see Figure 6(c).

4.2.5  LIKELIHOOD RATIO TEST

In actuality the value of the distance threshold determines
the trade-off between Pd, the probability of correct detection
of similar textures and Pf, the probability of false detection.
Due to the nature of the underlying distributions of parent-
child distances when a single textured region is present ver-
sus the case when more than one texture among children
blocks is present, Pd and Pf will always increase and
decrease together.  This can be observed in the histogram
plots of parent-child distances for the two cases presented in
Figure 5(c).  Furthermore, a result of signal detection theory
tells us that using a likelihood ratio test, Pd can always be

higher than or equal to Pf [24].  Therefore, an alternative to

formulating the distance threshold formula from training
data as in the previous section, is to estimate the a priori
probability distributions of distances between parent-child
blocks.  Then the threshold can be shifted to adjust the
trade-off between Pd and Pf.  This framework allows the
capability to adjust the texture segmentation to the optimal
trade-off between Pd and Pf, given some cost functions for
each.

5. INDEXING IMAGES BY TEXTURE

5.1  QUERY-BY-TEXTURE

An image database was generated by randomly compositing
five cuts per image from 134 images consisting of 112 Bro-
datz texture images and 22 real world images to generate a
database of 200 images.  To generate the composite images,
first four random pieces were tiled in each of the corners to
cover the entire image area.  Then a fifth random cut was
positioned in the center, overlapping parts of the four cuts.
Finally, a random shift was applied in both the x and y
directions with a wrap around of image data to scramble the
blocks of texture.  This produced images each with five pos-
sibly distinct textures contained in possibly many disjoint
regions.  “Queries-by-texture” were then performed on this
composite image database using cuts from the Brodatz tex-
tures as texture keys.  A typical result from a “Query-by-
texture” on this composite texture image database is shown
in Figure 7.

6. SEARCHING FEATURE SPACE

6.1  HIERARCHICAL SEARCHING

As the number of images and textured regions increases, it
becomes necessary to utilize a searching procedure through

FIGURE 5. (a) the distance  of each texture class member to the centroid  of the class is a function of energy of the feature set,

(b) first two most significant dimensions in feature space for four random Brodatz texture classes, (c) histograms of the sums of distances
of children to parent when one single homogeneous texture present and more than one texture present
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FIGURE 6. Splitting examples. Note:  circle radius = distance threshold for each child as computed as a function of child energy and
block size.  (a) No Split -- all children belong to single class, (b) Split into two -- children 0 and 3 form a texture class, and children 1 and
2 form a second texture class, (c) Split into four -- four texture classes present in this spatial block.
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the database more efficient than exhaustive search.  The
ordering of the discriminant functions by significance is a
natural by-product of the feature-space compaction per-
formed by the Fisher Discriminant Analysis.  This energy
compaction may be exploited by adapting a hierarchical
approach to searching.  Therefore, each dimension of the
feature space may by searched independently in order of
significance.  For example, a binary search may be con-
ducted on sorted feature data beginning with the most sig-
nificant discriminant functions.  At first, the candidate
match list may be kept larger than the final desired number
of retrievals.  As the list is subsequently searched using the
remaining discriminant functions, it may be further trun-
cated.  This technique of successive refinement reduces the
complexity of searching the high-dimensional feature space
by reducing the overall number of comparisons.

6.2  FEATURE SPACE PARTITIONING

A second alternative to searching the high-dimensional tex-
ture feature space is to partition the feature space.  This way
the search can be conducted in two stages.  The first will
identify the appropriate partition in feature space.  The next
stage will examine only the data points in the partition.
However, if the dimension of the feature space is large, it is
unlikely that uniform partitioning will be optimal.  For
example, data may crowd into several partitions while oth-
ers remain sparse or empty.  This will result in non-uniform
search performance.

6.3  DATA CLUSTERING

An improvement over partitioning the feature space is to
gather data points into clusters.  Again the search will be
broken into two stages.   The first will identify the appropri-
ate cluster, and the second will search all the data points in
that cluster.  Search performances at each stage can be regu-
lated by the clustering algorithm.  For example, a bound set
on the maximum number of data points per cluster will pro-
duce a bound  on the second stage of the search algorithm.

This results in more consistent performance than partition-
ing the feature space.

7. CONCLUSION

We have presented a method for performing “Query-by-tex-
ture” on an image database.  Texture has been shown to be a
viable characteristic of visual information by which image
data may be indexed in a large image database.  Using a
quad-tree approach to image segmentation, feature sets are
extracted from image blocks and conditions for merging are
determined by a texture discriminant function.  Without
resolving border details between textured regions, we use
the homogeneous rectangular blocks of texture within each
image to perform indexing in the database.  Our approach,
in general, places no limitations on how features are
extracted from image blocks, nor does it require that the fea-
tures even be of texture.  We have used specifically features
sets based on the QMF wavelet decomposition because of
the discrimination performance, and the benefits this repre-
sentation offers in a database application.  The quad-tree
method offers an efficient approach towards segmenting and
representing textures present in an image, and provides a
general framework by which other discriminating features
can be used for image segmentation.

7.1  FUTURE WORK

We are currently extending the texture segmentation and
“Query-by-texture” methods to a database of real-world
images that consist of images from nature, art, architecture
and medicine.  The “Query-by-texture” feature will be inte-
grated with keyword indexing to provide the user with both
textual and visual keys for searching for images in the data-
base.  We will also be exploring other features such as color
and shape to be used to perform overall content-based que-
ries of image databases.  This work will be part of the Con-
tent-Based Visual Query System and Video On-Demand
prototype efforts at Columbia University [7].
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