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Abstract An architecture and associated protocols are presented for managing multicast addresses
and performing connection control for applications that use multicast communication facilities. A
scheme to partition the multicast address space on the basis of the network number is proposed
(an underlying IP-based internetworking environment is assumed), and its performance and scaling
characteristics are discussed. A protocol is then developed to provide for dynamic allocation and
release of multicast addresses, as well as maintaining state information for a connection. The
protocol is independent of the address partitioning scheme, and hence is essentially applicable to
any network layer; it is also shown to be robust and e�cient. Finally, we describe two di�erent
mechanisms, namely address-based �ltering and virtual port numbers, which enable the use of a
common port number by all session participants.
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1 Introduction

With the rapid advances witnessed in the computing and networking technologies over the last

decade, multimedia systems and applications, distributed over networks and involving several

hosts, have become a reality. In addition to videoconferencing, such applications include group

editing and shared workspaces (or groupware), multimedia on-demand services, and multimedia

electronic mail.

Providing multicast capability at the network layer is extremely important in order to reduce

the bandwidth requirements of multi-party, multimedia applications. Integral to such a capability

are multicast addresses (i.e. a set of network addresses that designate a group of recipients),

and multicast routing mechanisms. There are four main issues that have to be addressed by

applications that make use of multicasting: 1) multicast address management, 2) connection
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control, 3) call management and 4) data transport. In this paper we are concerned with the

�rst two issues only. We present an architecture and associated protocols that manage multicast

addresses for the purpose of establishing and controlling multi-party sessions in an internetworked

environment. We are not concerned with multicast routing algorithms, about which a great deal

of literature exists (see [DEER88] and references therein), but assume it is provided at the network

layer.

As the terminology in this area is not yet completely established, the di�erence between call

management and connection control in the context of this paper should be explained. Call man-

agement is entirely up to the users and/or application; they de�ne how they want to manage

their session in terms of who has 
oor control, whether users need authorization to join in, etc...

Connection control, however, is totally transparent to users, and includes mechanisms for hosts to

maintain proper state information, even if host or network link failures occur. In our architecture,

for example, this is achieved through the exchange of periodic refresh messages (see Section 3 for

details). Some minimal cooperation of call management with connection control, transparent to

users, is necessary so that communication parameters (e.g. multicast address, port number) are

conveyed to the new participant(s) as they join a session.

In order to allow unlimited group membership without overloading packets with header infor-

mation, a set of regular network addresses can be reserved for the purpose of designating multicast

group addresses. This approach has been adopted in the IP environment [DEER89]. Even if a sep-

arate group addressing scheme is employed, the number of possible group formations (2N �N �1,

where N is the number of available regular network addresses) is prohibitively large to allow full

coverage1. Clearly, multicast addresses are a scarce network resource.

In contrast to regular network addresses, which are administratively allocated to unique hosts,

multicast addresses have to be freely available. Thus, multicast addresses have to be dynamically

allocated to applications, and returned to the network when no longer needed. Furthermore, the

same address must not be assigned to concurrent sessions, as this will lead to interference or \cross-

talk" 2. In the IP environment, there is currently no such robust and scalable dynamic allocation

1
N = 232 with the current (4-byte) IP addressing scheme, and will be increased to 264 if IP addresses are

expanded to 8 bytes.
2The same address can be allocated to di�erent concurrent applications if restrictions are imposed on the

2



mechanism, and users have to exchange beforehand all relevant communication parameters to

establish a session, using conventional means3. These limitations hinder further development and

deployment of multi-party applications, and unnecessarily move the burden of network manage-

ment operations to the users. Although the number of applications that currently utilize multicast

addresses is rather small, the expected growth will demonstrate the need for | and require the

use of | an e�ective dynamic address management scheme.

Although there have been a number of proposals for multicast transport protocols | such

as XTP, ST-II, MTP, RTP, and extensions to the simple and heavily used UDP | they all

assume that there exists some outside authority for allocating and managing multicast addresses

[BRAU93]. Only in [BRAU93] has an actual architecture for multicast address management been

proposed, although not in su�cient detail. In this architectural outline, the addresses are managed

by a Multicast Group Authority (MGA) hierarchy, with a centralized controller as the root of an

administrative tree. One signi�cant drawback of this approach is that nodes closer to the root of

the tree have to be able to sustain very high levels of control tra�c. In addition, if any of the

intermediate nodes or links in the MGA hierarchy breaks down, nodes below and above cannot

exchange free multicast addresses. In Section 2, the evaluation of di�erent multicast address

management architectures will be put in more concrete terms.

Applications of a broadcast character that can potentially involve a large number of users

(possibly thousands), can dispense with connection control due to the computational and band-

width overhead associated with any distributed algorithm of such scale. This speci�c style of

multi-party communication will be referred to as \open-style", due to the loose coupling among

the participants4. Similarly, \closed-style" will refer to highly interactive applications in which

both address allocation and connection control are e�ected. These will typically involve a lim-

ited number of users, due to inherent limitations in human interaction. An address management

scheme should accommodate the need to support such diverse conferencing models.

geographical location of the paticipants (with the added bene�t of using multicast addresses more e�ciently). This
restriction is not desirable, however, since many applications become more appealing as the distance between the
participants increases.

3Software tools, however, that ease this task by \advertising" used addresses of ongoing sessions are available
(Van Jacobson's sd).

4Most experimental software packages used today in the multicast-enabled part of the Internet (so-called
\MBONE") fall in this category.
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In order to enable multiple sessions per host, it is assumed that multiplexing is used at the

transport layer. In IP networks this is accomplished with the so-called \port number" (a per-

protocol entity), which is used to identify both sending and receiving parties (user processes). As

explained in Section 4, multicast address management may require the use of a port resolution

mechanism. The latter guarantees that at any given time, the same port number is used by all

session participants.

The paper is organized as follows. Section 2 details the multicast address space partitioning

scheme that our protocol employs, together with an analysis of its performance and scaling char-

acteristics. Section 3 describes the operation of the address management protocol and analyzes

its robustness in various cases of failure. Although we assume an underlying IP-based environ-

ment, the address management and connection control protocol is essentially independent of the

network-layer used, whereas the address partitioning scheme is applicable to any network that uses

hierarchical addressing. Section 4 describes two di�erent port resolution mechanisms. Finally, in

Section 5, we provide a summary of our results, discuss implementation details, and identify areas

of future work.

2 Multicast Address Space Partitioning

Addresses in the current IP environment consist of four octets [POST81a]; the higher byte(s) of

the address is (are) used to identify a network number, while the rest are used to locally identify

an individual host. In order to allow the deployment of networks of various sizes, three classes are

de�ned; each class uses a number of pre�x octets (increasing from 1 to 3 for classes A to C) to

specify the network number, with the remaining octets used for local host speci�cation. Multicast

addresses are de�ned as a fourth (D) class, and have the form5: [224-239].X.X.X, where X can

have any value between 0 and 255 [DEER89]. The address range 224.0.0.X is reserved for the

use of routing and other low-level protocols.

A centralized approach in which a single entity would dynamically manage all these addresses

is impractical. Consequently, any viable multicast address management scheme has to somehow

5The conventional dot-decimal notation is used throughout this paper.
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e�ect a partitioning of the address space. Comparison of di�erent schemes is not straightforward,

as many parameters have to be taken into account. Two reasonable measures, however, are

the blocking probability (i.e. the probability that a request for a free multicast address will be

rejected) and the session setup delay (essentially the address acquisition or | possibly | rejection

delay). The former measures address utilization e�ciency, whereas the latter is indicative of the

complexity of the allocation algorithm. It can be shown that a tradeo� exists between those two

quantities: schemes with a centralized orientation will have lower blocking probability, whereas

those dependent on distributed operation for the allocation of free addresses will perform better

in terms of the acquisition delay.

The blocking probability of address requests can be obtained by modeling address management

transactions (acquire and release) as an M/M/m/m system, where m is the number of available

multicast addresses. We then have [SCHW87]:

PB =
�m=m!
mX
i=0

�i=i!

(1)

where � is the rate of address requests, and 1=� is the average duration of a session. If we assume

that the total number of multicast addresses is equally distributed into l subsets, each of which

will serve only 1=l of the original number of hosts, PB becomes:

P l
B =

(�=l)m=l=(m=l)!
m=lX
i=0

(�=l)i=i!

(2)

It can be shown [ELEF93] that P l
B is decreasing with decreasing l, and hence that partitioning

increases the blocking probability. Repeated application of this property also shows that this is

true for any arbitrary segmentation of the multicast address space, in which addresses are assigned

to network segments proportionally to their request rate.

In a distributed scheme, address requests within one network segment are serviced by addresses

exclusively allocated to that particular segment. In a centralized scheme, addresses are allowed to

freely \
oat" in the network, moved from one part to another on an as-needed basis [BRAU93].

In the former case the address acquisition (or rejection) delay will only include the time to obtain

a free address from within the segment. In the latter case the delay will be greater or equal to
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Figure 1: Multicast address subspace formation

The basis of our address partitioning scheme is the network (or subnetwork, if applicable)
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Address Range Usage Connection User Allocation
Control Authentication Mechanism

224.0.0.X routing/low-level protocols no no static
224.Y.Y.X open-style sessions no no static
225.X.X.X open-style sessions no no dynamic

[226-239].X.X.X closed sessions yes optional dynamic

X:0-255, Y:1-255

Table 1: Address space partitioning by administrative procedures

number. For a class C network, for example, the network number will consist of 3 octets

(e.g. A1.A2.A3). Each network is assigned the management of all valid multicast addresses that

have as a pre�x the concatenation of a valid class D address �rst octet (224-239) and the network

number. So the class C network, A1.A2.A3 will be responsible for managing the address space

[224-239].A1.A2.A3 (excluding the reserved addresses). The address formation procedure for a

class B network is shown in Figure 1.

In order to facilitate various types of conferences, it is useful to further segment the address

space into areas of di�erent administrative procedures. To support open-style sessions with a

large number of participants (e.g. permanent network services like a radio multicast), the entire

address range 224.X.X.X may be excluded from any address management protocol. Allocation

of addresses in that pool (excluding the ones in the range 224.0.0.X) may be performed by a

centralized entity (e.g. IANA), and have similar quali�cations as FCC channel assignments. This

will also provide a suitable environment for existing multi-party applications. For similar sessions

but of temporary character, addresses in the range 225.X.X.X may be dynamically allocated,

but with no user authentication or connection control6 (see Section 3). Table 1 summarizes the

proposed administrative partitioning, while Table 2 shows the number of addresses that have to

be managed by each type of network.

We can now evaluate the blocking probability for the particular address space partitioning

scheme described above. This probability will be highest for class C networks, where there are 15

6In this case the session initiator obtains a multicast address at the beginning of a session, and releases it at
the end. An example would be the multicast of a temporary event, for which no permament address assignment is
necessary. This is currently a very common use of multicast communication resources.
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Network Type Multicast Addresses Excluding Reserved
Class A 1,048,576 983,040
Class B 4,096 3,840
Class C 16 15

Table 2: Managed multicast addresses per network type

addresses available for potentially 256 hosts. Figure 2 shows the blocking probability for a class

C network as a function of its occupancy. Three curves are shown for di�erent loads. The middle

curve, � = 0:05, corresponds to a request rate of 1/host/hour (�i = 1=60) and average session

duration of 3 minutes (1=�)7.
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Figure 2: Blocking probability for class C networks for various loads

Multicast address requests originating from a speci�c network are serviced within that network.

From Table 2 we see that the number of managed multicast addresses for networks of class B and

especially A are inordinately large to be managed by a single entity8. This directly re
ects the

magnitude of the total number of available host addresses within each class, which in itself severely

7These numbers are meaningful for person-to-person voice communications.
8It has been observed that { based on deployment statistics { class A and B network address pools are too

large (sparsely populated) whereas class C pools are rather small (densely populated). More e�cient hierarchical
addressing schemes are speci�cally addressed in IPng (next generation IP) proposals. Their increased e�ciency
will automatically carry over to the proposed multicast address space partitioning, with some minor modi�cations
with respect to the address format assumed here.
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impacts any network operation (not just multicast address allocation). In order to mitigate this

problem, one has to resort to subnetting. With this technique, the original network is segmented

into a set of smaller networks of a lower class (and possibly augmented by a router or bridge),

with network numbers derived from the original one. This helps to ease administrative burden and

avoid resource overloading, without sacri�cing access to the desired address space for expansion

purposes.

Within this context, the domain of responsibility of a group of multicast addresses is a set of

subnets and not the entire network. The exact number of subnets involved depends on the speci�c

network con�guration and the mechanism with which multicast address management resources

are discovered. By coupling subnetting and multicast address space segmentation, the scaling

issues for classes A and B are resolved together with other problems of network operation and

administration.

The process of subnetting may result in an incomplete coverage of the originally available

address space. Consequently, there may exist multicast addresses that correspond to non-existing

subnets. These can be assigned to existing address management entities in the network. In Figure 3

we show an example con�guration of a class B network with two domains (sets of subnets). Subnet

A's router is con�gured with broadcast packet �ltering, whereas subnet B's router allows broadcast

packets to cross subnet boundaries (but not towards the backbone). The multicast address space

management con�guration (available post�x octets) is shown for each managing entity, re
ecting

the di�erences in network con�guration. The set of addresses within the gray area in subnet

128.59.62 correspond to non-existing subnets of the class B network (which could have equally

well been distributed among two or more of the available address managers).

For the purposes of enabling dynamic allocation of excess multicast address pools, and also as

a general address grouping facility, a \proxy" mechanism is described in Section 3. This scheme

allows an address management entity to delegate responsibility to a designated alternative, and

can signi�cantly lower the blocking probability without seriously a�ecting the session setup delay

(if it is not abused). In e�ect, the proxy mechanism achieves a compromise solution between the

centralized scheme of [BRAU93] and the distributed scheme described above. The improvement

in blocking probability is illustrated in Figure 4, where we compare the blocking probability for
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Figure 3: Example of multicast address space management con�guration

a single class C network, with that of 2 and 3 class C networks that have been grouped via the

proxy mechanism. Note that in all three cases, the ratio of hosts to available multicast addresses

is the same. The rate of address requests, �, is 1/host/hour, and the average duration of each

session, 1=�, is 3 minutes. The occupancy shown is normalized to that of a single network for

comparison purposes.
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3 The Multicast Address Management and Connection

Control Protocol

As described in Section 2, each network is allocated a set (or group of sets) of multicast addresses.

These addresses are managed by a single entity of the network, called the Multicast Address

Manager (MAM). The MAM is a process residing in any host on the network, and operating on a

well-known port number. In addition to the MAM, there are a number of processes (perhaps as

many as the number of addresses managed by the MAM, or even one on every machine) that are

responsible for connection control. These Connection Controllers (CCs) reside on di�erent hosts,

again operating on a well-known port number. The multicast address management and connection

control (MAMCC) protocol operates between the MAM, the CCs, and transport protocol entities

at each host9. These latter entities will be referred to as users or session participants for brevity,

although we should stress that actual users are not involved in any way in the operation of the

protocol since it operates well below the application layer.

Upon receiving a user request, the MAM allocates an address, and then selects an appropriate

CC which is delegated the task of controlling the corresponding session. The CCs are responsible

for keeping and relaying state information about the session, processing join and leave requests

from users, and returning freed addresses to the MAM upon session termination. By separating

the tasks of address management and connection control, and by distributing operations among

di�erent hosts, a signi�cant degree of robustness against both process and machine failures is

achieved.

We �rst present the operation of the protocol under normal circumstances. We then analyze the

robustness of the protocol by investigating scenarios where one or more of the system components

fail, and show how the system can recover without causing any disruption to ongoing sessions. The

only case where a session has to be disrupted is when the MAM and its CC fail simultaneously.

9Similar concepts for connection and address management are provided in [SCHO92], where a \Connection
Manager" is employed on top of an application-level protocol; however, no speci�c algorithm and/or protocol is
proposed for this purpose.
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3.1 Normal Operation

We �rst present a general description of the MAMCC protocol, and then present analytical deriva-

tions of the time-out periods referred to in the text.

3.1.1 General Description of MAMCC

When an application requires the use of a multicast address, it broadcasts a MAM request10. This

request is intercepted by the local MAM, which has to be unique in the local (sub)network. The

MAM selects a free address11, plus the least used (based on the number of sessions, the total

number of participants, or a combination of the two) CC and conveys the multicast address and

the address of the calling party to the CC. Once it receives an acknowledgment (ACK) from the

CC (a two-way handshake), it conveys both the multicast address and the address of the selected

CC to the calling party. In case all addresses are used, a negative reply is returned. In order to

facilitate address grouping and/or address space extension, a third \proxy" reply may be given

depending on the MAM con�guration. In this case, the reply indicates the address of a MAM

that has been speci�ed as an alternate MAM server for this network12. As mentioned in Section 2,

this helps to decrease the blocking probability.

After a successful address request, the calling party is then free to proceed with its call man-

agement protocol. In order to properly maintain multicast address usage information, the CC has

to be included in the call management scheme: whenever a new party joins or leaves a session, the

CC should be noti�ed. These operations can be performed by the multicast support software13 at

the times the party requests to join or leave a multicast group, and hence be transparent to the

application. The only di�erence with current practice is that in addition to the multicast address,

the address of the CC must be supplied as well. This address will have to be communicated to

10If broadcasting is not supported by the physical network, then the address of the MAM will have to be speci�ed.
11Possibly the least recently used, in order to protect new sessions from in-transit packets of previous sessions

that used the same address.
12Multiple proxy indications may be given in sequence from one MAM to another, taking care not to form \closed

loops". Note that a fully centralized management scheme could be implemented this way by having all MAMs use
as proxy a single MAM.

13This software has the responsibility of manipulating physical multicast resources, and informing nearby multi-
cast routers when the particular host it is running on has joined or left a multicast group. In IP there is currently
no \leave" indication, and the multicast router utilizes timeouts to eliminate group memberships.
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the participants through the call establishment process.

When all participants have indicated that they have left the session, the CC considers the

address freed. After an appropriate timeout period it initiates a three-way handshake with the

MAM, which will mark the address as available for reuse and disassociate it from the CC.

In order to maintain robustness against CC and user failures, special messages are exchanged

periodically between the CC and each user. The CC requests each user to identify itself as an

active participant at periodic and dynamically computed time intervals. The CC then considers

the user lost when it has not received identi�cation from the user within an appropriate period.

Individual users employ similar timeouts; if no message has been received from the CC within

a prespeci�ed period, the CC is considered lost and the MAM is contacted to initiate the CC

recovery procedure, as discussed in Section 3.2.2. To conserve network resources, the established

multicast channel can be used for transmitting the \keep-alive" requests from the CC to the

participants. Replies to the CC, however, are always unicast.

A similar mechanism is also used between the MAM and the CCs, where keep-alive messages

are exchanged periodically, though less frequently than between the users and the CC. This is to

keep the MAM informed of the status of the CCs and also to ensure that multicast addresses that

are no longer in use, yet have not been reported as such to the MAM due to a CC failure, are

freed up for reuse (see section 3.2.2). These keep-alive messages serve another purpose: each CC

includes the total number of participants in all the sessions that it manages in the message that

it sends to the MAM. This information is used by the MAM to determine the least used CC in

response to a request for a multicast address.

3.1.2 Analytical Computation of Time-out Periods

We now describe the dynamic timeout value computation employed for keep-alive messages and

in handshake operations, assuming a simple datagram service by the network layer (as in IP). Due

to the large delay variations experienced on an internetwork, any a priori assumption in terms

of round trip delays is inappropriate. Furthermore, the timeout values can have a signi�cant

impact on the responsiveness of the protocol with respect to the speed with which exceptional

events are detected. Of particular importance here are events that propagate in higher layers of

13



an application, and are directly visible to end-users (user additions and deletions).

To minimize the value of timeout periods and to assign meaningful values to its timers, the CC

maintains round trip time (RTT) information. Since the CC may manage quite a large number of

users, RTT information is maintained on a per-session basis. For each session, smoothed estimates

of the average RTT (�RTT) and its variance (�RTT) are maintained. The estimation process is

similar to that used in the TCP protocol [JACO88, LEFF89]. The keep-alive timeout value Ti

for each session is set as the average smoothed RTT plus twice its smoothed variance. In case

responses are missing upon expiration of the timeout, the new timeout value is set twice as large

as the previous one. After a prespeci�ed limit of back-o�s, L, is reached (truncated exponential

back-o�), or if the overall timeout (i.e. the sum of the exponential back-o�s) reaches a maximum

Tmax, whichever is less, the users from which no response has been received are considered lost

from the session. A relatively large value (e.g. 30 seconds) can be assigned to Tmax. It is essential,

however, to impose an absolute upper bound to the timeout period in order to facilitate recovery

from CC and MAM failures, as described in Sections 3.2.1 and 3.2.2. A minimum value for the

timeout period must also be set (in the order of a few seconds), so that the volume of control

tra�c in sessions with small RTT is kept low.

In order to dampen the incoming tra�c at the host (or network) where the CC resides, a

smoothing period is used in the generation of acknowledgements (a similar scheme is used in

[DEER89]). The keep-alive message from the CC to the users contains the value of an interval,

in which responses from the users will be distributed. The users generate uniformly distributed

random values within this interval and use them as timeout values for the transmission of the

acknowledgement. The smoothing period, si, is computed on a per-session basis. Assuming that

the CC server (or the network where it resides) can sustain an average { or assigned average

{ nominal rate of R incoming messages per second, and that the current number of sessions

controlled by the CC is M , the smoothing period si for the i-th session is set to:

si =
NiM

R
(3)

where Ni is the number of participants in the i-th session. With the above formula, the average

incoming message rate will be exactly R, regardless of the number of participants managed by

the CC. This allows the connection control architecture to be scalable. The value of si should be
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added to the CC keep-alive timeout Ti. Also, since the smoothing period can introduce a bias in

the average RTT estimate �RTTi
, the value of the random interval selected by the user has to be

included in its acknowledgment and subtracted from the RTT estimate before updating �RTTi
.

As was mentioned earlier, the timeout values will directly a�ect the worst-case delay in adding

a new user to a session. Using equation 3, equitable distribution of resources is guaranteed to all

sessions, proportional to the number of participants. The precise value of R depends on the size of

the messages, the hardware where the CC operates, and the capabilities of nearby routers. Note

that for messages in the order of 100 octets, a value of R = 1; 000 msg/sec is well within today's

hardware capabilities (less than 1 Mbit/sec). The level in which smoothing may prove useful has to

be veri�ed with large-scale experimentation. Figure 5 shows how si can be varied to accommodate

for a large number of hosts, for various values of R. With a smoothing period of ten seconds, for

example, 10; 000 hosts can be controlled by the CC. As noted in the introduction, \open-style"

broadcast sessions involving larger numbers of participants can dispense with connection control

altogether.
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A timeout mechanism is also employed at the user side. Since the rate of generation of keep-

alive messages from the CC is dynamically computed, this timeout value has to be supplied from

the CC in the keep-alive message. Upon reception of such a message, the user starts the timeout

with the supplied value T LOST

i , where i designates the session. If upon expiration of the timeout

15



no new message has been received from the CC, the user noti�es the MAM so that the appropriate

CC recovery procedure is initiated (see Section 3.2.2). The value of T LOST

i is always set by the CC

to the minimum of Tmax and the sum of all the possible exponentially backed-o� timeouts Ti, i.e.:

T LOST

i = min

(
Tmax;

LX
k=0

2k (�RTTi
+ 2�RTTi

+ si)

)
(4)

The MAMCC protocol requires reliable communication of control messages (join, leave, address

requests, and report of CC failure to the MAM). For this purpose, and again assuming a simple

datagram service from the network layer, all requests by users are acknowledged by the MAM

and the CC14. In order to mitigate the problem of duplicate packets, timestamps are always used.

In this handshake scheme if no reply has been received from the MAM or CC for a speci�ed

period, the message is retransmitted, with a truncated, exponentially backed-o� timeout value or

until the keep-alive mechanism fails (if applicable). Since individual hosts do not maintain RTT

estimates (at least not as part of the mechanisms proposed here), a reasonable starting value for

the retransmission timer can be obtained from the CC in its last keep-alive message (if any), as

the current value of Ti for the session. In the worst case, inaccuracy of this timeout value will

just trigger duplicate messages that can be easily �ltered out based on the message timestamps.

The messages exchanged between two hosts, the MAM and the CC in a sample session is shown

in Figure 6.

3.2 Error Recovery

By separating the operations of address and connection control, and distributing connection control

among multiple hosts, a signi�cant degree of robustness can be achieved. In the following we

investigate cases where one of the MAMCC protocol components fails, focusing in particular on

MAM and CC failures. It is shown that the only case where a session has to be disrupted is when

its CC and the MAM fail simultaneously. Failure in the context of this discussion means that a

component ceases completely to operate; in addition, it is assumed that it will be reinstated, but

with total loss of information about its prior state.

14Control requests to the MAM and the CC and their corresponding replies are always unicast (with the exception
of the initial address request which may be broadcast).
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Figure 6: Message 
ow diagram for a sample session (messages in italics are not part of MAMCC)
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3.2.1 MAM Failures

If a MAM fails, the sessions associated with it proceed as usual (with users still able to leave

and join), since it is the CC that is in charge of connection control. New requests for multicast

addresses, however, will be unanswered15. When a MAM is started or restarted after a failure, it

sends a (multicast) query message to the CCs of the local network, which in turn reply by sending

the multicast address(es) for which they are responsible and the number of participants in their

session(s). As the replies to its query come in, the MAM will mark the CCs as enabled, and

associate the appropriate multicast address(es) with each of them.

The MAM waits a period equal to twice Tmax after it has sent a query message before assuming

that a multicast address for which no CC has claimed responsibility is free. This is to cover the

case where a CC fails just before the MAM restarts, and avoid allocating an address that is already

in use. As explained in the following section, one way in which CC failures are brought to the

attention of the MAM is by the session participants (the other is through the MAM-CC keep-alive

procedure). The process of a user timing out a CC requires at most Tmax from the time of failure,

while Tmax is also the worst-case time required for a user to subsequently notify the MAM (or

time it out and leave the session).

3.2.2 CC Failures

CC failures are not fatal and their sessions can proceed normally. After the users timeout their CC,

they will send a \CC not responding" message to their MAM, including their multicast address

and the address of their now invalid CC. Upon reception of the �rst such message, the MAM

will mark the CC as \not responding", disassociate the multicast address from the old CC, send

a message to the old CC that it is relieved from managing this address16, and select a new CC.

After receiving an acknowledgement from the new CC, the MAM multicasts the address of the

new CC to the users, which in turn send a \request to join" to their new CC. They can then begin

15It would be possible for the user to send its request to a MAM on another network. Since broadcasting would
not | in general | be allowed across a network boundary, this would require a MAM discovery procedure which
is outside the focus of this paper.

16This is to cover the case when one or more users time out the CC due to temporary network link failures, and
not due to CC failure, and thus stop the CC from sending keep-alive messages.
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their periodic keep alive messages after receiving the appropriate acknowledgement from the new

CC. The new CC will have the correct state information within a period of at most twice Tmax.

To deal with duplicate messages (from all the users after each one times out the CC), the MAM

will ignore messages that refer to a CC that has already been disassociated with the multicast

address indicated, and which has already been marked as disabled.

If the MAM detects the CC failure before the users through its own MAM-CC keep-alive

mechanism, it will mark the CC as disabled, and go through the same process of selecting a new

CC. Subsequent \CC not responding" messages from users will be �ltered in the same way as

duplicates, as described above.

The entire operation of timing out the failed CC, reporting it to the MAM, selecting a new CC

and recovering its state is totally transparent to applications, and does not cause any disruption

to communications. While the CC is down and the MAM is �nding a new one, users may leave

the session, but cannot join.

When a CC is started or restarted after a failure, it sends a \CC ready" message to the MAM,

waits for its acknowledgement, and ignores any keep-alive messages that might still be directed to

it. The restarted CC is marked as enabled, but is not reassigned any of its previous sessions, for

which alternate CCs were/are sought. Subsequent messages from users regarding the CC being

non operational are again �ltered out by comparing the multicast address and CC that are being

provided in the \CC not responding" message.

Finally, it is possible that the MAM is up but all the CCs are down. Upon receiving a new

request for a multicast address, and noting that no CC is available, the MAM can reply with the

address of a proxy MAM (if appropriate), just as it would in the case where it had no more free

addresses. The proxy MAM would reside on a di�erent network and would have a whole di�erent

set of CCs at its disposal. If, on the other hand, the MAM receives a \CC not responding"

message and no CCs are available, it can either respond by indicating that all CCs are down

(forcing the users to leave, and the session to end), or preferably start a temporary CC on its

own host. Once it gets the �rst \CC ready" message from a recovered CC and has marked it as

enabled, it will switch to the new CC, just as it would when selecting a new CC after one has

failed in the middle of a session. The temporary CC can then be terminated. A proxy MAM
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cannot be used, since it would require a MAM to manage an address that was not assigned to it

(with signi�cant complications to the operation of the protocol).

The only case where communication will be disrupted and a session will have to be terminated

is when the MAM and CC fail simultaneously. Users should leave the session after timing out

both entities.

The failure scenarios described above will also cover temporary network link and node failures.

It must be noted that any failure in the network (whether short-lived or not) that a�ects MAMCC

operation, will necessarily result in disruption of communication between session participants.

4 Port Resolution Mechanisms

In order to support multiple connections per host, transport protocols provide means to multiplex

di�erent data streams from higher layers. In the IP environment, multiplexing is provided with

the use of the port number. This number is used to identify both receiving and sending entities,

and is an integral part of end-to-end addressing. Established network services are usually allocated

well-known (reserved) port numbers within the transport protocol they use. This way, application

programs or peer processes are always able to locate them.

For multi-party applications that use multicast routing, the situation is complicated by the

fact that the same port number has to be used by all participants. Since the number of available

port numbers is limited, allocating one per application is inappropriate. Moreover, due to the

fact that multicast routing today is provided as an option in connectionless protocols (UDP),

the coexistence of applications that use the same port number is complicated. A dynamic port

selection mechanism has to be used, together with appropriate resolution procedures when there

are con
icts among the participants (e.g. a session port number that is already used in a given

host). Without such mechanisms, applications may receive tra�c that was not destined to them,

or unnecessarily lose part of their tra�c. Today's practice requires the manual communication

(using conventional means) among the participants of the port number that will be used for a

session, together with the multicast group address.

It is assumed here that a call management entity exists in (or has access to) all hosts, to
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process incoming call requests etc. This entity will use a well-known, reserved port as an access

point. As part of the call management operations, the multicast address and the port number of

a session will have to be communicated to the new session participant. The exact way in which

this is performed depends on the session model selected and implemented by the application. In

the following, we describe two techniques that can be used to facilitate port sharing and mitigate

port resolution problems: packet �ltering and virtual port numbers. A third technique, consisting

of a dedicated port resolution protocol, is described in [ELEF93].

4.1 Address-Based Filtering

Address-based �ltering can be very easily performed at the transport layer. For multipoint appli-

cations, �ltering consists of designating the multicast group address as the one with which this

communication endpoint will be addressed. The transport layer will then automatically discard

packets that have the same recipient's port number but a di�erent address. This enables port

sharing among applications that use multicast addresses. A signi�cant drawback of this approach

is that there exist already many applications that were designed with the assumption that mul-

tiple host addresses could only be attributed to multiple network interfaces. Consequently, and

for ease in development, they utilize \all-pass" �ltering at the transport layer. These applications

completely prohibit port sharing. Although this technique requires no changes to actual trans-

port mechanisms, extensive (although simple) changes need to be performed to a large number of

existing applications.

4.2 Virtual Port Numbers

Another possible technique is the use of Virtual Port Numbers (VPNs). With this scheme, the

VPNs are used for addressing purposes at the transport layer similarly to current port numbers,

but a mapping function is used when necessary to identify the receiving application. The mapping

function is applied after reception of data (VPN to actual port numbers (APN)) and associates a

multicast group address with one or more VPN-APN pairs. Note that APN to VPN translation

during transmission is not performed, since a unicast reply by the recipient would not trigger

the inverse mapping. For existing applications, this function would be the identity, i.e. the VPN
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would be equal to the APN. Applications using multicast facilities would establish such mappings

as part of the group join process.

This approach has the advantage of maintaining compatibility with existing distributed appli-

cations, while requiring minor changes in the transport protocol implementation. In addition, it

has minimal overhead as far as connection control is concerned.

5 Concluding Remarks

We have presented an architecture and associated protocol for managing multicast addresses and

performing connection control of multi-party sessions in an internetworked (IP-based) environ-

ment. The architecture consists of an address space partitioning scheme based on the network

number, a Multicast Address Manager (MAM), and a number of Connection Controllers (CCs).

The MAM is a process residing in each (sub)network, and has the responsibility of managing

multicast addresses via mechanisms speci�ed by the MAMCC protocol. The CCs are processes

residing on any host in a (sub)network, and are delegated connection control responsibilities by

the MAM. To facilitate various types of multi-party applications with di�erent needs, further

administrative partitioning of the multicast address space is also proposed.

The MAMCC protocol operates between the MAM, CC, and end-user multi-party applications

at the transport (or higher) level. It provides for dynamic allocation and release of multicast ad-

dresses, and connection control. A proxy mechanism is used to facilitate address sharing among

di�erent parts of a network. This enables a MAM to delegate address allocation requests (and

management responsibilities) to another one, located outside its own network and possibly con-

trolling a larger address pool. The protocol is resilient to MAM, CC, and end-user errors, and

is designed to be adaptable to varying network conditions (round trip delays). The MAMCC

protocol is independent of the address space partitioning scheme used, and is applicable to any

network layer that supports simple datagram operation.

We have identi�ed two techniques to ensure the use of a commonly available port number by

all session participants. Of the two techniques proposed, address-based �ltering and virtual port

numbers, the second is the more e�cient as it has no communications overhead and maintains
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compatibility with existing networking environments.

We should note that large scale experimentation in actual sessions is necessary to identify

potential improvements and perform �ne-tuning of the protocol. Also, the MAM and CC can

be easily augmented with more functionality, such as membership reporting or other application-

oriented operations. An important addition to the MAMCC services would be a call management

server that would provide diverse call management facilities to applications. This server should

have similar responsibilities as the Remote Procedure Call (RPC) port mapper, but support

human communication semantics (e.g. printed noti�cation messages, peer application noti�cation

etc.), a symmetric (rather than client-server only) model of operation, and a simple event-driven

application interface. The availability of these facilities will signi�cantly reduce the burden of

designing and implementing multi-party applications, as most of the complexities involved will be

handled by available network services.
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