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Abstract

Decoding a fractal compressed image can be seen as solving an a�ne two-scale functional

equation. If the a�ne term is zero, the dilation equation becomes linear and the solution is

similar to the scaling functions from wavelet theory. In both cases a linear operator, parameter-

ized with a few variables determines a complicate looking function. We present two classes of

algorithms for gray image coding, based on the solutions of the a�ne and of the linear equation.

The a�ne algorithm is used to build a multiscale pyramid coding scheme. It has been applied

to the coding of gray images and also to color image compression and interframe video coding.

I. INTRODUCTION

The fractal image coding algorithm introduced by A. Jacquin [1, 2] can be described using �xed-

point theory. The original image f is approximated by the �xed-point of a transformation T from

X the space of gray images with the same support, onto itself: f = Tf . The mapping T is the

fractal code and it is restricted to the class of a�ne mappings: Tf = Af + b; f; b 2 X and A is

a linear operator. The mapping T has an unique �xed-point fT that can be obtained by solving

iteratively the functional equation f = Af + b, when T is contractive or equivalently jjAjj < 1 [3].

To take advantage of the similarity between two di�erent scale representations of the image f the

linear operator A acts on the dilated version of the signal (dilation is a linear operation):

f(x) = Tf(x) = ALf(2x) + b (1)
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where x is the space coordinate for the images. AL and b can be parameterized with a small

number of variables AL(�) and b(�). Coding becomes an optimization problem which minimizes

the distortion jjf �fT jj or the size of the code description(T ) over the parameter space, depending

of the desired goal. Good results in image coding have been obtained using partial self-similarity

[1, 4, 5, 6] to create a collection of piecewise transformations fTig which together determine T :

T =
P

i Ti. Each Ti determines the individual fractal code for a block of pixels from the image

f by mapping a piece from f(2x) onto that block. Note that having the map Tj for a single

block is not su�cient to decode the block in this case and we need the whole T . Coding is a

computationally intensive operation which requires exhaustive search in the parameter space for

the best map T (�; �). At this time there is no direct algorithm to generate the transformation T .

The functional equation (1) in this general form is a two-scale a�ne di�erence equation. In

numerical applications the piecewise self-similarity makes the linear operator AL very sparse and

the iterative procedure of solving (1) is simpler than a direct method which requires the inversion

of a large matrix. If jjALjj � 1 the solution requires only a few iterations. If the term b in (1) is

zero (the image with all pixels a 0), the contractivity of AL will give the trivial 0 image in X as a

solution when using the iterative method. Iteration will work only for the case when jjALjj admits

1 as a simple eigenvalue and the solution obtained is up to a multiplicative constant, the associated

eigenvector. The case when AL is a convolution operator appears as the lattice two-scale di�erence

equation in wavelet theory [7] and subdivision schemes in computer graphics [8].

f(x) =
X

k

ckf(2x� �k) (2)

The coe�cients ck in equation (2) represent a discrete linear operator and may determine an unique

solution which is known as the scaling (mother) function. The scaling functions are used in wavelet

theory, through translation and dilation, to build a basis in function spaces and a multiresolution

analysis [9, 10]. The coe�cients fckg can be seen as the code for the signal f(x). Solving (2) is

equivalent to the eigenvalue problem in operator theory [11] which has an unique solution when

the linear operator C determined by fckg has a simple dominant eigenvalue.

Section II. presents the two-scale functional equations used in data compression algorithms.

A signal can be decomposed into an a�ne term and a self-similar part. The contribution of

the self-similar part in f(x) depends on the norm of the operator jjALjj in (1). We show that
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the reconstruction does not have to be iterative but it requires the inversion of a huge matrix in

numerical applications. Section III. describes the application of the a�ne and linear iterative coding

algorithms to image compression. We present iterative �xed-point reconstruction algorithms for

both the a�ne and the linear case. We use the a�ne equation to generate a multiscale pyramid

coding algorithm. At each level the a�ne term is the large scale image and the �xed-point solution

of (2) represents the image with the added detail [12] which is also the a�ne term in the next level.

We show how to extend this algorithm to color images and video coding.

This compression method works based on the self-similarity at di�erent scales found in the signal

to be coded. Wavelets use full self-similarity since the mother wavelet is a linear combination of

scaled copies of itself. The fractal image coding algorithm uses piecewise self-similarity where a

piece of f(x) is similar to a region of f(2x). This allows the encoding of much more complicated

signals than the full self-similarity approach.

Fractal image coding has been pioneered by Barnsley [13] and Jacquin has introduced the

piecewise a�ne algorithm [1]. The a�ne term has been originally used as a shift in the gray levels

and only recently the independent coding of these blocks using VQ and DCT was mentioned [14].

The tiling of the image plane can be arbitrary, with blocks of pixels of di�erent sizes and shapes

[2, 4]. The main contribution of this work is the multiscale pyramid image coding algorithm and

the connection to the two-scale di�erence equation and wavelet theory. Also our approach to video

coding where we use the previous frame as the starting point for the actual frame is original.

Other approaches to fractal video compression [5] use tri-dimensional blocks as an extension to the

two-dimensional method or use the previous frame in a VQ fashion.

II. THE DILATION EQUATION

By Banach's �xed-point theorem [3], a contractive operator on a metric space T : X ! X has an

unique �xed point that is the solution of the (nonlinear) equation ff = Tf; f 2 Xg and can be

obtained by the successive approximations method: ffn+1 = Tfn; n = 0; 1; : : :g. When T is a�ne

as in (1), its contractivity is that of the linear operator AL. If the a�ne term b is the 0 vector

in X the contractivity of AL guarantees the unique trivial solution f(x) = 0. If AL is no longer

contractive and �(AL) = 1 is a dominant simple eigenvalue, then up to a multiplicative constant,

we obtain by iteration the eigenvector associated with �(AL). In linear algebra this is studied as
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the matrix eigenvalue problem [11].

Self-similarity is a wide-spread property in nature. This explains the success of wavelets in

signal processing, fractal modeling of natural processes and fractal image compression. The two-

scale di�erence equation has been studied extensively and [7] contains a detailed survey of di�erent

contexts where it arises. The dilation term f(2x��) is crucial in the determination of the properties

and uniqueness sought for the solutions of (2). As an example in [7] the L1(<) solutions with

compact support are studied. Full self-similarity is to restrictive when we want to model arbitrary

functions as the solution of a dilation equation. Piecewise self-similarity has been used in the fractal

image compression algorithm and the associated dilation equation becomes:

f(x) =
X

k

ckw(x� k)f(2x� �k) (3)

where w(x�k) is a window function, as an example the two-dimensional Haar function in Jacquin's

algorithm. Equation (3) can be also written in the a�ne form (1). Our goal is to decompose a signal

into a self-similar part controlled by the linear operator AL as in (1) and the a�ne term b. We say

that the signal is completely self-similar if the a�ne term b is 0. To see how this decomposition is

inuenced by the relative size of the two parts we study the solutions of the followig a�ne dilation

equation:

f(x) = ALf(2x) + b (4)

where AL determines the Daubechies-4 mother wavelet and b is a Hanning windowing function.

The factor  < 1 weigths the contribution of the self-similar part in the solution.

In Fig.1 we present the Daubechies-4 mother wavelet which is the solution of (2) having four

coe�cients di�erent from zero, and the Hanning windowing function we chose for the a�ne term.

Both have been scaled to have equal norm. On the right we present the iterative solution of the

a�ne equation with  = :98. The result is very close to the self-similar wavelet except for a

multiplicative factor. This is to be expected because for  = 1 the solution blows out-of-bound.

Fig.2 presents the the solution of (3) for ( = .1 to .5) on the left and ( = :6 and :7) on the right,

together with the a�ne term ( = 0). In these simulations we see how the degree of self-similarity

in the solutions are controlled by the contractivity of the linear operator AL. Given the a�ne

term b the resulting function is coded with 5 parameters: the factor  and the 4 coe�cients of the
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Figure 1: Left: the Daubechies-4 mother wavelet and the Hanning windowing function(...) used as
the a�ne term in the dilation equation, normalized to the same value. On the right we have the
iterative solution of the a�ne two-scale functional equation for  = :98.

Daubechies mother wavelet. In fractal coding we have to solve the inverse problem of �nding the

mapping that has the given signal as a �xed-point.

A. Pyramid fractal decomposition

In some applications, like image coding, we are interested in a hierarchy of signals at di�erent

scales, which when combined reconstruct the original [12]. Assuming we know how to solve the

fractal coding problem, we can build a pyramid hierarchy based on the solutions of equations of

type (1). The original signal f0(x) is decomposed into a self-similar part and an a�ne term f1(x).

Next f1 is decomposed into a self-similar part and an a�ne term f2(x) and so on.

f0(x) = A0
Lf0(2x) + f1(x)

f1(x) = A1
Lf1(2x) + f2(x)

: : :

fn�1(x) = An�1
L fn�1(2x) + fn(x)

(5)

If as n grows, fn(x) is a coarser and coarser signal representation, we have achieved our goal. One

more note on the iterative procedure for signal reconstruction. Since the operator AL is contractive,

it has no eigenvalues equal to one. We can try to solve directly for f(x) in the a�ne functional
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Figure 2: Left: The iterative solution of the a�ne two-scale functional equation for  = 0 ({),
 = :1 (...),:2 (- -), :3(-.), :4(�) and :5(o). On th right the solutions for  = 0 ({),  = :6 (- -) and
:7 (...).

equation f = Af + b. We obtain f = (I �A)�1b and when we iterate the pyramid decomposition,

(5) becomes:

f0 = (I �A0)�1(I � A1)�1 : : : (I �An�1)�1fn (6)

In numerical applications, this is the problem of solving a system of linear equations of the form

Cy = g [15, 16]. In our case the matrix realisation of A is very sparse and fast algorithms can be

used in iteration, while (I � A) becomes a full matrix when inverted. To our knowledge, signal

analysis of the type (5) have not be studied. In section III. we present such a decomposition used

into a pyramid image fractal coding algorithm.

III. APPLICATION TO IMAGE CODING

Our goal is to obtain a multiscale image decomposition of the type (5) where we start with a

coarse representation at level n and we add some detail to reach level n � 1 [12]. In this work we

model the image f(x) as a real function de�ned on a rectangle in <2 so x is a two dimensional

coordinate vector. Fractal coding is the process of �nding the pair (Al; b) in equation (1) having

a very compact description and which will give a very good approximation for f . Since full self-

similarity is very restrictive we are looking for partial self-similarity. Given a tiling of the image

support [isupport(ri) = support(X ) 2 <2, we de�ne the fractal code piecewise: T =
P

i Ti where
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Figure 3: The decoding of level n� 1 based on level n in a pyramid fractal coding scheme for gray
images.

the range of each mapping Ti is supported on support(ri) and the domain of Ti can be anywhere

in X . Each Ti is found individually, usually by exhaustive search in the parameter space, to give

the best approximation of the piece fi = f jri � Tif [14]. The parameter space for each Ti contains

a gray level multiplicative factor �i and the position of the domain block in f(2x) such that a

�xed number of bits will code the piecewise transformation independent of the size of the range

tile ri. When we cover X with a small number of large tiles we obtain high compression but poor

approximation because of the limited choice of self-similar patterns. In practice X is a rectangle

tiled with square or rectangular blocks to simplify the description.

A. Fractal coding of gray images

We limit our multiscale analysis to 5 levels in our simulation. Level zero represents the original

digitized image and level 1 is the self-similar coding with tiles of 2 by 2 pixels in size. The coding

starts at level 5 with 32 by 32 pixels tiles. Because f5 is the top of the pyramid, the a�ne term

b is zero so our code has the form (3). To obtain an iterative solution we have to make sure the

mapping has a simple eigenvalue equal to one. This is di�cult in applications so we force the

decoded image to have the same mean as the original image. We rescale at each iteration using

a multiplicative factor, or an additive term that is equivalent to the projection onto the convex

space of equal mean images. Next level is the approximation f4 which is using tiles of 16 by 16
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level/ block size 5. 32x32 pels 4. 16x16 pels 3. 8x8 pels 2. 4x4 pels 1. 2x2 pels

coder type PSNR/bpp PSNR/bpp PSNR/bpp PSNR/bpp PSNR/bpp

self-similar 22.2dB 26.03dB 29.78dB 34.55dB |
.0273bpp .109bpp .4375bpp 1.75bpp

pyramid 22.2dB 25.83dB 29.18dB 32.39dB 32.99dB
multiscale .0273bpp .119bpp .37bpp 1.1062bpp 1.562bpp

JPEG 22.29dB 25.728dB 29.8dB 34.47dB
.067bpp .107bpp .234bpp .71bpp

Table 1: Fractal image coding results: �xed-rate, same size blocks, top; a pyramid fractal coder,
middle; JPEG standard at similar bit rates, bottom.

pixels in the self-similar code and f5 as the a�ne term in (1). The procedure is repeated up to

level 1 which gives a very good approximation of the original. Figure (3) illustrates the decoding

at level n � 1 from level n � 1 based on the algorithm (5) or on the direct form(6). Level 0 is not

coded because now we have a very ill posed problem. The tiles are 1 pixel in size and you can

select any domain block. Moreover we no longer have compression. At each level, we select for

coding only those range blocks that have a distortion to the original above a preset threshold, so

code size is image dependent. We present in Table1 coding results for the 512 by 512 pixels, 256

gray levels image Lenna. The table presents the (PSNR) distortion and bit rates at level 5 to level

1 for the completely self-similar coder (3) (tiling with equal size blocks) and the pyramid coder

(5). For comparison, bit rates for similar distortion rates using the JPEG coder are indicated. We

see a slight degradation in performance for the multiscale coder that is expected in the pyramid

coding schemes. What numbers cannot show is that at low bit rates the fractal image has a natural

appearance while the JPEG coder introduces unpleasant blocking artifacts. Also our coders were

not optimized and we can increase compression by adding an extra entropy coding stage like the

Hu�man coder in JPEG.

B. Coding color images

We have used the basic coding algorithm (1) in the coding of RGB color images. The green

component is individually coded and then it is used as the a�ne term in coding the red and

blue components. Various other combinations with di�erent image formats are currently under

investigation. An example of the information ow in the coding of an RGB color image is given in

Fig.4. We generate a multiscale representation based on the GREEN component but we could use
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 RED GREEN BLUE

16x16 pixels

8x8 pixels
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Figure 4: Multiscale fractal coding applied to a RGB color image: information ow.

the RED or the BLUE. The coding gain may depend on our choice of the base of the pyramid but

it may change with the image and we have to study this aspects in more detail. In this case the we

use 8� 8 pixels/block scale level as the a�ne inputs for the RED and BLUE channels. Empirically

we found that the use of a good quality GREEN (small scale) subimage as the base a�ne term in

the other channels will generate better coding gains. This choice can be seen as a design trade-o�

depending on the speci�c application .

C. Low bit-rate video coding

The superiority of fractal algorithms at high compression rates has been tested in multimedia ap-

plications like videoconferencing but with di�erent strategies [17, 5] based mainly on intraframe

coding. We are using an approach derived from the pyramid scheme (5) to the coding of video

sequences. The previous decoded frame (n � 1) is the a�ne term in (1) and the present frame

(n) is the output of a single level decoder as in Fig.3. Di�erent con�gurations which combine the

multiscale and the predictive properties of the algorithm are possible. We present a pyramidal

coder with three bit-streams and interframe coding that is a good match for an ATM environment

in Fig.5. The base level at low resolution is using (1) for interframe coding. In a telecommunica-

tions applications this level uses a very small bandwidth and requires a high level of protection.

Additional bit streams can be added at higher resolution if needed by the user or application and
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Figure 5: Pyramid fractal video coding with three levels. The base level is the low resolution,
low bit rate based on 16x16 pixels blocks. Additional detail is presented in the higher resolution
bit-streams and can be added depending on network capacity or user requirements.

if the bandwidth is available.

Simulation has been performed on the well known sequence \Miss America". Quantitative

coding results are presented in Fig.6 and Fig.7 and are at least comparable with what has been

published. To have a complete fractal coder we have encoded the �rst frame as a gray image

using the multiscale algorithm used in the previous section. We note the advantage of intraframe

coding the other frames in the sequence manifested by low bit rates and better �delity. In fact,

to have a good prediction for frame 2 we are using a higher resolution, 8x8 pixels/block fractal

code at frame 1 in the base bit stream. These results have been obtained using the pyramid coder

for intraframe coding of the base level. We expect to obtain better results when the design of a

specialized intraframe coder is �nished.

IV. CONCLUSIONS AND FURTHER WORK

We have introduced a multiscale fractal compression algorithm with application to the coding of

gray and RGB color images and video sequences. At each level of the coding pyramid, the decoded

image is the solution of a two-scale functional equation. This type of equations appear in wavelet

theory and subdivision algorithms in computer graphics, and are connected through the use of self-
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Figure 6: Coding results for the �rst ten frames of \Miss America": distortion evaluation.

similarity. The complexity of the encoding process which usually requires exhaustive search in the

parameter space has not been addressed. There are faster algorithms that sacri�ce performance for

speed [18]. Complexity of the decoder was shown to be comparable to that of a DCT based method

[4]. Multiscale fractal image coding may be a candidate for telecommunications applications, such

as image banks, that require progressive image transmission, or multimedia video-conferencing with

di�erent levels of service quality.

The main contribution of this work is the multiscale pyramid image coding algorithm and the

connection to the two-scale di�erence equation and wavelet theory. The video coding approach we

present is also original. There is a large number of questions regarding fractal coding algorithms still

unanswered and we mention only those in our immediate attention range: the use of a di�erent class

of self-similarity transformations T eventually nonlinear, overlapping range blocks, preprocessing

the a�ne term for better self-similarity match, search for a fast encoding algorithm, the use of

partial self-similarity to generate wavelets and multiresolution analyses.
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