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Abstract| We describe the architecture and the algo-
rithms used in Columbia University's \Xphone" multi-
media communication system. The system assumes a
\best-e�ort" operating system and network and provides
facilities for call management, intra-application schedul-
ing for support of continuous data ow and integration
with the windowing system, and synchronized video/audio
acquisition/playback (locally or across a network) with
minimized and bounded end-to-end delay. Synchroniza-
tion is achieved using an algorithm based on time-stamps
and device state information. The e�ects of jitter (de-
lay variation) are mitigated using silence detection; the
end-to-end delay is kept bounded using a restart mecha-
nism. Finally, for live video sources, we describe a source
bit-rate adaptation algorithm that maximizes the video
image quality to the available network bandwidth and
video display window size.

Keywords| Multimedia communication systems, media
synchronization, source rate control, application devel-
opment systems.

I. Introduction

One of the enabling technologies for multimedia sys-
tems is video compression algorithms. Recent advances
in compression technology for images and video (JPEG,
MPEG-1, MPEG-2) have resulted in bandwidth reduc-
tions of two orders of magnitude, down to 1{2 Mbit/sec.
In addition, the work of international standardization
organizations and the increased interest in video appli-
cations for computers and consumer electronics prod-
ucts have resulted in VLSI implementations of these al-
gorithms which can be used for the development of real
systems [1; 2; 3; 6; 14; 15; 20].
Video coding, however, is just one of the components

of a multimedia system. The support of continuous,
high-volume and real-time data (like video or audio) in
both computers and networks represents a tremendous
shift in design methodology, resulting in a re-evaluation
of basic principles. Time dependency of information as
a concept existed only in dedicated systems (e.g. the
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telephone network, or embedded systems); with mul-
timedia, it becomes an issue for practically any appli-
cation. The focal point of multimedia research is to
provide bit-pipe characteristics (guaranteed bandwidth,
low and constant delay, accurate synchronization) to
packet-based systems, using algorithms and architec-
tures that can be widely deployed.
The availability of some kind of real-time support

from the underlying operating system and network is
important for high-quality, wide-area multimedia com-
munications, and is currently a very active area of re-
search (see e.g. [8; 10; 11; 21] and references therein). It
is nevertheless possible to provide multimedia commu-
nication even in environments where delay uncertainty
prevails (best-e�ort systems), albeit with some qual-
ity degradation. In addition, algorithms employed in
non-real-time and real-time systems can be the same;
although the latter will de�nitely perform better, the
techniques used to achieve this performance can be sim-
ilar (especially if the real-time support is not \hard").
Throughout this paper we assume the use of a best-
e�ort operating system and network; in other words, no
time-related guarantees are provided.
A number of systems and techniques have appeared

in the literature, addressing various aspects of multi-
media systems. Early e�orts provided audio commu-
nication only [4]. Some systems use analog video and
audio communication [5], with the corresponding self-
evident limitations in terms of media integration in user
applications. A signi�cant volume of work has been re-
ported at the system architecture level [9; 17; 19], de-
scribing the interface between applications and multi-
media services and the latter's structure. In the area
of media synchronization, a number of techniques have
been proposed. These include incorporation of time con-
straints and scheduling of multimedia documents [7; 13;
16], media synchronization for database access appli-
cations (where a high end-to-end delay is acceptable)
[9; 18], and synchronization for interactive multimedia
communications [12]. In the �rst and second areas, the
proposed techniques are basically used to derive time-
stamps (or their equivalent) with no further analysis
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Fig. 1. Xphone in a projection of the \multimedia systems space"

The structure of the paper is as follows. In Section II
we briey describe the architecture of the system, and
show how the individual algorithms described later on
are integrated. In Section III we describe our source
bit-rate control algorithm. Section IV describes the end-
to-end delay properties of the system, and shows how
silence detection has been employed for its reduction
by a factor of 50%. In Section V we describe the au-
dio/video synchronization algorithm used. We conclude
the paper with a summary of the major points and fu-
ture work plans in Section VI.

II. The Xphone System Architecture

The objective of the system is to provide distributed
multimedia services to application programmers. In
other words, Xphone is not an application per se, but
rather a facility that multimedia system developers can
employ for their speci�c needs. Basic features that had
to be provided are:

� support for continuous data streams, such as video
and audio, and intra-application scheduling,

� synchronization facilities, especially for video and
audio, both locally and across a network connec-
tion,

� an easy to use and robust session management fa-
cility, and

� compatibility with existing interactive application
environments and development practices (e.g. the
X Window System).

It is not our intention to provide a speci�c multimedia
object structuring like the one found in multimedia doc-
uments; such constructions are located hierarchically
higher than Xphone, and can be easily accommodated
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Fig. 3. Call state model

B. Scheduling

Scheduling at the application level is essential for pro-
viding continuity of data ow. This is ampli�ed by the
event-driven architecture of interactive, window-based
graphical user interface environments (like those based
on the X Window System). In these environments, the
application is designed to react to prescribed events gen-
erated by the user or the system (e.g. when a button is
pressed); the main program control is handled internally
by the supporting windowing software. Consequently, a
scheduling facility is provided so that: 1) software de-
velopment can still be based on the established call-back
architecture, and 2) continuity of data ow is guaran-
teed. In doing so, the facility has to be seamlessly in-
tegrated to the windowing environment; this has the
additional bene�t that existing applications will be able
to use multimedia services with no modi�cations of their
already developed code. In our software we provide sup-
port for the XView and X Toolkit Intrinsics packages
(other toolkits can of course be easily added). The sup-
port consists of equivalent substitutes to main-loop con-
trol functions of these packages, which use the Xphone
scheduler for window system event processing. Xphone
event processing (e.g. a call request) is performed syn-
chronously with the scheduler; in other words events
are only dispatched between scheduler tasks in order to
guarantee state consistency.
The scheduler can be seen as a static priority one,

with the di�erence that tasks are usually not removed
from the scheduling queue. The scheduler processes
tasks in a round robin fashion, starting from the ones
with highest priority. The application program has the
option of restarting a round, hence skipping low priority
tasks. Certain tasks { like windowing system event pro-
cessing { are always given the highest priority, as they
can adversely a�ect the interactive response time of the
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application.
Data I/O is performed via the scheduler as follows.

Each medium (video, audio etc.) is assigned a unique
identi�er by the application. For each such medium
read and write functions have to be provided. The for-
mer reads data from the medium device (or a storage
device) and submits it to Xphone for network transmis-
sion. The latter receives data from Xphone, originating
from the network, and plays it back on the medium de-
vice (or perhaps stores it in a �le). These two functions
are registered to the scheduler under the medium identi-
�er with a speci�ed priority. If the priority is non-zero,
the scheduler will automatically invoke the read func-
tion when appropriate. The write function is invoked
by the scheduler whenever a packet with data of this
speci�c type is retrieved from the network. The system
attempts to read data from the network between tasks
and, if successful, it immediately dispatches them.
With this scheme, the application can guarantee con-

tinuous data ow with a single call to the scheduler
that registers the appropriate I/O operations. The fact
that event processing is synchronous greatly simpli�es
the application's code. Moreover, the overhead of these
operations is very small, and when appropriately opti-
mized allows the application to operate with very high
performance.

C. Network Transport

The system currently uses the TCP/IP protocol stack,
and hence the processing here is minimal. The system
structures the transmitted data with a header which in-
cludes the medium id, packet length and time-stamp
information. When a packet is received by Xphone, the
header is transformed to a larger one which includes an
entry for a \reception" time-stamp. This can be used
later on for time keeping purposes (e.g. to monitor the
end-to-end delay).
It is possible in a network connection to not be able

to completely read or write a medium packet from or
to the network. While network read operations may be
incomplete (the system will complete the operation at
a later time), write operations must be completed when
ordered. Although an output queue could be used, it
would increase the end-to-end delay considerably. To
avoid this problem and also to help increase through-
put, after incomplete write attempts a read operation is
performed which, if successful, will dispatch a packet to
the appropriate mediumwrite function. The incomplete
write attempt is then resumed.

D. Media-Speci�c Support

This component is responsible for handling I/O and
control operations for the various media types. These
operations depend heavily on the speci�c hardware plat-
form selected, and its accompanying software interfaces.
In our environment the audio hardware is treated at

the application level as a regular UNIX device, while
the XVideo board is operated through X Window based
operations. Although a generic device interface would
help application developers (and it has frequently been
proposed in the literature), it is extremely di�cult to
capture the richness of the various interfaces under a sin-
gle entity. In addition, layering such a generic interface
on top of di�ering native interfaces may degrade per-
formance. Our approach consists of providing support
for I/O operations that conform to the Xphone sched-
uler interface, but allowing the application the option
to fully control other operations (e.g. the video window
size or its placement in a user interface).
Media synchronization is performed in this compo-

nent, as it heavily depends on the speci�cs of the imple-
mentation. Synchronization in our system is based on
time-stamps, which are placed by the acquisition rou-
tines (the media read functions) in the medium data
header. Fine-grain inter-media synchronization (basi-
cally between video and audio) is performed by super-
vised output; the media write routines of the media
types to be synchronized are encapsulated under a sin-
gle write operation which performs the necessary deci-
sions and invokes the appropriate media write opera-
tions when necessary. Coarse-grain synchronization can
be e�ected by the time-stamp time line.
In the current implementation, the system uses the

Sun audio device which provides 8-bit �-law companded
audio at an 8 KHz sampling rate, and the XVideo board
from Parallax Graphics which provides \on-demand"
JPEG coded video frames of sizes up to NTSC reso-
lution (640 � 480). On-demand implies that frame ac-
quisition/playback and compression/decompression are
under complete program control; in other words, there
is no bu�ering of the video source at the device driver
level (as opposed to audio which is continuously sam-
pled).

III. Source Bit-rate Control

An important parameter of a multimedia communi-
cation system is the target bit-rate of video. Factors
a�ecting its selection include the available network re-
sources, the capabilities of the computer hosting the
video codec, as well as the structure of the codec it-
self. For example, the bandwidth provided by today's
local and wide area networks spans more than an or-
der of magnitude, from 10 Mbps Ethernet to 100 Mbps
or more with FDDI and ATM. Most importantly, in
environments where the network does not provide guar-
anteed bandwidth or delay, the available bandwidth, as
seen by the application, is often highly variable. Use of a
constant target bit-rate in this case may adversely a�ect
both the end-to-end delay of the system and the video
frame rate (the latter will be a�ected when on-demand
video coding or frame skipping is used).
The capabilities of the host computer also place lim-
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itations on the system performance, as there are spe-
ci�c limits of data throughput sustainable by the various
components (bus, CPU etc.). Finally, the actual codec
used has a dominant e�ect on the range of achievable
bit-rates, as it directly controls both the compression
ratio and the maximum attainable frame rate. In cases
where the compression paremeters are �xed, the only
possible way to control the source rate is by modifying
the frame rate. Most codecs (including JPEG), how-
ever, have the capability to trade-o� image quality and
bit-rate. By exploiting this capability, one can adapt
to large variations of the network load. The algorithm
described here assumes the use of the JPEG compres-
sion algorithm, and it also provides for adaption of the
source rate to video display window size (possibly per-
formed by the user).
The JPEG algorithmfor still image compression could

be briey described as follows [3; 20]. Each color compo-
nent of the original image is divided into non-overlapping
blocks of 8�8 pixels. Each block is �rst o�set by�2P�1,
where P is the number of bits per color component (8
for true color). It is then transformed by a Forward
Discrete Cosine Transform to yield 64 frequency coef-
�cients. These coe�cients are then quantized accord-
ing to an implementation-dependent quantization table
which is under user control. High frequencies, to which
the human eye is less sensitive, are quantized using a
coarse step size, while low frequency components are
subject to a much �ner quantization. This quantization
step is the principle source of lossiness in the JPEG al-
gorithm. Next, the quantized coe�cients are rearranged
in ascending order of spatial frequency by starting with
the DC (top-left) coe�cient and proceeding in a zig-zag
manner. The DC coe�cients are then di�erentially en-
coded. The other 63 coe�cients are run-length encoded
to produce a string of zero AC coe�cients followed by
a non-zero AC coe�cient. The run-lengths are then en-
tropy coded (Hu�man or arithmetic coding) to achieve
compression. Hu�man tables are also customizable. At
the decoder the reverse procedure takes place.
By varying the quantization tables, applications can

achieve a trade-o� between compression ratio and out-
put image quality: the coarser the quantization, the
higher the compression ratio since the quantized coe�-
cients will be smaller and the strings of zeros preceding
a non-zero coe�cient longer. The quality of the out-
put image, however, will become poorer. In the speci�c
video coding equipment that we used, the quantization
process is controlled by a single parameter Q; the higher
the value of Q, the coarser the quantization. In addi-
tion, the achievable frame rate is an increasing function
on Q (a higher Q yields a higher frame rate). This
is due to various system-level (bus, device driver etc.)
bandwidth bottlenecks.
In order to adapt to network load and image size vari-

ations, it is necessary to �nd an explicit relationship

between Q, the source bit-rate and the image size. An
analytical derivation of such a formula is not possible,
as the resultant bit-rate is dependent on the source ma-
terial. We have derived such a relationship by �tting a
non-linear model to experimentally obtained data. We
have used 18 di�erent image sizes ranging from 96� 72
to 640 � 480 (aspect ratio 4/3). For each image size,
several minutes of video data (head and shoulders) were
recorded and played back, for values of Q ranging from
25 up to 600 (in steps of 25). For each such combination,
an average source bit-rate was estimated (using the in-
stantaneous values of frame size over inter-frame time).
These values where �tted using minimum squared error
techniques to the following non-linear model:

B = p1(W ) + p2(W ) log(Q) (1)

where B is the source bit-rate in Mbps (here 1 Mbit =
1024 � 1024 bits), W is the image area (measured in
pixels), and p1(�) and p2(�) are 5-th order polynomials.
The selection of this speci�c model was based on its total
squared error performance. The coe�cients of p1 and p2
are given in Table 1. Figure 4 depicts the relationship
between B and Q for various values of W . We should
note that a tradeo� exists between the extent of the ap-
plicability of the model (in terms of the values for p1 and
p2) for various video material, and the performance that
it allows to be achieved. Furthermore, it should be em-
phasized that the above model encompasses the whole
video subsystem (i.e. acquisition, encoding, transfer to
main memory via the system's bus), and not just the
encoder.
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Our algorithm employs equation 1 to adapt to net-
work load variations as follows. The system (video in-
put function) maintains an estimate of the available
network bandwidth, based on measurements of actual
throughput of the video stream only. This is given by
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Fig. 6. Q adaptation mapping (�Q = Q(t)� Q̂(t), �Q0 = Q(t+�t)�

Q̂(t))

In Figure 7 we show the variations of Q(t), B(t) and
the frame rate F (t) over an actual 3-minute session
(W = 320�240). The values have been scaled as shown,
to facilitate comparative examination of the plots. Net-
work load was introduced by TCP/IP tra�c between
two di�erent hosts. As can be observed from the plots,
Q(t) increases whenever the available bandwidth as given
by B(t) decreases. On the other hand, if the network
load permits it, reductions ofQ(t) result in larger output
bit-rate (and further attempts to reduce Q(t)). More
signi�cantly however, we note that although a 50 % re-
duction occurs in the output bit-rate during the last
minute, the e�ect on the frame rate is much smaller (a
10 % reduction). This is accomplished by a reduction
in quality, as shown by the high Q values.
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IV. End-To-End Delay

The end-to-end delay in audio communication sys-
tems is a very important factor, and is limited by the re-
quirements imposed for human interaction. Acceptable
end-to-end delay values prescribed for long-distance tele-
phony are in the range of a few hundred milliseconds.
Consequently, and since video in the Xphone system
is on-demand coded, the end-to-end delay requirements
are dictated by that of the audio signal, which is subject
to a constant output processing rate.
We de�ne the end-to-end delay as the time between

acquisition and playback of an audio sample. This de-
lay consists of several components. Firstly, there is the
acquisition time of the samples of an audio frame. Ad-
ditional delay is introduced by network transmission,
which includes transport and lower layer protocol pro-
cessing and physical transmission of the data over the
link(s). Finally, queuing delay is introduced at the audio
output bu�er as audio frames arrive in a bursty fashion.
Other components such as bu�er copying are ignored,
as their e�ect is at a much smaller scale.
When a session is setup, the initial end-to-end delay

consists simply of the acquisition delay of the �rst au-
dio frame1, plus the transmission delay associated with
it. From that point on, this delay stays constant as
long as the audio output bu�er at the receiver is never
emptied. If the bu�er is emptied for a period of time,
then the overall end-to-end delay of the session is in-
creased by exactly that time; since the audio data can
not be processed faster than their natural sampling rate,
they accumulate at the receiver's bu�er. This e�ect is
demonstrated in Figure 8, where we show the incre-
ments in the end-to-end delay after the reception of the

1Note that the audio acquisition bu�er size in our system is set by
the operating system at 1024 bytes, which placed a lower limit on the
acquisition delay of the �rst packet at 128 msec.

�rst audio packet and the corresponding audio output
bu�er occupancy.
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In order to keep the end-to-end delay bounded, a
restart mechanism has been used to temporarily stop
the acquisition and transmission of audio and video.
Normal operation is resumed only after the receiver's
audio output bu�er is completely emptied, in which case
the delay's state is identical to the one during the ses-
sion's startup. The mechanism follows a simple hand-
shake rule, as shown in Figure 9. When the receiver
senses the average delay to be larger than the prespec-
i�ed threshold, it sends a STOP message to the trans-
mitter. Upon its reception, the transmitter stops ac-
quiring and sending audio and video frames and sends
a STOPPED message to the receiver. Meanwhile, the
latter continues playing the frames that it receives or
are already in its audio bu�er. This is done in order
to avoid dropping audio packets that were sent prior to
the sender being noti�ed of the temporary interruption
of communication. Once the receiving host receives the
STOPPED message, it knows that no more audio pack-
ets are on the way. It then starts to monitor its audio
bu�er, and once it is empty it sends a RESUME message
to the transmitter. When the transmitter receives this
RESUME message, it resumes normal operation. Note
that the restart procedure should only be seldomly used,
as it interrupts the communication process. The dura-
tion of a restart procedure { and hence of communica-
tion disruption { follows closely the current end-to-end
delay. The actual estimation of the end-to-end delay is
described below.
In order to mitigate the adverse e�ects of jitter, we

employed silence detection in the audio signal. Silence
detection is widely used for bandwidth reduction pur-
poses in voice communication; here, however, we also
use the silence parts of the speech signal to reduce the
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Fig. 9. Restart protocol for end-to-end delay bounding

end-to-end delay. Essentially, silent parts of audio pro-
vide \relief" periods in which the output bu�er is al-
lowed to drain. The waiting time at the output bu�er
is then considerably reduced. The e�ectiveness of this
technique is directly related to the speech activity fac-
tor, which for telephone conversations is approximately
50 %. In our system we have found that the activity fac-
tor is actually lower (around 40 %) due to the e�ect of
the higher end-to-end delay (similar to a long distance
connection). Clearly, in the case of an audio stream
with no silence such an algorithm will have no e�ect.
We should note that an alternative approach in which
the output bu�er occupancy is reduced by selectively
discarding very small audio segments (receiver drops)
su�ers from very rapid deterioration of speech quality
due to temporal non-linearities.
The silence detector that we have employed is trig-

gered by the di�erence between successive samples of
audio. We opted here for simplicity, and minimal pro-
cessing overhead. Silence detection is always performed
on a frame-by-frame basis, and is applied from the be-
ginning of the frame until a non-silent part is reached.
To avoid erroneous decisions, an initial segment of a
frame is classi�ed as silence only if it is at least one
third of the frame's total length. For the same purpose,
the �rst silent part detected after a non-silent one is
never classi�ed as silence. Although more sophisticated
designs could have been used, this simple design su�ces
to illustrate the e�ectiveness of the approach. Note that
frame headers are always transmitted, even if the entire
frame was classi�ed as silence; also, the size of the ini-
tial segment of the frame that was classi�ed as silence
is transmitted in the frame's header.
In order to demonstrate the e�ectiveness of the tech-

nique, the end-to-end delay was estimated with and
without the use of silence detection. The estimates

(which are also used to trigger the restart protocol)
are based on per-frame measurements of the abovemen-
tioned three principal components of the end-to-end de-
lay (i.e. acquisition time, transmission delay, and output
queueing), averaged over a window of size 10. The ac-
quisition time is simply given by the ratio of the length
of the frame (including silence, if any) to the audio sam-
pling rate. The output queueing time can similarly be
computed by the ratio of the current output bu�er oc-
cupancy to the audio sampling rate. The estimation of
the transmission delay is more involved, as timing in-
formation from a single host has to be used in order
to avoid clock synchronization problems. For this pur-
pose, transmission delay is estimated as half the round-
trip delay. The latter is obtained by sending a special
packet with no data, that is being immediately trans-
mitted back to the sender. The round-trip delay is then
the di�erence between the time this packet was sent, and
the time it was received. A new estimate is obtained be-
tween successive audio frame acquisitions. Due to the
very small frame header size the added overhead is quite
small. Moreover, the whole process is completely trans-
parent to the application as it only involves the registra-
tion of the appropriate modules to the Xphone scheduler
during initialization. The accuracy of this transmission
delay estimate is restricted by a number of factors; in
all cases however where it is used (performance eval-
uation and restart triggering) an error of few tens of
milliseconds is not signi�cant.
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Figure 10 compares the estimated end-to-end delay
with and without silence detection, over two 2-minute
sessions. A speech activity factor of 50 % was main-
tained. To demonstrate that the two experiments were
carried out under similar conditions (i.e. network load),
the estimated transmission time for both cases is shown
in Figure 11. As can be seen, the end-to-end delay with

8



the use of silence detection has e�ectively been kept
around 300 milliseconds, whereas with no silence detec-
tion it reached 600 milliseconds.
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V. Audio/Video Synchronization

Synchronization is an essential part of any multimedia
system, regardless of local or distributed (across a net-
work) operation. Synchronization can be intra-medium
(or rate synchronization) where it pertains to maintain-
ing the natural rate of the source (e.g. 64 Kbit/sec au-
dio), or inter-media where it guarantees that the ex-
plicit (user speci�ed) or implicit (as in audio and video)
time relationships between di�erent media types are
enforced. On the basis of di�erent timing scales be-
tween the synchronization requirements of di�erent me-
dia types, one can also distinguish between �ne-grain
and coarse-grain synchronization. The latter refers to
cases where the misadjustment tolerances are larger than
those posed by video and audio (which are in the order
of tens of milliseconds). An example of this case is the
display of a still image and its associated text.
The most di�cult task is the �ne-grain, inter-media

synchronization between video and audio, as the toler-
ances prescribed by human perception criteria are very
tight. Here we describe the algorithms that we have
developed to attack this problem. The results we ob-
tained were very good, as judged by subjective evalu-
ation. An objective evaluation of synchronization re-
quires a sophisticated setup that allows the real-time
playback of test video and audio material, their real-
time digital acquisition at the other end of the system,
and the analysis of the timing relationships of the test
patterns by a computer. Performance evaluation results
under such a con�guration have not yet been completed,
and will be reported in a future paper. As mentioned in
Section IV, silence detection may be employed to help

maintain a low average end-to-end delay between restart
operations. The use or not of silence detection changes
the algorithm slightly; both cases are analyzed below.
The objective of a synchronization algorithm can be

stated as follows. Let taoi and t
p
oi
be the time of acquisi-

tion and playback of the i-th object of type o. Then, for
accurate synchronization the following conditions must
hold:

1. tpoi�t
p
oi�1

= taoi�t
a
oi�1

for all i and o (intra-medium
synchronization), and

2. tpoi � tpki = taoi � taki for all i, o and k (inter-media
synchronization).

Since obtaining the time from a computer { especially a
multitasking one { does not guarantee accuracy, both
acquisition and playback times can only be approxi-
mated. The above conditions can then only be approx-
imately satis�ed.
In view of time-stamp uncertainty, the task of our

synchronization algorithm is to ensure that the following
conditions hold:

1. tpoi�1
� tpkj < tpoi if t

a
oi�1

� takj < taoi for all o, k, i
and j, and

2. tpoi < tpoj if t
a
oi
< taoj for all i and j.

Of course the latter is simply an ordering condition. We
note that the above conditions bound the synchroniza-
tion misalignment by the time interval required for two
successive media acquisitions. As the performance of
the system increases (e.g. a higher video frame rate can
be supported), the synchronization accuracy increases.
At the acquisition phase, both audio and video frames

are time-stampedwith millisecond resolution before they
are delivered to the network. Time-stamping occurs im-
mediately after acquisition; this implies that the time-
stamp for audio marks the end of the audio frame rather
than its beginning. Note that it is essential that time
references are always based on the same clock, to avoid
clock synchronization requirements. For the audio sig-
nal which is subject to continuous sampling, intra-me-
dium synchronization has to be used to ensure that the
full 64 Kbit/sec rate is serviced. This is done at the
acquisition point, by simply always reading the full con-
tents of the audio input bu�er.
As data transmission takes place, multiplexed video

and audio frames are received by the Xphone system
and are delivered to the appropriate media playback
routines. The audio frames are always immediately
submitted to the audio output bu�er. Due to possi-
ble non-zero bu�er occupancy, the actual playback time
may vary. The synchronization decision is performed
for video frames only, and is based on both time-stamps
and audio bu�er occupancy. Let trvj and t

a
vj

denote the
reception and acquisition time-stamps of the j-th video
frame respectively, with similar notation for the audio
frames (trai and taai). Let also O(t) denote the output
bu�er occupancy at time t in audio samples, and ra the
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Fig. 12. Audio Output Bu�er Occupancy

The �rst task of the algorithm is to position itself in
the playback time-line. To that end, it must �nd the
acquisition time-stamp of the currently played (or last
played, if the output bu�er is empty) audio frame, which
may not be the most recently received. For this purpose,
a �nite history of received audio frames is kept, and the
audio output bu�er occupancy is queried (O(trvj )). This
audio frame history is scanned until an audio frame k is
found which satis�es:

lX

i=k

L(ai) � O(trvj ) >
lX

i=k+1

L(ai) (3)

where L(ai) denotes the length of the i-th audio frame in
samples, and l is the most recent audio frame received.
We assume now that silence detection is not used, and

distinguish between two di�erent cases: 1) O(trvj ) = 0,
and 2) O(trvj ) 6= 0. The �rst case implies that the audio
output bu�er is in \starved" state (with the correspond-
ing consequences in the end-to-end delay), and that the
last audio frame has already been played out. The syn-
chronization algorithm then decides to drop or queue
the video frame, depending on if taak is greater or less
than tavj respectively (note that the audio time-stamp
refers to the end of the audio frame). In the second
case, the decision has three branches, i.e. drop, play-
back or queue. The criteria are:

1. if tavj < taak�1
then drop,

2. if taak�1
� tavj < taak then play back, and

3. if taak � tavj then queue.

When no information is available for the k� 1-th audio
frame, then the estimate taak � L(ak)=ra is used instead

of taak�1
. Due to time-stamp inaccuracy, incorrect de-

cisions may be made if this estimate was used all the
time. Clearly, as the end-to-end delay increases, both
the video and audio output queues will increase in oc-
cupancy. Whenever the synchronization decision is ini-
tiated, it processes all video frames currently resident
in the video output queue until it is either empty, or a
frame that has to be queued up (wait) is found.
When silence detection is used, the audio frame head-

ers of completely silent frames are still transmitted to
the receiver; for frames which part of them is silence,
its length is conveyed in the frame header. In this case,
an audio bu�er occupancy of zero does not always des-
ignate starvation, since it may correspond to a silent
part. Moreover, this silent part may belong to an au-
dio frame that has not yet arrived and hence it is not
possible to accurately decide if the situation is normal
or abnormal. For this purpose, the three-part decision
described above is employed in all cases, except when
the audio bu�er occupancy is zero and the last audio
frame received was not entirely silence (note that when
occupancy is zero, the last audio frame received is al-
ways the reference one). When this happens and the
video acquisition time-stamp satis�es taak�1

� tavj < taak
(criterion 2), then the video frame is dropped. In the
case where a video frame is queued up but the follow-
ing audio frame is silence then this algorithm will cause
a slight delay in the video frame's playback; since this
however corresponds to silence, there is no synchroniza-
tion problem.
We should note that with the above bounded synchro-

nization scheme, long-term intra-medium synchroniza-
tion for video is maintained, although its short-term, lo-
cal accuracy is traded-o� with audio/video inter-media
synchronization. This tradeo� is more heavily pronounced
with a high video/audio interleave factor, which in turn
depends on the video acquisition hardware and the au-
dio input bu�ering. In our system this factor is typi-
cally 1:1 or 2:1. For much higher values { or if the video
encoding/decoding processes are highly assymetric in
terms of delay { an extra control step would be required
for intra-medium synchronization of video packets dur-
ing the time their associated audio packet was played
back. For normal video frame rates (up to 30 frames
per second) and a con�gurable audio input bu�er it is
always possible to enforce a low interleave factor, and
hence avoid any such complication.

VI. Concluding Remarks

We have presented the architecture and the algorithms
used in the Xphone multimedia communication system.
This system assumes the use of a best-e�ort operat-
ing system and network, and provides for synchronized
video/audio playback with bounded and minimized end-
to-end delay, as well as source bit-rate adaptation to the
network load. The major points of the paper can be
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summarized as follows:

� intra-application scheduling is essential for the trans-
parent support of continuous, multimedia data ow
and for achieving seamless integration with inter-
active windowing environments,

� modeling of the source bit-rate can be very e�ec-
tively used to maximize video quality according to
the available network bandwidth, and also to adapt
to changing video display window sizes,

� silence detection together with a restart mecha-
nism is a very e�cient mechanism for reducing and
bounding the end-to-end delay, and

� adequate video/audio synchronization is possible,
even with no real-time support.

Using the above techniques, the current system's im-
plementation was shown to achieve a frame rate of 8
frames/sec for a frame size of 320 � 240, an average
bit-rate of 1 Mbit/sec (full-duplex) and an average end-
to-end delay of 250-300 msec.
Further improvements can be achieved by a number

of ways. For example, the end-to-end delay can be fur-
ther minimized by reducing the audio acquisition bu�er
size, by applying a more sophisticated silence detection
algorithm, and by coding the companded audio signal.
Quality can also be improved by applying echo cancel-
lation techniques; the current levels of end-to-end delay
can generate undesirable echo phenomena, the sever-
ity of which depends heavily on the quality of the au-
dio equipment used (for example it can be completely
eliminated with the use of a high-quality lavalier micro-
phone). The video source rate bit-rate control algorithm
can also be improved by providing a mechanism that will
enable adaptive calibration of the bit-rate model been
used.
Finally, a considerable improvement in overall perfor-

mance can be attained by substituting the TCP layer
with an unreliable one that would, however, be able to
recover in cases of errors with no retransmissions. Al-
though full reliability is desirable for audio, packet losses
can be tolerated for video. As the three primary com-
ponents of multimedia communication systems (codec,
computer and network) have competing requirements,
techniques such as those described in this paper will
become essential for their smooth cooperation.
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