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Abstract—The success of bilinear subspace learning heavily depends on

reducing correlations among features along rows and columns of the data

matrices. In this work, we study the problem of rearranging elements within a

matrix in order to maximize these correlations so that information redundancy in

matrix data can be more extensively removed by existing bilinear subspace

learning algorithms. An efficient iterative algorithm is proposed to tackle this

essentially integer programming problem. In each step, the matrix structure is

refined with a constrained Earth Mover’s Distance procedure that incrementally

rearranges matrices to become more similar to their low-rank approximations,

which have high correlation among features along rows and columns. In addition,

we present two extensions of the algorithm for conducting supervised bilinear

subspace learning. Experiments in both unsupervised and supervised bilinear

subspace learning demonstrate the effectiveness of our proposed algorithms in

improving data compression performance and classification accuracy.

Index Terms—Bilinear subspace learning, element rearrangement, earth mover’s

distance, dimensionality reduction.
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1 INTRODUCTION

IMAGE data naturally contain a significant amount of information
redundancy, as evidenced by spatial coherence and structural
commonalities found within images and image sets. For processing
and analysis of images, it is often advantageous to pare away these
redundancies so that the intrinsic features of the data are revealed.
This is the goal of dimensionality reduction (or subspace analysis)
techniques, which aim to decrease the size of a feature space by
removing correlations among the features. Dimensionality reduc-
tion has proven to be useful for unsupervised learning tasks such
as data compression and facilitates supervised learning by
identifying fewer but effective features.

Frequently used dimensionality reduction techniques such as
Principal Components Analysis (PCA) [1], Linear Discriminant
Analysis (LDA) [2], and Tensorfaces [3] commonly unfold each
image into a single column vector, which we refer to as an
image-as-vector representation in this work. While correlations
among different pixels can be reduced in these vector-based
techniques, lengthy column vectors typically result in the curse

of dimensionality and classification performance may be
degraded because of the small-sample-size problem.

Recently, a large number of works (e.g., [4], [5], [6], [7], [8], [9],
[10], [11], [12]) have sought to process image data in their original
form (e.g., images as matrices instead of as vectors), which we refer
to as an image-as-matrix representation in this work. By aiming to
reduce correlations only within image rows and columns, rather
than among all pixels in an image, the curse of dimensionality is
avoided and the small-sample-size problem becomes greatly
diminished. For image data represented in matrix form [11], [12],
appreciably higher recognition performance has been experimen-
tally reported, especially in cases with small training sets. Similar
improvements have also been found for the more general case of
tensor data, where correlations are removed along column vectors
of mode-k flattened matrices [5], [6], [7], [8], [9].

Correlations within 2D image data, however, are not limited to
the elements along certain matrix dimensions. Work on natural
image statistics indicates that such correlations are frequently
present among different regions both spatially within an image
and temporally through an image sequence [13]. For enhancement
of bilinear subspace learning, a natural question that arises is
whether these correlations can be reduced while preserving the
performance benefits of processing image data in their original
matrix form.

In this paper, we propose to address this problem by
rearranging the elements within matrices to increase the correla-
tions among features along rows and columns, which we will refer
to as intramatrix correlations. An illustration of element rearrange-
ment is shown in Fig. 1. By aligning elements in a way that
increases correlations along the rows and columns of a matrix,
greater reductions in dimensionality can be achieved with existing
bilinear subspace analysis methods.

We show in Section 2 that rearranging matrix elements to
maximize intramatrix correlations is essentially an integer program-
ming problem with a nonlinear objective function. Since this
problem is NP-hard [14], we present in this work an approximate
iterative solution. As described in Section 3, we first employ
Generalized Low-Rank Approximation (GLRAM) [11] or Con-
current Subspace Analysis (CSA) [8]1 to compute projection
matrices from the training data matrices, then the elements in
these matrices are rearranged to become more similar to the
reconstructions of the training matrices by the projection matrices.
This procedure is then iterated using the rearranged matrices.
Reconstructed matrices are used to guide the rearrangement
process because they are similar to the training data matrices
and have high correlation among features along certain rows or
columns. For greater computational feasibility, the displacement of
elements within a matrix is constrained in each iteration to a local
neighborhood or a nearest feature-based neighborhood. Element
rearrangement is formulated as a constrained Earth Mover’s
Distance [15] problem, where the flows from the elements of the
original matrix to those of the target matrix naturally constitute a
pure network flow model [16]. An integer solution can then be
reached using a general linear programming technique, e.g., the
Simplex method.

Since rearrangement is employed as a preprocessing step to
increase intramatrix correlations, it can be used in conjunction with
any bilinear subspace analysis technique. For supervised subspace
learning, in Section 3, we extend the proposed algorithm using
2DLDA [12] and 2DMFA [17] as examples. In the extension, the
weighted and centered class means (for 2DLDA) or the difference
matrices of the nearest margin pairs between different classes (for
2DMFA) are used as training samples, and the element rearrange-
ment algorithm is then performed on these new matrices. With this
approach, the most discriminant information becomes encoded in
the first few dimensions of the derived subspace.
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Finally, we demonstrate in Section 4 the utility of element
rearrangement for data compression and supervised bilinear sub-
space learning. The experiments clearly demonstrate that element
rearrangement can improve the performance of previous bilinear
subspace analysis algorithms. While this paper primarily focuses on
matrices (i.e., second order tensors), the algorithms and analysis
presented here can be easily extended to handle higher order tensor
input, such as Gabor-filtered images or video sequences, by
tensorization in the graph embedding framework [17].

2 PROBLEM FORMULATION AND ITERATIVE SOLUTION

In this section, we first briefly review GLRAM [11] and CSA [8].
We then introduce our formulation and solution of the element
rearrangement problem for maximizing intramatrix correlation.

2.1 Problem Formulation

We express each element of the training sample set in matrix form
as Xi 2 IRm�n, i ¼ 1; 2; . . . ; N , where m and n are the height and
width of the data matrix and N is the number of samples. We also
define the norm of matrix X as

kXk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm
i¼1

Xn
j¼1

X2
ij

vuut

and denote U 2 IRm�m0 and V 2 IRn�n0 as two projection matrices,
in which m0 and n0 are the height and the width in the low-
dimensional space. For each input matrix Xi, the low-dimensional
representation is Yi ¼ UTXiV and the reconstructed image is
XREC
i ¼ UUTXiV V

T . The objective function of GLRAM in [11],
and also of the second order tensor version of CSA in [8], aims to
minimize reconstruction error, i.e.,

ðU; V Þ� ¼ arg min
ðU;V Þ

XN
i¼1

kUUTXiV V
T �Xik2: ð1Þ

There is no closed-form solution for the above objective
function, so an iterative procedure is proposed in [8], [11]. As
shown in [8], [11], 2DPCA [10] is a special case of [8], [11] by setting
U ¼ I and assuming the mean of all the samples to be zero, i.e.,PN

i¼1 Xi ¼ 0. The projection matrix V in 2DPCA can be directly
solved by eigenvalue decomposition. Further details on GLRAM,
CSA, and 2DPCA can be found in [8], [11], and [10].

In this work, we utilize GLRAM or CSA in formulating the

problem of element rearrangement. For ease of understanding, we

denote the position of a matrix element as ðrp; cpÞ and its global

index as p, where p ¼ ðrp � 1Þnþ cp. Similarly, the position ðrq; cqÞ
corresponds to the global index q. We denote ðXiÞrp;cp or ðXiÞp as

the value of the entry in matrix Xi at position ðrp; cpÞ or p. We also

define the rearrangement operator (or permutation matrix) as R 2
f0; 1gðm�nÞ�ðm�nÞ and ðXiðRÞÞq ¼ ðXiÞp if Rpq ¼ 1. For operator R,

we have the properties
P

p Rpq ¼ 1 and
P

q Rpq ¼ 1, meaning that

the elements in matrices Xi and XiðRÞ have a one-to-one

correspondence. In element rearrangement, we wish to minimize

the objective function F ðU; V ;RÞ expressed as

F ðU; V ;RÞ ¼
XN
i¼1

��XiðRÞ � UUTXiðRÞV V T
��2
: ð2Þ

Essentially, this function seeks rearranged matrices that best

approximate their reconstructed low-rank matrices, which have

high correlation among features along rows and columns.
This objective function presents a complicated integer program-

ming problem with nonlinear objectives. Since this problem is NP -

hard [14], we present in the following section an approximate

solution to iteratively compute the projection matrices U; V and the

rearrangement operator R. Note that when R is fixed, U and V can

be computed with GLRAM or CSA [11], [8]. In the following

sections, we therefore focus on how to compute the rearrangement

operator R.

2.2 Solution under Spatially Local Neighborhood
Constraints

Given the projection matrices U and V , minimization of F ðU; V ;RÞ
with respect to element rearrangement operator R is an integer

programming problem. For the tth iteration step, let fXt
i ; i ¼

1; 2; . . . ; Ng be the matrix data rearranged from Xt�1
i . GLRAM or

CSA can be applied on Xt
i to compute the projection matrices U

and V , then the reconstructed matrix at the tth iteration can be

computed as

Xt
i
REC ¼ UUTXt

iV V
T : ð3Þ

Constraints should be imposed to facilitate optimization;

otherwise, the total number of parameters would balloon to

4;0962 for a matrix of size 64� 64, which is computationally

prohibitive both in complexity and memory requirements. The

first constraint is that, at each iteration, each element p of a

matrix can be moved only within its spatially local neighborhood

LN�
p , bounded by a distance of 2

ffiffiffi
2
p

pixels in this work. Thus,

Rpq ¼ 0 if q 62 LN�
p and only about � ¼ 25 pixel locations are

under consideration for each p. In each step, we fix the term

UUTXiðRÞV V T in (2) to be Xt
i
REC

because, after stepwise pixel

rearrangement, the value of the objective function will be further

reduced if we substitute UUTXiðRÞV V T for Xt
i
REC

according to

the new operator R (See Section 2.5 for justification). Then, the

objective function in (2) can be rewritten as

F ðRÞ ¼
XN
i¼1

��Xt
iðRÞ�Xt

i
REC��2

: ð4Þ

Let us define

fpq ¼
XN
i¼1

���Xt
i

�
rp;cp
�
�
Xt
i
REC�

rq ;cq

��2
: ð5Þ

Since Rpq 2 f0; 1g, the objective function can then be expressed as

F ðRÞ ¼
X
p

X
q2LN�

p

fpqRpq: ð6Þ

The correspondence between the elements of the original
matrix and the rearranged matrix must be one-to-one, which
imposes the following constraints:

X
p;q2LN�

p

Rpq ¼ 1; 8 q;
X

q;p2LN�
q

Rpq ¼ 1;8 p: ð7Þ
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Fig. 1. An illustration of element rearrangement for a data matrix. Note that the
correlations along both the rows and columns are enhanced after element
arrangement.
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The problem is then simplified into an integer programming

problem with a linear objective function and linear constraints. If

we relax the integer constraints for the elements Rpq, then the

problem becomes a constrained Earth Mover’s Distance [15]

problem (i.e., linear programming), outlined as follows:

arg min
Rpq

X
p

X
q2LN�

p

fpqRpq; s:t:

1: 0 � Rpq � 1;

2:
X

p;q2LN�
p

Rpq ¼ 1; 8 q;

3:
X

q;p2LN�
q

Rpq ¼ 1; 8 p:

ð8Þ

The linear programming problem described in (8) will have an

integer solution, as guaranteed by the following theorem.

Theorem 1 [14], [16]. An integer programming problem

arg min
Rpq

X
p;q

fpqRpq; s:t:

X
q

Rpq ¼ 1;8 p; and
X
p

Rpq ¼ 1;8 q
ð9Þ

can be solved as a linear programming problem with the constraints

0 � Rpq � 1, 8 p; q.

The equivalence of integer programming and linear program-

ming arises from the unimodular coefficient matrix of the integer

programming problem in (9) and is based on the assumption that

linear programming is solved with the simplex method. Further

details on this theorem can be found in [14]. It is straightforward to

prove that our proposed spatially constrained procedure in (8) is

equivalent to (9) with fpq ¼ þ1 for q 62 LN�
p . Hence, the linear

programming solution in (8) is also an integer solution, meaning

that for any given p (or q), there exists only one Rpq that is equal to

1 for all q (or p). Consequently, the element rearrangement

operator Rpq constructs a one-to-one correspondence between the

original and target matrices.
Based on the derived solution R, we rearrange the matrix data

and update the training samples to obtain Xtþ1
i . Then, GLRAM or

CSA and the proposed procedure are repeated until convergence,

which occurs when R contains no more element movement, i.e.,

Rpq ¼ 0 if p 6¼ q. The overall solution method is outlined in

Algorithm 1.

Algorithm 1. Algorithm for Element Rearrangement

Given sample matrices fX1; X2; . . . ; XNg and a size ðm0; n0Þ for the

low-dimensional matrices.

1: Initialize X1
i ¼ Xi, for i ¼ 1; . . . ; N ;

2: for t ¼ 1; 2; . . .

a: Based on the matrix data Xt
i ; i ¼ 1; 2; . . . ; N , compute Ut

and V t, using GLRAM [11] or CSA [8]. If t > 1; Ut and V t

are initialized as Ut�1 and V t�1 in GLRAM or CSA;

otherwise, they are initialized as identity matrices

according to [11], [8].

b: Compute the rearrangement operator R by solving the

linear programming problem in (8) or (10).

c: Update the matrix Xt
i to Xtþ1

i according to R.

d: If Rpq ¼ 0 for all p 6¼ q, then exit.

3: Output the rearranged data fXt
i ; i ¼ 1; . . . ; Ng.

2.3 Solution under Feature-Based Nearest Neighbor
Constraints

To efficiently minimize the objective function in (4), another

natural and more elegant approach is to constrain the

rearrangement of an element p to only its nearest neighbors in

the feature domain, namely, by fpq in (5). For each element p,

we define the set NN�
p (with � ¼ 25 in our implementation) as p

plus the � � 1 nearest neighbors of p measured in the feature

domain. We refer to the new constraints as feature-based nearest

neighbor constraints in this work. We include the position p in

the set NN�
p to guarantee a one-to-one mapping. Without

adding p, it is possible for p to be moved to another position

without its original position being filled by another element.
Note that all the analysis and theorems presented for solution

under spatial neighborhood constraints can be directly applied to

this case based on feature neighborhood constraints. We can

reformulate another constrained Earth Mover’s Distance [15]

problem under feature neighborhood constraints in (10). When

compared with (8), we only change LN�
p to NN�

p . Also, Algorithm 1

is applicable for computing U , V , and R for this new solution:

arg min
Rpq

X
p

X
q2NN�

p

fpqRpq; s:t:

1: 0 � Rpq � 1;

2:
X

p;q2NN�
p

Rpq ¼ 1; 8 q;

3:
X

q;p2NN�
q

Rpq ¼ 1; 8 p:

ð10Þ

The above constraints in (8) and (10) are used mainly to

facilitate the computation of the linear programming problem.

Without these constraints, the number of parameters would be

4;0962 for a matrix of size 64� 64, which is computationally

prohibitive both in complexity and memory. Although movement

is constrained in each iteration within a local spatial neighborhood

or nearest neighbors in the feature domain, arbitrary movement

among pixels is possible after a sequence of iterations.

2.4 Complexity Analysis

We discuss complexity as follows: Each step iterates between

GLRAM (or CSA) and linear programming for element

rearrangement. For a matrix of size 64� 64 and � ¼ 25, there

exists about 4;096� 25 ¼ 102;400 parameters2 and 4;096� 2 ¼
8;192 constraints. The constraint matrix is very sparse. Currently,

linear programming with the simplex method is the most time-

consuming part. According to [15], the complexity is smaller

than Oðh3logðhÞÞ, where h is the size of the image.
The linear programming problem in (8) can be rapidly

processed. In our experiments on a 2.8 G CPU with 1.0 G memory,

the training time for each iteration is about 30 seconds with

unoptimized Matlab code, and algorithm convergence is reached

in about 20 iterations. The linear programming problem in (10) is

relatively slow. Under the same experimental configuration, the

training time for each iteration is about 450 seconds, and algorithm

convergence is reached after about 25 iterations. The main

additional computation cost comes from searching for the most

similar neighbors of each position.

2.5 Convergency Justification

To prove the convergence of Algorithm 1, we will make use of an

auxiliary function. We define XijNi¼1 as X1; X2; . . . ; XN and X0ij
N
i¼1 as

X01; X
0
2; . . . ; X0N . Let
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2. The actual number of parameters in Algorithm 1 is 98,596 because
some neighboring pixels do not exist for border pixels.
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F
�
XijNi¼1

�
¼
XN
i¼1

kXi � UUTXiV V
Tk2;

G
�
XijNi¼1; X

0
ij
N
i¼1

�
¼
XN
i¼1

kXi � U 0U 0TX0iV 0V 0
Tk2;

ð11Þ

where ðU; V Þ are computed from XijNi¼1 by minimizing
PN

i¼1 kXi �
UUTXiV V

Tk2 with the GLRAM or CSA algorithm and, similarly,

ðU 0; V 0Þ are computed from X0ij
N
i¼1 by minimizing

PN
i¼1 kX0i �

U 0U 0TX0iV
0V 0Tk2 with the GLRAM or CSA algorithm.

Definition. The function GðXijNi¼1; X
0
ij
N
i¼1Þ is an auxiliary function for

F ðXijNi¼1) if the following two conditions are satisfied: 1) F ðXijNi¼1Þ �
GðXijNi¼1; X

0
ij
N
i¼1Þ and 2) GðXijNi¼1; XijNi¼1Þ ¼ F ðXijNi¼1Þ.

Theorem 2. The function GðXijNi¼1; X
0
ij
N
i¼1Þ defined above is an auxiliary

function for F ðXijNi¼1Þ.
Proof. The second condition for an auxiliary function is clearly

satisfied, so we prove here that the first condition also holds.

For fixed XijNi¼1, we also define another function:

Qð ~ZijNi¼1;
~U; ~V Þ ¼

XN
i¼1

kXi � ~U ~Zi ~V Tk2;

where ~Zi 2 Rm0�n0 is the lower-dimensional representation and
~U 2 Rm�m0 and ~V 2 Rn�n0 are two projection matrices. Note

that with fixed XijNi¼1 and a given ð ~U; ~V Þ, the optimum ~ZijNi¼1 is

given by ~ZijNi¼1 ¼ ~UTXi
~V jNi¼1. For more details, please refer to

the prior works on GLRAM and CSA. So, we have

F ðXijNi¼1Þ � QðU 0
T
XiV

0jNi¼1; U
0; V 0Þ � QðU 0TX0iV 0j

N
i¼1; U

0; V 0Þ
¼ GðXijNi¼1; X

0
ij
N
i¼1Þ:

Note that U and V are optimal by minimizing the objective

function F ðXijNi¼1Þ ¼
PN

i¼1 kXi � UUTXiV V
Tk2 in (11). From

the first term F ðXijNi¼1Þ to the second one QðU 0TXiV
0jNi¼1; U

0; V 0Þ,
the optimal U and V in (11) are replaced by other projection

matrices U 0 and V 0, so we can conclude that the first term will

not be larger than the second one. Similarly, the second term is

not larger than the third one, since, for given U 0 and V 0, the

optimal ~ZijNi¼1 ¼ U 0
TXiV

0jNi¼1 are replaced with U 0TX0iV
0jNi¼1 in

the third item.
GðXijNi¼1; X

0
ij
N
i¼1Þ is therefore an auxiliary function for

F ðXijNi¼1Þ tu

If the auxiliary function takes the parameters XijNi¼1 and

X0ij
N
i¼1 as the rearranged matrices Xtþ1

i j
N
i¼1 and Xt

i j
N
i¼1 from two

successive steps in Algorithm 1, respectively, we have the

following Theorem 3.

Theorem 3. From Algorithm 1 and (8) (or (10)), the objective function

F ðXt
i j
N
i¼1Þ will monotonically decrease until convergence.

Proof. If we set Xtþ1
i as Xi and Xt

i as X0i, respectively, from

Theorem 2, we have GðXtþ1
i j

N
i¼1; X

tþ1
i j

N
i¼1Þ � GðXtþ1

i j
N
i¼1; X

t
i j
N
i¼1Þ.

Note in this case, U 0U 0TX0iV
0V 0T in (11) is Xt

i
REC

. Therefore,

GðXtþ1
i j

N
i¼1; X

t
i j
N
i¼1Þ is the objective function in (4), in which

Xtþ1
i ¼ Xt

iðRÞ. The objective function in (8) or (10) aims to

minimize the objective function in (4), so we have

GðXtþ1
i j

N
i¼1; X

t
i j
N
i¼1Þ � GðXt

i j
N
i¼1; X

t
i j
N
i¼1Þ. Then, we can conclude

that 0 � F ðXtþ1
i j

N
i¼1Þ � F ðXt

i j
N
i¼1Þ, namely, F ðXt

i j
N
i¼1Þ will mono-

tonically decrease until convergence. tu

2.6 Connection with Previous Work

Jebara proposed a series of works [18], [19], [20], [21] to estimate an
optimal permutation matrix for each individual image so as to

achieve the permutation invariant property for PCA, convex

learning, Kernel PCA (KPCA), and Support Vector Machine

(SVM). Our work is intrinsically different with Jebara’s work in

the following aspects: 1) In Jebara’s works, an images is

represented as a collection of ðX; Y ; IÞ pixel vectors and, hence,

these algorithms belong to the image-as-vector category. In contrast,

our work deals with bilinear subspace analysis algorithms (e.g.,

2DLDA, 2DMFA, 2DPCA, GLRAM), in which each image is

represented in its intrinsic form (i.e., a matrix) and, hence, belongs

to the image-as-matrix category. 2) Jebara’s work aims to align

multiple different images in an image-dependent way (i.e., each

individual image has its own permutation matrix). Our work aims to

reorganize the data matrix structure in an image-independent way by

pursuing only a single permutation matrix for all the images to better

utilize the intramatrix correlations for bilinear subspace analysis.

Therefore, the motivations are intrinsically different. Potentially,

our work could be further extended to enhance intramatrix

correlations by aligning multiple images with individual permuta-

tion matrices, which will be investigated in our future work.

3 EXTENSION FOR SUPERVISED SUBSPACE LEARNING

The purpose of the element rearrangement algorithm is to

enhance intramatrix correlations, which is useful for matrix data

compression. Another important task of subspace learning is to

derive low-dimensional representations with strong discrimina-

tive power for different data classes. In this section, we examine

how element rearrangement can enhance the discriminating

power of bilinear subspaces.
For the task of classification, the class labels of training

samples Xi are denoted by ci 2 f1; 2; . . . ; Ncg, where Nc is the
total number of classes and nc is the number of samples in the
cth class. Here, we discuss two popular supervised subspace
learning algorithms, namely, LDA and Marginal Fisher Analysis
(MFA) [17]. As discussed in [12], [17], LDA and MFA can both be
extended to handle matrix data, referred to as 2DLDA and 2DMFA
here. In the following, we take 2DLDA and 2DMFA as examples of
enhancing discriminative ability by element rearrangement for
supervised bilinear subspace learning.

3.1 Extension for 2DLDA

LDA seeks a lower dimensional representation that minimizes
intraclass scatter and at the same time, maximizes interclass
scatter. Let the vector representation of the training data be
denoted by fx1; x2; . . . ; xNg. LDA and 2DLDA can then be,
respectively, expressed as

max
P

PNc

c¼1 nckPT ð�xc � �xÞk2

PN
i¼1 kPT ðxi � �xci Þk

2
; ð12Þ

max
U;V

PNc

c¼1 nckUUT �XcV V
T � UUT �XV V Tk2

PN
i¼1 kUUTXiV V T � UUT �XciV V

Tk2
; ð13Þ

where �Xc and �xc represent the mean of samples in the cth class,
while �X and �x denote the mean of all samples.

We develop a two-step procedure for improving algorithmic
classification capability by element rearrangement. First, we
compute the null space of the denominator of (12). And then, we
reconstruct each data sample using PN as

yi ¼ PNPT
Nxi: ð14Þ

We denote the corresponding matrix representation of the
reconstructed data as fYi; i ¼ 1; 2; . . . ; Ng. For the reconstructed
data, the intraclass scatter is zero; hence, the optimization of (13) is
simplified to
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max
U;V

XNc

c¼1

nckUUT ð �Yc � �Y ÞV V Tk2; ð15Þ

which is equivalent to minimizing

XNc

c¼1

nckð �Yc � �Y Þ � UUT ð �Yc � �Y ÞV V Tk2:

This objective function is the same as (1) except that the samples are

the weighted difference matrices f ffiffiffiffiffi
nc
p ð �Yc � �Y Þ; c ¼ 1; 2; . . . ; Ncg.

Algorithm 1 can, hence, be used here to minimize the objective

function by element rearrangement.

3.2 Extension for 2DMFA

As shown in [17], LDA is motivated from the assumption that the

data of each class follow a Gaussian distribution, which is not

always satisfied in real-world problems. Moreover, interclass scatter

does not well characterize the separability of different classes

without the Gaussian distribution assumption. To avoid the need

for the Gaussian distribution assumption, Yan et al. [17] proposed

MFA and 2DMFA, which have the following objective function:

max
P

PNc

c¼1

P
ði;jÞ2N�

k2
ðcÞ
��PTxi � PTxj

��2

PN
i¼1

P
j2Nþ

k1 ðiÞ

��PTxi � PTxj
��2

; ð16Þ

max
U;V

PNc

c¼1

P
ði;jÞ2N�

k2
ðcÞ kUTXiV � UTXjV k2

PN
i¼1

P
j2Nþ

k1 ðiÞ
kUTXiV � UTXjV k2

; ð17Þ

where Nþk1
ðiÞ indicates the k1 nearest neighbors of sample xi within

the same class and N�k2
ðcÞ denotes a set of margin pairs that are

obtained as follows: For each class c, distances between its samples

and samples of other classes are computed in the original feature

space, then, for the k2 smallest distances, the corresponding point

pairs fði; jÞ; ci ¼ c; cj 6¼ cg are chosen.
Similarly, we also develop a two-step procedure for improving

algorithmic classification capability by element rearrangement.

First, we compute the null space of the denominator of (16), which

we represent as PN . In our experiments, we fix k1 in (16) as nc � 1

because in our experiments, the total number of samples in each

class is the same, so PN from LDA and MFA are the same. And

then, we reconstruct each data sample using PN as in (14). We

denote the corresponding matrix representation of the recon-

structed data as fYi; i ¼ 1; 2; . . . ; Ng. For the reconstructed data, the

intraclass scatter is zero and we can optimize the following

objective function:

max
U;V

XNc

c¼1

X
ði;jÞ2N�

k2
ðcÞ

��UUT ðYi � YjÞV V T
��2
; ð18Þ

which is equivalent to minimizing

XNc

c¼1

X
ði;jÞ2N�

k2
ðcÞ

��ðYi � YjÞ � UUT ðYi � YjÞV V T
��2
:

So, the samples are the difference matrices of the k2 (set to 25 in our
experiments) nearest sample pairs between different classes.

3.3 Classification

After the pixel rearrangement process, 2DLDA and 2DMFA are
then conducted on the rearranged training data to learn the
projection matrices U and V . Data are projected to a lower
dimension by the derived projection matrices, and then, classified
with a proper classifier. In this work, we use the Nearest Neighbor
classifier for simplicity.

4 EXPERIMENTS

We present a set of experiments to verify the effectiveness of the
matrix element rearrangement algorithms for both unsupervised
and supervised tasks. For performance analysis on face image
compression, we take as examples the two unsupervised learning
algorithms GLRAM [11] (or CSA [8]) and 2DPCA [10], which is a
special case of GLRAM (or CSA) that computes only one projection
matrix. When element rearrangement is included with these
algorithms, they are labeled as 2DPCA-LN-ER or GLRAM-LN-ER
for the spatial neighborhood constraints and 2DPCA-NN-ER or
GLRAM-NN-ER for the feature neighborhood constraints. For
supervised learning, we take 2DLDA [12] and 2DMFA [17], which
are the bilinear versions of LDA and MFA, respectively, as
examples to examine performance on face recognition. We consider
only spatial neighborhood constraints in these experiments. When
element rearrangement is included, we refer to the algorithms as
2DLDA-LN-ER and 2DMFA-LN-ER.

We use the CMU PIE [22] and FERET [23] databases for
experiments. For the CMU PIE database, we choose five near
frontal poses (C27, C05, C29, C09, and C07) and illuminations
indexed as 08, 11, 10, and 13. Due to incompleteness of data, only
63 peoples are used in this work, with each person having
20 images. We also test our algorithm on a subset of the FERET
database. This subset includes 1,400 images of 200 individuals
(each with seven images labeled as ba, bc, bd, be, bf , bg, and bh). All
of the gray-level images are aligned by fixing the locations of the
two eyes, normalizing in size to a resolution of 64� 64 pixels, and
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Fig. 2. Algorithm convergence with element rearrangement. RMSE versus number of iterations on (a) the CMU PIE and (b) FERET databases.
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preprocessing with histogram equalization. We also normalize the

gray-scale values by dividing by 255 and then subtracting 0.5.

Typical examples from the CMU PIE database before gray-scale

value normalization are given in Fig. 3a.

4.1 Data Compression

First, we will demonstrate the convergence of 2DPCA-LN-ER,

2DPCA-NN-ER, GLRAM-LN-ER, and GLRAM-NN-ER, and pre-

sent the images after element rearrangement. Then, we use two

criteria, as suggested in [11], to examine data compression

performance: 1) Root Mean Squared Error (RMSE) versus different

values of d, the dimension of the lower dimensional space and

2) RMSE versus different values of Compression Ratios (CRs). For

greater clarity, we set the reduced dimension m0 to d for 2DPCA,

2DPCA-LN-ER, and 2DPCA-NN-ER. Also, for GLRAM, GLRAM-

LN-ER, and GLRAM-NN-ER, we assume that the height and

width after dimensionality reduction are the same, such that

m0 ¼ n0 ¼ d.

4.1.1 Convergence Analysis and Element-Rearranged

Images

We first take 2DPCA-LN-ER, 2DPCA-NN-ER, GLRAM-LN-ER,

and GLRAM-NN-ER as examples to illustrate algorithmic con-

vergence. In Fig. 2, we plot RMSEs, defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

��Xt
i �Xt

i
REC��2�

N

vuut ;

for different numbers of iterations and d ¼ 5. Convergence to a
local minimum is evident for all of the algorithms.

In Fig. 3, we take GLRAM-LN-ER as an example to plot the
element-rearranged image data computed on the CMU PIE
database for different values of d. From the results, we can see
that smaller values of d lead to greater correlation among the
elements of each row/column vector. This is observed because
most of the image information has been concentrated into the first
d principal components along the row/column dimensions.

4.1.2 Energy Percentage of Eigenvalues

We also plot in Fig. 4 the Energy Percentage of Eigenvalues for
different values of d on the CMU PIE and FERET databases.
Energy Percentage of Eigenvalues is defined as

Pd
i¼1 �

i=
Pn

i¼1 �
i

for 2DPCA or 2DPCA-LN-ER, where �i is the ith eigenvalue
when computing the projection matrix V . For GLRAM or
GLRAM-LN-ER, Energy Percentage of Eigenvalues is defined asPd

i¼1 �
i
1

Pd
i¼1 �

i
2=ð
Pm

i¼1 �
i
1

Pn
i¼1 �

i
2Þ, where �i1 and �i2 are the ith

eigenvalue when computing the projection matrices U and V ,
respectively. When comparing GLRAM-LN-ER and 2DPCA-LN-
ER with GLRAM and 2DPCA, respectively, we observe that
eigenvalue’s energy is concentrated more in the foremost few
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Fig. 4. Comparison of Energy Percentage of Eigenvalues for different d on the CMU PIE and FERET databases.

Fig. 5. RMSE for different values of d on the CMU PIE and FERET databases.

Fig. 3. Comparison of 14 element-rearranged images from the CMU PIE database with the GLRAM-LN-ER algorithm. (a) The original images. (b), (c), (d), and (e) The
rearranged images for d = 2, 3, 4, and 5, respectively.
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eigenvalues, and the correlations among the features of rows and
columns are enhanced.

4.1.3 RMSE versus Different Values of d

In the initial conference version of this work [24], we reported that
reconstructed images from 2DPCA-LN-ER and GLRAM-LN-ER
have higher visual quality and greater similarity to the original
images than those from 2DPCA and GLRAM, respectively. Here,
we support these qualitative judgments with a quantitative
evaluation. In Fig. 5, we use the FERET and CMU PIE databases
to compare the RMSEs of 2DPCA-LN-ER and 2DPCA-NN-ER to
2DPCA, as well as GLRAM-LN-ER and GLRAM-NN-ER to
GLRAM, for different values of d, where d is the reduced
dimension in the lower dimensional space. The proposed element
rearrangement algorithm is shown to effectively remove more
redundancy, especially when d is small. When d is sufficiently
large, the RMSEs from GLRAM-LN-ER/GLRAM-NN-ER and
2DPCA-LN-ER/2DPCA-NN-ER are very close to those of GLRAM
and 2DPCA since, in these cases, the RMSEs without element
rearrangement are already very low. We also observe that, when d
is small, GLRAM-NN-ER and 2DPCA-NN-ER outperform
GLRAM-LN-ER and 2DPCA-LN-ER, respectively, which demon-
strates that the nearest neighbor constraint in the feature domain
can bring better compression performance.

4.1.4 RMSE versus Different Values of CR

We compare the RMSEs of different algorithms at various CRs. CR
is defined as Nmn=s with s as the number of scales required to
represent the data. According to the work on GLRAM [11], for a
given lower dimension d, we have s ¼ dðN þm�nÞ for PCA, s ¼
dðN�mþ nÞ for 2DPCA, and s ¼ ðN�dþmþ nÞ�d for GLRAM.
For 2DPCA-LN-ER, 2DPCA-NN-ER, GLRAM-LN-ER, and
GLRAM-NN-ER, the additional space sad for storing the element
rearrangement index matrix must also be considered.

In our implementation, we employ a simple technique for

compression of the index matrix, but a more sophisticated method

could be used in its place. For a single 64 � 64 image, index values

range from 1 to 4,096, requiring 12 bits for encoding. We observe

that for most matrix elements (more than 80 percent when d is

small), the change in index from element rearrangement is

relatively small, within 28 index values. Based on this observation,

we use a 2-bit header to indicate four possible cases: 00 means that

the element does not change in position, 01 and 10 mean that the

global index changes within 28 index values and with positive or

negarive offset sign, and 11 means that the global index change is

beyond 28. For cases 01 and 10, the global index differences are

encoded in eight bits, and for case 11, the full 12 bits are used to

directly encode the new index after element rearrangement.

Considering that 32-bit values are needed for floating-point

projection matrices and the lower dimensional representation, we

set sad ¼ ðf1 � 8 þ f2 � 12þ 2Þ � 4;096=32, where f1 and f2 are the

percentages of pixels of case 01 and 11, respectively.
Fig. 6 plots the RMSE for different compression ratios. These

results indicate better performance of GLRAM-LN-ER and

GLRAM-NN-ER than GLRAM, and also of 2DPCA-LN-ER and

2DPCA-NN-ER in comparison to 2DPCA. Also, GLRAM-NN-ER

outperforms GLRAM-LN-ER, and 2DPCA-NN-ER achieves better

compression performance than 2DPCA-LN-ER. The performance

of 2DPCA is the lowest, likely because 2DPCA only removes

redundancies among different rows and does not remove

redundancies among columns or along the person dimension [8],

[11]. As observed in [11], GLRAM is not always better than the

original PCA, possibly because GLRAM does not remove redun-

dancies along the person dimension. As also noted in [10], [11], it is

possible to apply PCA as a second-stage dimensionality reduction

to remove more redundancy for 2DPCA, 2DPCA-LN-ER, 2DPCA-

NN-ER, GLRAM, GLRAM-LN-ER, and GLRAM-NN-ER.
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Fig. 6. The RMSEs of different algorithms for different compression ratios on (a) the FERET database and (b) the CMU PIE database.

TABLE 1
The Top-One Recognition Rates (Percent) on the FERET and CMU PIE Database

Note that the numbers in parentheses correspond to the feature dimensions with the best results after dimensionality reduction.
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4.2 Classification

To examine the effects of element rearrangement on classification

performance, we compare 2DLDA-LN-ER and 2DMFA-LN-ER

with 2DLDA and 2DMFA on the FERET and CMU PIE databases.

We also report the results from PCA, LDA, and MFA, which are

referred to as 1DLDA and 1DMFA here. After dimensionality

reduction, we use the nearest neighbor classifier based on

euclidean distance.
Several parameters need to be set beforehand for the different

algorithms and should be chosen to give a fair comparison. For

1DLDA and 1DMFA, we choose the dimension in the PCA step

according to a 95 percent energy criterion, similarly to [25], and

report the best result over each possible dimension in the LDA and

MFA step. For 1DMFA, 2DMFA, and 2DMFA-LN-ER, we fix k1 as

nc � 1 because in our experiments, the total number of samples in

each class is the same, and we empirically sample k2 from 25 to 600

at an interval of 25 and report the best results. For 2DLDA,

2DLDA-LN-ER, 2DMFA, and 2DMFA-LN-ER, we fix the iteration

number to 10 when iteratively computing the left and right

projection matrices U and V [12], [17], and report the best result

over values of m0 and n0 from 2 to 40 at an interval of 2. Note that

the above parameters are taken from their original algorithms; we

do not introduce any new parameters during the element

rearrangement for 2DLDA-LN-ER. For 2DMFA-LN-ER, the only

parameter k2 in (18) is fixed to 25 in our experiments.
For the FERET database, three images ba, bc, and bh are used for

training, and the other four images bd, be, bf , and bg are used for

testing. For the CMU PIE database, the image set is partitioned into

different gallery and probe sets, where the label Gm=Pn indicates

that m images per person are randomly selected for training and

the remaining n images are used for testing. The experimental

results are reported in Table 1. Several observations can be made:

1) The bilinear subspace learning algorithms 2DLDA and 2DMFA

are generally better than 1DLDA and 1DMFA for multiview face

recognition, which is consistent with findings in [9], [12]; 2) 1DMFA

and 2DMFA mostly outperform 1DLDA and 2DLDA with the

exception of 2DMFA on the FERET database, possibly because of

the inhomogeneous distributions of the training and testing sets in

this case; and 3) 2DLDA-LN-ER and 2DMFA-LN-ER demonstrate

higher accuracy than 2DLDA and 2DMFA, respectively, which

supports the use of element rearrangement.

5 CONCLUSIONS

In this paper, we have studied the problem of how to rearrange

elements of a data matrix for better unsupervised and supervised

bilinear subspace learning. For unsupervised learning, this

problem was formulated to find a matrix element rearrangement

operator that maximizes intramatrix correlation. An approximate

iterative solution based on a computationally feasible linear

programming problem was proposed. In addition, the iterative

algorithm was extended to supervised bilinear subspace learning

problems for improvement of classification ability. The proposed

algorithms have achieved encouraging results for both the

unsupervised and supervised tasks.
Currently, the linear programming procedure is relatively slow

for feature neighborhood constraints in (10) and the algorithm for

compressing the index is basic. In future work, we plan to

investigate efficient algorithms, such as Minimum-Weight Bipartite

Matching [26], to replace the simplex method, and to investigate

more effective solutions for index compression. In addition, we also

plan to extend our work to enhance intramatrix correlations by

aligning multiple images with individual permutation matrices to

further improve the performance.
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