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Conventional biomarker discovery focuses mostly on the identification of single markers and thus
oftenhaslimited successin disease diagnosis and prognosis. This study proposes a method to identify
an optimized protein biomarker panel based on MS studies for predicting the risk of major adverse
cardiac events (MACE) in patients. Since the simplicity and concision requirement for the develop-
ment of immunoassays can only tolerate the complexity of the prediction model with a very few
selected discriminative biomarkers, established optimization methods, such as conventional genetic
algorithm (GA), thus fails in the high-dimensional space. In this paper, we present a novel variant of
GA that embeds the recursive local floating enhancement technique to discover a panel of protein
biomarkers with far better prognostic value for prediction of MACE than existing methods, including
the one approved recently by FDA (Food and Drug Administration). The new pragmatic method
applies the constraints of MACE relevance and biomarker redundancy to shrink the local searching
space in order to avoid heavy computation penalty resulted from the local floating optimization. The
proposed method is compared with standard GA and other variable selection approaches based on the
MACE prediction experiments. Two powerful classification techniques, partial least squares logistic
regression (PLS-LR) and support vector machine classifier (SVMC), are deployed as the MACE pre-
dictors owing to their ability in dealing with small scale and binary response data. New preprocessing
algorithms, such as low-level signal processing, duplicated spectra elimination, and outliner patient’s
samples removal, are also included in the proposed method. The experimental results show that an
optimized panel of seven selected biomarkers can provide more than 77.1% MACE prediction accu-
racy using SVMC. The experimental results empirically demonstrate that the new GA algorithm with
local floating enhancement (GA-LFE) can achieve the better MACE prediction performance compar-
ing with the existing techniques. The method has been applied to SELDI/MALDI MS datasets to
discover an optimized panel of protein biomarkers to distinguish disease from control.
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1 Introduction

Using the protein level of myeloperoxidase (MPO) and other
known cardiovascular biomarkers, which are measured from
the blood samples of patients to predict the early risk of car-
diovascular disease, has recently been studied by Brennan et
al. [1]. In their work, the researchers investigated 604
patients who presented in emergency room with chest pain
and showed that the MPO to be a new biomarker for the
prediction of the risk of major adverse cardiac event (MACE)
in the ensuing 30-day and 6-month period with an accuracy
better than 60% for these patients with consistent negative
Troponin T.

The biomarkers generated from MS were investigated for
disease diagnosis and prognosis, such as ovarian cancer
identification [2]. In our study for MACE prediction, the
high-throughput SELDI MS generates more than one thou-
sand proteins or protein fragment peaks with multiple Pro-
teinChips. The simplicity and concision requirement for the
development of immunoassay cannot adapt to the complex-
ity of the prediction model with all the generated biomarkers
[3]. Therefore, the emergent task is to discover a panel of
optimal biomarkers, which should have the strong relevance
to MACE prediction and less redundancy among biomarkers
themselves.

The study of biomarker discovery is intrinsically linked to
the variable selection methodology in the fields of machine
learning and pattern recognition. The mathematical defini-
tion of a variable selection problem is to select a subset {Y},
Y,,...Yy} from a feature set {X;, X,,.. . Xy} to optimize a pre-
defined fitness function J(yy, 5. - -.ym)- The values of Nand M
represent the number of elements in the original and target
variable sets, and usually M<<<N. For a classification or pre-
diction problem, the fitness function is typically selected as
the accuracy of the predictor. The exhausted search method
requires going through all the possible C¥ combinations,
which could achieve exponential computation complexity
O(DM), a NP-hard problem. Therefore the full search is often
not feasible owing to extremely high computation cost
incurred. Generally speaking, there are two categories of
variable selection techniques, filter and wrapper. The filter
based techniques use the data statistic characteristics as the
criteria to find a subset of features which can keep most class
relevance while reducing variable redundancy [4]. The wrap-
per techniques use the accuracy of the predictor as the cri-
teria and then apply certain optimization techniques to ob-
tain the global or local optima of the criteria function.
Genetic algorithm (GA), originally proposed by Holland, is a
conventional wrapper based method that mimics the evolu-
tionary process of the survival of the fittest [5]. Particularly, in
this biomarker selection problem, a population of abstract
representations (usually called chromosomes) of candidate
solutions (called individuals, representing a subset of bio-
markers) evolves to achieve better prediction performance.
Commonly, the chromosomes are encoded in binary strings
of 0s and 1s, where 1s represent selected biomarkers and 0s
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represent omitted biomarkers (see Supporting Information
material). In the following description, we use the term
chromosome to denote a single candidate solution without
specific declaration.

However, the standard GA cannot generate the satisfac-
tory panel of biomarker selection results because its rando-
mized search ability severely degenerates when encounter-
ing the high-dimensionality of the biomarker candidate set
and the dramatically increased dimensionality of the target
subset. Therefore, we proposed to use the recursively local
floating search technique to enhance the individuals for each
generation of evolution. Linear discriminate analysis is
selected as the fitness function because of its efficient com-
putation. With the discovered panel of biomarkers, the Par-
tial Least Square Logistic Regression (PLS-LS) [6] and sup-
port vector machine classifier (SVMC) [7, 8] are applied as
the predictor for validation of MACE prediction. The predic-
tion accuracy is approximated using leave-one-out cross vali-
dation estimation [9].

The comparison studies on the accuracy of MACE pre-
diction are conducted as follows: (a) comparing with the sin-
gle MPO value, which is measured by Hazen’s group (Cle-
veland Clinic Foundation) with an FDA approved assay
called CardioMPO (tm); (b) comparing with partial datasets
of 377 biomarkers, including MPO value; (c) comparing with
the standard GA [10, 11] to provide the proof of the perfor-
mance improvement; (d) comparing with sequential floating
forward search (SFFS), which is reviewed as the best
sequential search method [12], and, finally; (e) comparing
with biomarker ranking based methods, like a t-test for
example. The experimental results empirically demonstrated
that the proposed method of GA algorithm with local float-
ing searching embedding (GA-LFE) achieves better MACE
prediction performance than the existing techniques. With a
selected panel of only seven biomarkers, the prediction
accuracy estimated by leave-one-out cross validation strategy
is greater than 77%.

2 Materials and methods
2.1 Materials

The plasma samples used in this study are the same as those
used in the original work of Brennan et al. [1]. We use two
groups of plasma samples: (i) MACE group of 60 patient
samples: patients with chest pain and consistently negative
Troponin T, but suffered MACE during the next 30-day or 6-
month period and (ii) control group of 60 patient samples:
patients with chest pain and consistently negative Troponin
T and lived in next 5 years without any major cardiac events
or death. To increase the coverage of proteins in SELDI pro-
tein profiles, the blood samples were fractionated with
HyperD Q (anion ion exchange) into six fractions. The pro-
tein profiles of fraction 1, 3, 4, 5, and 6 were acquired with
two SELDI Chips: IMAC and CM10. Total 120 plasma sam-
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ples, 24 reference samples, and 6 blanks were randomly
divided into two groups, Group A and B, and were fraction-
ated into six fractions using two 96-well plates containing
anion exchange resin (Ciphergen, CA). Group A was pro-
cessed in Day 1 while Group B was processed on Day 2. Two
96-well anion exchange resin plates were used to fractionate
samples into six discrete fractions (pH 9 + flow through,
pH 7, pHS, pH 4, pH 3, and organic wash) as previously
described (Koopmann 2004). Fractionation has been shown
to greatly increase the number of proteins that can be
resolved.

Protein spectra were obtained on IMAC ProteinChip
arrays (PCA) coupled to copper (IMAC30-Cu?*, Ciphergen
Biosystems, Inc., Fremont, CA) and weak cation exchange
(CM10, Ciphergen Biosystems, Inc.) PCAs. Fractions were
subsequently profiled on both IMAC30-Cu’*" and CM10
protein arrays. Fraction 2 was not analyzed since experi-
ments have shown that it contains little protein (data not
shown). Samples from MACE and control, as well pooled
samples from both groups and blank cases were randomly
distributed to the spots of PCA in Group A or B. All spec-
tra were acquired in duplicate using two Bioprocessors,
Bioprocessor 1 and 2, which were processed at the same
time using the same aliquot sample plate. The remaining
portions of the samples were stored at —80°C and were
never re-used for other PCAs. PCAs were analyzed using a
ProteinChip Reader, model PBSIIc (Ciphergen Biosystems
Inc.). Protein spectra were externally calibrated using the
All-in-One Protein Standard II (Ciphergen Biosystems,
Inc.) consisting of seven calibrants between 7 and 147 kDa.
Data was collected between 0 and 200 kDa with the region
between 2 and 20 kDa optimized. Spectra were generated
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by averaging 130 laser shots with a laser intensity (215—
220) and a detector sensitivity (5-8) optimized for each
fraction. MPO levels were measured with FDA approved
assay (the assay name is CardioMPO(tm)), provided by
Cleveland Clinic Foundation.

All SELDI MS data were processed with CiphergenEx-
press 3.0 to generate peak maps. All spectra were pre-
processed with the baseline subtraction and followed by nor-
malization based on TIC with CiphergenExpress 3.0. For
MACE/control sub dataset, all spectra were kept in the data-
set. To generate peak maps, all the peaks, except a few
manually picked peaks were deleted before the clustering.
The peaks from 2000-200 000 Da were auto-detected using
the algorithms during the clustering based on the signal/
noise ratios specified in Table 1. The number of peaks in
each peak definition and the range of normalization factor
are also listed in Table 1. This study aims to identify the
MACE and control patients using the peaks that were
defined as S/N = 3, Valley = 2 from fractions 1, 3, 4, 5, and 6,
and MPO value. To ensure that all the peaks used in this
study are well defined, 70 out of 444 peaks were manually
removed from the peak list. Finally, a total of 377 peaks or
biomarkers are used for following classification.

The reproducibility of the mass spectra was monitored
with a pooled sample (12 samples were combined together to
form a pooled sample) and total 24 spectra with the pooled
sample were acquired at the same time from all samples.
The intensities of the top 20 to 30 peaks in MS data were
compared and statistically analyzed. The estimated meas-
urement error on the peak intensity is about 20-30%. The
peak intensity is in the relative scale with the highest value
of 100%. Hence it is necessary to perform normalization

Table 1. Peak definition, peak number, and normalization factors in each fraction

Normalization Peak no Peak no Peak no Peak no Peak no Peak no
factor 1t pass: 1%t pass: 1t pass: 1% pass: 1% pass: 15 pass:
sn3, v2, 10% sn3, v3, 10% sn2.5,v2.5, 10% sn2, v2, 10% sn2, v1.5, 10% sn1.5,v1.5, 10%
2" pass: 2" pass: 2" pass: 2" pass: 2" pass: 2" pass:
0.3% mass, 0.3% mass, 0.3% mass, 0.3% mass, 0.3% mass, 0.3% mass,
sn2, v2 sn1.5, v1.b sn1.5, v1.h sn1.0, v1.0 sn1.5, v1.h sn1.0,v1.0
CM10 F1 0.21-4.96 57 65 81 132 210 265
CM10 F3 Group B 0.5-1.6 31 40 48 68 97 151
recalibrated
to Group A
CM10 F4 0.5-1.8 38 47 55 72 108 161
CM10 F5 0.4-2.4 34 37 50 105 156 232
CM10 F6 0.48-4.8 52 63 76 108 149 210
IMAC F1 0.23-13.0 54 66 92 151 195 253
IMAC F3 0.4-4.1 47 61 84 17 151 209
IMAC F4 0.36-2.7 46 62 72 98 145 200
IMAC F5 0.37-10.6 34 44 61 87 116 168
IMAC F6 0.43-4.73 51 52 70 118 160 217
Total Peak no 444 537 689 1056 1487 2066
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between the replicates. To normalize the mass spectra of the
same sample in the two bio-processors, we first employ z-
transform to each bio-processor; which makes the trans-
formed data have zero in mean and one in variance. Then,
we calculate the average of the two signals. In order to nor-
malize the mass spectra in two chips of IMAC and CM10,
we again apply z-transform to the mass spectra in each
chip.

2.2 Genetic algorithm (GA) with recursively local
floating searching embedding

The standard GA consists of two key operations, crossover
and mutation. The crossover and mutation make GA explore
a wide range of space while guaranteeing the entire popula-
tion of each generation to move to an optimal stage. The
main drawback is that GA cannot efficiently improve the in-
dividual to its local optimal. Hence, a hybrid GA embedded
with local optimization methods is proposed by Oh et al. [12].
The hybrid GA is empirically proved to have better con-
vergence than the standard GA and enjoys a slightly higher
performance than standard GA.

In our pursuit of predicting MACE with just a few bio-
markers, the searching burden is dramatically alleviated.
Furthermore, the limited number valid bits on the chromo-
some encoding make the crossover procedure generate little
diversity in offspring. Therefore we propose to use an
enhanced GA with recursively local floating embedding to
improve the biomarker selection (Fig. 1.). Compared to the
standard GA, the technical merits of the proposed methods
lie in the following aspects. First, after the crossover and
mutation operation in each generation, a recursive local
floating searching method is applied to hunt the local opti-
mal solution around the current individuals. Second, be-
cause the forward floating procedure would exhaust all the
possible biomarkers, the computation cost would be
increased significantly. We thus try to limit the candidate sets
by removing those biomarkers with low-prediction-relevance

Genetic algorithm with local floating search embedding (LFE)
1. Population Initialization (size is [Pl);
2, While (evolving flag)

kX randomly select | P | -¢ individuals to formulate F_

4. crossover(P,) — P,

5. first update the current population P, — P,’,L' '

6, randomly select | P L individuals to formulate P

mutation( P, ) —+ P,

i+l)m i+lim

second update the current population £, — P,—_,z .

i+l

e ow =

for each individual p in P, °

i+l
LFE(p) —};-l Replace pr with -;-J in ﬂn}
10 end
11 Hence, the new population is finally updated P,-_lz = P,
12 end

Figure 1. The algorithmic steps of GA with local floating search
embedding (GA-LFE).

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

2289

or high-biomarker redundancy. Third, the updating proce-
dure for each generation has three corresponding steps to
maintain a fixed size of population, i.e., updating after cross-
over, updating after mutation, and updating after recursively
local floating searching. Compared with the hybrid GA [12],
the proposed method performs better because the recursively
floating searching can cover much more biomarker combi-
nations. The reduction of the candidate biomarkers with con-
sidering the MACE-relevance and biomarker-redundancy
make the local searching procedure much more efficient.

The algorithm diagram is shown in Fig. 1. The parameters
cand m are the crossover and mutation rates. The update rule
in step (5) and (8) is based on the predictor accuracy of each
individual. Besides the conventional crossover operator cross-
over(P;) and mutation operator mutation(P . 1),), the local
floating searching embedding operator LFE(p) tries to find the
local optimal solution around the current individual p. The
evolving flag is initialized to be one and can be changed to zero
under any the following conditions: the maximum generation
is achieved, the evolving process achieves convergence or the
maximum running time is used out. During the process of
crossover and mutation, we add the strategy to make each in-
dividual has d selected biomarkers. The LFE operation, as
described in Fig. 2, just tries to find an optimal solution
around the current individual by two-direction recursively
searching strategies, add —r — remove —r and remo-
ve — r — add — r, where r is the step length of the bidirec-
tional floating search. These two strategies are sequentially
adding one feature and then removing one feature, or vice
versa. For each step, the added or removed feature makes the
fitness function maximum. Note that the add — rprocedure is
an expensive step because all the possible features have to be
exhaustedly evaluated. In order to reduce the computation
time, the MACE-relevance and biomarker-redundancy are
evaluated using information gain [13] as following:

IG(X, Y) = H(X) — H(X|Y) =

=Y ple) logy plxi) + > () D_p(ily) 1oga p (il
1 , 1

where H(X) is the entropy of a variable X and H(X |Y) denotes
the entropy of X after observing the values of another variableY.
The probability density function (pdf) of variable X is p(x;) and
p(xy;) represents the conditional probability density of vari-
able X, given Y. Hence the information gain reflects the ad-
ditional information about X provided by the observations of
Y. In order to compute the above measurement, Parzen win-
dow method is applied to estimate the pdf p(x;), as described
in ref. [14].

! Z & (x — x4, h) where n is the number of samples

i=1

p(x) = 7

located in the window region and the Gaussian window
function is commonly used with the kernel as:

1
d(x,h) = W“P( YRRk
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LFE searching procedure
I Initialization p= p,J(p)=1J(p)=0:

2, While J(p)>J(p)

3. P=P

4, = add —r— remove —ri p)
5 iy = remove —r —add —r( p)
3 it Jipy=Jdip)

7. P=p

8. else

9. P=P;

10, end

11 calculate Jﬂ"ﬂ}.J(;ﬂ

12, end

13, retum ;:

Figure 2. The algorithmic steps of the recursive local floating
search embedding procedure.

Y is the covariance matrix of the variable x and d is the
dimensionality of variable x, h is the kernel size of Gaussian
window.

Considering the reducing procedure of the biomarker
candidates, the bi-directional floating search approach with
step length r can be described as the algorithm chart shown
in Fig. 3. In our experiments, in order to reduce the compu-
tation cost, we use the simplest version of bi-directional
floating search with fixed step length 1. Assume the selected
biomarkers in the chromosome p are {y, y,....yn} and the
remainder biomarker set is {x;, x,,. . .,y — p}. The procedure
of local optimization of the add-one-remove-one strategy
consists of three basic steps. First, considering the current
selected biomarkers and the output class ¢, the reduced can-
didates biomarker set {X;, X;,...%c} are constructed by
selecting the biomarkers from {x;, x,,...,%y_ »} with high
MACE relevance IG (x;, ¢)>(, i=1, 2,..., N— M and low
biomarker redundancy IG (x;, y)<¢, i=1, 2,..., N— M,
j=1,2,.., M. The thresholds {, & of MACE relevance and
biomarker redundancy are used to filter the original candi-
date. In practical, we set dynamic values of { and § to guar-
antee around one-tenth of the biomarkers are remained for
generating the new generation of subsets, i.e., k = (N — M)/
10. Second, one biomarker is selected to generate a chromo-
some p* = {y1, V.- - -, Ya %}, which can maximize the fitness
function x* = arg max | (Y1, Y2» -+ Yum» %)- Third, remove one
biomarker y from p to obtain the new chromosome, which
has the exact number of biomarkers. The removed y also
maximizes the fitness function as y~ = argmax J(p ). Note
here we use the signs of addition or subtraction to represent
set operations. For example, p + x means add one bio-
marker x* to the current biomarker set p. The remove-one-
add-one strategy has the similar flow chart with the only dif-
ference in the order of operations of removing and adding
biomarkers. Because the floating search is recursively exe-
cuted, the local optimal set of biomarkers can be quickly
acquired in several iterations.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Proteomics 2009, 9, 2286-2294

Add-r-remove-r procedure

1. the current selected attributes p={ ¥, ¥, ¥, }
the candidate attributes pool X = {x,, X,,.... X }
fori=1:r

b3

Tl

p =p—y wherey =argmaxJ(p ): p=p
yep
end
fori=1:r
p*=p+x° wherex* =argmax J(p*); p=p°
end
return P

[ AN

Figure 3. The algorithmic steps of the bi-directional floating
search procedure of add — r — remove — roperation.

2.3 Validation by MACE prediction using PLS-LR and
SVC

Notice that in our study, the available patient set is very small
(120 patients/samples) while the original biomarker set is
relatively big for all the fractions and ProteinChips. Most
traditional pattern classification methods are well estab-
lished for the large dataset learning. Here we use two famous
small-set and binary response based classification tech-
niques, PLS-LR and SVMC, as the classifier for our MACE
prediction study. PLS-LR is developed based on the partial
least squares and ridge penalized logistic regression tech-
niques [6, 15, 16]. The ridge penalty is integrated in the par-
tial least squares step and the dimensionality reduction is
incorporated in the classification procedure. Although the
approach of PLS-LR remains valid for multi-categorical clas-
sification problem, the experimental results from [6]
demonstrates that this extended PLS technique have better
performance for the binary response data. SVC executes the
classification task by finding a hypersurface in the space of
possible inputs to split the positive examples from the nega-
tive examples. The split hyperplane will be chosen to have
the largest distance from the plane to the nearest of the
positive and negative examples, which is named as max-
imum-margin hyperplanes [7, 8]. Because the construction
of the hyperplane only depends on the support vectors
instead of the entire input samples, it fits well to the small set
based binary response learning problem. The characteristics
of PLS-LR and SVC match also suit our MACE prediction
problem well because SELDI-MS data obtained are binary
response biomarkers indicating the MACE group and con-
trol group as well as the small size of the sample set.

3 Results

In our experiments, we use the biomarkers generated from
the fraction 1, 3, 4, 5, and 6 with two SELDI chips, IMAC and
CM10. There are totally 377 biomarkers, including the MPO
value. The objective is to select several biomarkers for MACE
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prediction. The classifier used for predicting the patient
group is based on the PLS-LR and SVC approaches. In order
to derive a stable and robust statistical estimation of the pre-
diction error, the 10-folder cross validation procedure is
applied. The accuracy is simply the mean of tests, which
generally provides a good estimation because the trained
classifiers are similar in all the tests. With different partition
of the data, the cross validation was repeated 10 times. The
mean and SD of the prediction accuracy are recorded in Table
2. The proposed biomarker selection method is compared
with the single MPO value, t-test ranked biomarkers, stand-
ard GA selected biomarkers, and the SFFS technique, which
is claimed as the best sequential search method [6]. All these
compared approaches are executed using all the candidate
biomarkers (a total of 377 biomarkers) for fair compassion.
For our comparison study, both the standard GA and GA-
LFE have the same setting: the population size is 120, the
maximum generation size is 20, the crossover rate is 0.5, and
the mutation rate is 0.3. The experimental results show that
the GA-LFE significantly improved the prediction accuracy
comparing with the single MPO value. For example, with
seven selected biomarkers, GA-LFE relatively improved
30.91% with PLS-LR classifier (from 57.17 to 74.83%) and
39.51% (from 55.25 to 77.08%), respectively. Additionally,
the best subset of seven biomarkers selected by GA-LFE
achieved the highest performance of 77.08% using SVC. The
extensive comparison results using three, five, and seven
selected biomarkers are listed in Table 2 (mean and SD
accuracy), and Table 3 (sensitivity and specificity). In Fig. 4,
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we compared four biomarker selection approaches, GA-LFE,
SFFS, standard GA, and t-test by calculating the receiver
operating characteristic (ROC) curve and the corresponding
area under ROC curve (AUC). The ROC and AUC compar-
ison is based on SVC classifier with seven selected bio-
markers, where GA-LFE achieved the best performance.
Particularly, when the false positive rate ranges from around
0.15 to 0.3, GA-LFE obtains a significant performance gain of
the true positive rate. In order to obtain a visualized valida-
tion, the optimal biomarkers are projected to 2-D space using
orthogonal locality preserving projections (OLPP) [17]. Fig-
ure 5 shows that the two samples, MACE and Control, are
roughly clustered into two groups.

Table 4 lists the corresponding selected biomarkers. We
can see that the proteins CM10 F3 107433, IMAC C4212.3,
and MPO always remain in the selected biomarkers. In Fig. 6,
we show the mass spectra map of the selected biomarkers:
they are CM10 F6 37089, IMAC F4 2758.6, IMAC F6 4212.3,
CM10 F3 107433, CM10 F6 51404, and IMAC F6 56652.
Clearly all of these the selected peaks are true peaks. The
protein separation and identification for these six peaks are
underway and will be reported separately.

4 Discussion and conclusion

There exist different factors, such as the hardware status and
environmental setting, could affect the reliability of the

Table 2. The performance comparison of accuracy and standard derivation (%) of the MACE prediction using three, five, and seven selec-
ted biomarkers by different approaches, t-test, standard GA, SFFS, and GA-LFE. The performance of single MPO value is also

evaluated for comparison

Classifier MPO value 377 Biomarkers d t-test Standard GA SFFS GA-LFE
3 58.83 (=1.58) 64.83 (=1.35) 66.91(+1.42) 68.00
PLS-LR 57.17(*=1.68) 51.33(+1.43) 5 61.42 (£1.18) 71.42 (£1.36) 64.25 (£2.71) 72.83(+1.12)
7 62.83 (*=1.37) 72.92 (+1.48) 68.58 (=2.36) 74.83 (=1.46)
3 56.00 (£2.6) 63.50 (*£3.47) 65.5 (+2.43) 67.50 (+£0.79)
SvC 55.25 (£4.73) 56.83 (+4.39) 5 59.25 (£2.89) 70.33 (£1.68) 71.33 (%£1.05) 72.92 (+1.81)
7 61.42 (£2.08) 74.92 (£1.54) 73.5(*+1.10) 77.08 (+1.43)

Table 3. The performance comparison of sensitivity and specificity (%) of the MACE prediction using three, five, and seven selected bio-
markers by different approaches, t-test, standard GA, SFFS, and GA-LFE; The performance of single MPO value is also evaluated

for comparison

Classifier MPO value 377 Biomarkers d t-test Standard GA SFFS GA-LFE
3 56.17/61.50 66.33/63.33 64.83/69.00 67.83/68.17
PLS-LR 58.33/55.50 46.50/56.17 5 54.50/68.33 72.17/70.67 61.50/67.00 73.33/72.33
7 61.67/64.00 74.17/71.67 67.50/69.67 75.33/74.33
3 54.50/57.50 69.33/57.67 65.50/65.50 65.17/69.83
SvC 44.50/66.00 52.00/61.67 5 60.00/58.50 70.33/70.33 70.17/72.50 73.33/72.50
7 63.17/59.67 76.33/73.50 74.00/73.00 76.33/77.83
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obtained SELDI-MS data. Therefore, it is necessary to
remove the outlier or noisy data using the unsupervised
information. High normalization factor means high varia-
tion in the sample sets. Hence the evaluation is tested by
using the normalization factors. By setting a cutoff at three,
we remove the samples whose normalization factors are
higher than the cutoff. In our experiments, however, we
found that the classification accuracy did not change signifi-

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

cantly. The reason may be that we normalized the data be-
tween the replicates and the two different chips. Notice that
each patient has 20 spectra (totally two chips, two processors
per chip, and five fractions per processor). Therefore it makes
sense that a couple of spectra with high normalization fac-
tors in the 20 spectra of some patients could not influence
the classification accuracy of 120 patients in our experi-
ments.
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Table 4. The three, five, and seven selected biomarkers using GA-LFE

2293

No of selected

Position of biomarkers

biomarkers
3 Fraction no. 3 6
SELDI Chips CM10 IMAC
Name C107433 C4212.3 MPO
5 Fraction no. 3 6 6 6
SELDI Chips CM10 CM10 CM10 IMAC
Name C107433 C15193 C51404 C4212.3 MPO
7 Fraction no. 3 4 6 6 6 6
SELDI Chips CM10 IMAC CM10 CM10 IMAC IMAC
Name C107433 C2758.6 C37089 C51404 C4212.3 C56652 MPO
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Figure 6. Mass spectra map of the selected biomarkers: (a) CM10 F6 37089; (b) IMAC F4 2758.6; (c) IMAC F6 4212.3; (d) CM10 F3 107433; (e)

CM10 F6 51404; and (f) IMAC F6 56652.

The objective of this work is to develop a molecular diag-
nostic tool based on the biomarkers or models discovered by
clinical proteomics to predict the risk of MACE in 6 months
with improved accuracy compared with that of MPO alone,
the latter has recently been approved by FDA to evaluate
patients presenting with chest pain that are at risk for
MACE, including myocardial infarction, need for revascu-
larization, or death (PrognostiX CardioMPO Test, 510(k)
summary, May 10, 2005).

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

The number of proteins in human blood is estimated to
be in the order of ten thousands, and the application of pro-
teomics approaches for protein profiling can generate large
arrays of data for the development of optimized biomarker
protein panels. The simplicity and concision requirement for
the development of immunoassay can only tolerate the com-
plexity of the prediction model with a small number of
selected biomarkers. As described early, since we reduce the
local search space to 1/10 of the original pool size, the com-
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putation cost is around 5-15 times of the standard GA
approach, which is acceptable for this specific application.

The conventional optimization techniques for biomarker
discovery, such as GA, are alleviated on the search ability be-
cause of the high-dimensional input biomarkers, small sam-
ple set, and the dramatically decreased of the number of target
biomarkers. In this paper, we proposed an improved GA with
local floating search embedding to identify an optimal panel
of biomarkers. The standard GA has the extended search
diversities through the crossover and mutation operation. It,
however, does not have the local optimization strategy. Here
we use the new bi-directional floating search approach, i.e.,
add — r — remove — rorremove — r — add — rbiomarkers, to
find the local optimal solution around individuals of each
generation during the evolving. In order to reduce the high
computation cost, the MACE-relevance and biomarker
redundancy are estimated using information gain. Therefore,
the local optimization is only conducted on the biomarkers
with high MACE-relevance and small biomarker redundancy.

Finally, we demonstrated the selected optimal panel bio-
markers using the MACE prediction experiments. The well
developed classifiers, PLS-LS and SVC, specially designed for
binary variable response and small set learning, are con-
structed to predict the MACE. The comparison study with
several classical variable selection techniques demonstrates
that the proposed method has the technique merits on our
biomarker discovery task for risk stratification of cardiovas-
cular events. The average prediction accuracies with 3, 5, and
7 selected biomarkers are 67.50, 72.92, and 77.08% using
SVC, respectively. Future work would include improvement
of low level processing of the MS data and the design of more
efficient and problem specified MACE predictor.
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(STCW), NIH Clinical Center (KL), and The Methodist Hos-
pital Research Institute Scholarship Award (XZ).

5 References

[1] Brennan, M. L., Penn, M. S., Lente, F. V., Nambi, V. et al.,
Prognostic value of myeloperoxidase in patients with chest
pain. N. Engl. J. Med. 2003, 349, 1595-1604.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Proteomics 2009, 9, 2286-2294

[2] Kozak, K. R., Amneus, M. W., Pusey, S. M., Su, F. et al., Iden-
tification of biomarkers for ovarian cancer using strong
anion-exchange ProteinChips: Potential use in diagnosis
and prognosis. Proc. Natl. Acad. Sci. 2003, 100, 12343-
12348.

[3] Zhu, W., Wang, X., Ma, Y., Rao, M., Glimm, J., and Kovach,
J., Detection of cancer-specific markers amid massive mass
spectral data. Proc. Natl. Acad. Sci. 2003, 100, 14666-14671.

[4] Peng, H., Long, F, Ding, C., Feature selection based on
mutual information: Criteria of max-dependency, max-rele-
vance, and min-redundancy. IEEE Trans. Pattern Anal. Mach.
Intell. 2005, 27, 1226-1238.

Holland, J. H.,Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology, Con-
trol and Atrtificial Intelligence 2nd edn., MIT Press, Cam-
bridge, MA 1996.

[5

[6] Fort, G., Lambert-Lacroix, S., Classification using partial
least squares with penalized logistic regression. Bioinfor-
matics 2005, 21, 1104-1111.

[7]1 Vapnik, V., Statistical Learning Theory, Wiley-Interscience,

New York 1998.

Cristianini, N., Shawe-Taylor, J., An Introduction to Support
Vector Machines, Cambridge University Press, UK 2000.

Duda, R. O., Hart, P. E., Stork, D. G. Pattern Classification, 2nd
edn., Wiley-Interscience, New York 2001.

[10] Liu, J. J., Cutler, G., Li, W., Pan, Z. et al., Multiclass cancer
classification and biomarker discovery using GA-based
algorithms. Bioinformatics 2005, 21, 2691-2697.

[11] Jarvis, R. M., Goodacre, R., Genetic algorithm optimization
for pre-processing and variable selection of spectroscopic
data. Bioinformatics 2005, 21, 860-868.

[12] Oh, I, Lee, J. S., Moon, B. R., Hybrid Genetic Algorithms for
Feature Selection. IEEE Trans. Pattern Anal. Mach. Intell.
2004, 26, 1424-1437.

[13] Yu, L., Liu, H., Efficient feature selection via analysis of rele-
vance and redundancy. J. Mach. Learn. Res. 2004, 5, 1205—
1224.

[14] Kwak, N., Choi, C. H., Input feature selection by mutual
information based on Parzen window. [EEE Trans. Pattern
Anal. Mach. Intell. 2002, 24, 1667-1671.

[15] Le Cessie, S., Van Houwelingen, J., Ridge estimators in
logistic regression. J. R. Stat. Soc. Ser. C Appl. Stat. 1992, 41,
191-201.

[16] Helland, I., On the structure of partial least squares regres-
sion. Comm. Statist. Simulation Comput. 1988, 17, 581-607.

[17] Cai, D., He, X., Han, J., Zhang, H., Orthogonal laplacianfaces
for face recognition. IEEE Trans. Image Process. 2006, 15,
3608-3614.

[8

[9

www.proteomics-journal.com



