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Abstract

Semi-supervised learning (SSL) relies on partial super-
vision information for prediction, where only a small set of
samples are associated with labels. Performance of SSL
is significantly degraded if the given labels are not reli-
able. Such problems arise in realistic applications such as
web image search using noisy textual tags. This paper pro-
poses a novel and efficient graph based SSL method with the
unique capacity of pruning contradictory labels and infer-
ring new labels through a bidirectional and alternating op-
timization process. The objective is to automatically iden-
tify the most suitable samples for manipulation, labeling
or unlabeling, and meanwhile estimate a smooth classifi-
cation function over a weighted graph. Different from other
graph based SSL approaches, the proposed method employs
a bivariate objective function and iteratively modifies label
variables on both labeled and unlabeled samples. Starting
from such a SSL setting, we present a relearning framework
to improve the performance of base learner, particularly
for the application of web image search. Besides the toy
demonstration on artificial data, we evaluated the proposed
method on Flickr image search with unreliable textual la-
bels. Experimental results confirm the significant improve-
ments of the method over the baseline text based search en-
gine and the state-of-the-art SSL methods.

1. Introduction
Conventional supervised learning techniques build a

mapping from observations to targets using a labeled train-
ing set. The principal assumption is that the given labels are
trustable. Moreover the labeled data provide enough diver-
sity and adequate representation of the sample space. Ob-
viously, the supervised approaches highly rely on the qual-
ity of the training data. Besides the well-posed problem of
sample selection bias [6, 10], another critical challenge is
that training data may contain mislabeled samples. There
has been some, but not sufficient, attention paid to this
problem, such as filter based approaches for eliminating the

noisy labels [3, 4, 27]. For example, in [3], ensemble clas-
sifiers were developed as filter and executed with cross val-
idation strategy to identify and eliminate mislabeled train-
ing instances. However, all these efforts are based on the
assumption of label sufficiency and require the training of
supervised classifiers.
If there is partial supervision information available, i.e.

a small number of training data have assigned labels, semi-
supervised learning (SSL) approaches are commonly used
to accomplish prediction and inference task. SSL is relevant
to many real applications, when labels are usually expen-
sive to acquire while the data acquisition is fairly cheap.
Under the general framework of SSL, the given labels are
trusted as golden truth, and the data properties, like mani-
fold geometries are employed to carry out the inference on
unlabeled data. In other words, SSL is often based on the
principle of trusting both label and data. Other important
considerations in SSL include smoothness assumption, clus-
ter assumption, and manifold assumption [5].
Graph based SSL methods were recently developed with

these assumptions and have shown encouraging results un-
der agnostic settings when little prior knowledge of the data
distribution and parameters is available. For example, in
[23, 26], a continuous real-valued classification function is
estimated thorough optimizing a predefined objective func-
tion over an undirected and weighted graph. However,
previous research also shows that the performance of SSL
methods highly relies on the quality of the given labels [22].
Therefore, label weighting is used to reduce the side effects
from uninformative and noisy labels in sparse area [22].
Nevertheless, this method still can not handle wrongly la-
beled samples in dense regions of the data point cloud. As
an intuitive demonstration, we show the mislabeling issue
using the well known two-moon dataset in Figure 1, where
among the eight labeled samples, two of them are falsely
assigned. The results show that most of the existing tech-
niques, either supervised or semi-supervised methods, gen-
erate erroneous prediction results (Figure 1 a-g).
In practice, the mislabeling issue occurs frequently in

web image annotation due to uncontrolled labeling proce-
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Figure 1. A demonstration of mislabeling issue on noisy two-moon data set. Large red markers indicate known labels, including wrong
labels and the two-color small markers represent the classification results. a) SVM; b) LapSVM [2]; c) RLS [19]; d) LapRLS [2]; e) GFHF
[26]; f) LGC [23]; g) GTAM [22]; h) our method LDST. Only LDST achieve fully correct results.

dure and semantic ambiguity. For example, Flickr, one of
the most popular photo sharing website, allows users to as-
sign textual tags when they upload images. However, it
has been well recognized that there exists high inaccuracy
among such manually assigned textual tags, which were ob-
served with only around 50% accuracy [14]. Most of the
current image search techniques, such as the one used in
Flickr, utilize the textual tag associated with the images.
Apparently, the error-prone tags significantly degrade the
accuracy of the text search results. For instance, when the
user types in the keyword “tiger”, visually inconsistent re-
sults could be returned though all contain the key word
“tiger” in their textual tags. Figure 2 displays the typical
categories of images returned by the text search of “tiger”,
such as apex predator, butterfly, flower, tank, and golf pro-
fessional. Recall the toy demonstration in Figure 1, these
inaccurate tagged images can be considered as wrongly la-
beled samples, which may be located in either dense or
sparse regions of the sample space.

Inspired by recent developments of graph based SSL
methods, here we propose a novel method, called Label
Diagnosis through Self Tuning (LDST), to address this crit-
ical problem with mislabeled instances. The objective is to
diagnose the quality of the given labels and remove unre-
liable labels while preserving visual consistency. Starting
from a bivariate formulation with graph regularization, we
apply a floating greedy approach to simultaneously carry
out correction over labeled samples and prediction over un-
labeled samples. In the case of Flickr image search, LDST is
used to refine the text based image search results by system-

atically removing visually inconsistent images, those carry
falsely assigned labels.
The remainder of this paper is organized as follows. In

Section 2, we briefly introduce the related work on web im-
age search. Section 3 presents our approach to handling
mislabeling with SSL formulation. Section 4 provides ex-
perimental validation on both toy and the real data sets from
Flickr image search. The conclusions and discussion are in-
cluded in Section 5.

2. Related Work on Web Image Search
In response to the emerging needs in searching visual

content on the web, many works on content based image
retrieval (CBIR) have been proposed [15]. However, the
quality of these approaches is limited because it is not easy
to formulate an informative and efficient visual query. Rel-
evance feedback is proposed to refine the user query with
iterative user input [20]. However, convergence of such it-
erative processes is not guaranteed and the results often may
not be satisfactory.
In view of the existence of abundant metadata such as

captions or keywords associated with images and the ma-
turity of text matching techniques, many works start with
the text-based query and then proposed re-ranking ideas
to refine the text based image search results to achieve a
better query response. For example, the approaches with
pseudo-relevance feedback (PRF) use initial search results
as pseudo labels, among which a small number of the top-
ranked samples are assumed as positive, and bottom ranked
images as negative [17]. PRF methods highly rely on the
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Figure 2. Typical example images using text search “tiger” from photo sharing website Flickr.

quality of the pseudo-positive/negative samples since these
samples are regarded as ground truth in the subsequent
learning procedure. Another category of approaches ap-
ply probabilistic models, such as constellation model [8],
probabilistic latent semantic analysis and latent Dirichlet al-
location [7], to train region based bag-of-words classifiers.
Several limitations, including model selection and adaption,
have been pointed out in [12]. The principle of informa-
tion bottleneck was applied to find the optimal clusters of
images that preserve the maximal mutual information [9].
However, the approximation of mutual information, which
involves probability density estimation with a small num-
ber of samples, remains as a challenging problem in high
dimensional image feature space. VisualRank is recently
developed to exploit visual content to re-rank Google im-
age search results. It uses random walk on an affinity graph
to rank images based on the visual hyperlinks (similarity)
among the images. Finally, the re-ranked image list is sorted
based on the “importance” of graph nodes. This method has
some disadvantages. First, the top ranked image sets lack
diversity because visually similar images tend to share sim-
ilar node importance in the graph. Second, the re-ranked
images may be inconsistent if the initial text-search results
have multiple dense subgraphs corresponding to different
patterns. For example, the text search by “tiger” returns
multiple disparate clusters, such as apex predator and the
professional golfer, both of which have high node impor-
tance.
In summary, current web image search approaches can

be categorized as supervised methods (such as PRF), prob-
abilistic model methods, or unsupervised methods (such as
information bottleneck and VisualRank). The supervised
methods highly rely on the goodness of the top ranked im-
ages returned from the initial search. The unsupervised ap-
proaches are completely driven by the the data properties,
like probability distribution [9] and graph geometry [12],
while neglecting any initial partial supervision information

contained in the top ranked images. Here, we first propose
LDST method to handle the semi-supervised scenario with
unreliable labels. Then LDST is applied to refine text based
image search results by concurrently considering the data
property and the partial supervision information obtained
from the top ranked images.

3. Methodology
To handle the errors in the initial labels, we extend our

previous approach GTAM proposed in [22] to formulate a
rigorous graph transduction procedure with the capacity of
handling mislabeled instances. Different from the solution
ofGTAM, here we propose a bidirectional greedy search ap-
proach to simultaneously drive wrong label correction and
new label inference while preserving the smoothness and
fitness of the classification function. This novel mechanism
offers the unique feature to automatically prune the wrong
labels to maintain a set of consistent and informative labels.

3.1. SSL with Bivariate Graph Formulation
Graph based SSL methods treat all samples as nodes in a

graph and compute pair wise sample affinity as the estima-
tion of edge weights. Through the connectivity among the
graph nodes, the inference step on unlabeled nodes is exe-
cuted via a diffusion procedure. Though there are different
formulations of graph based SSL [25], the function estima-
tion approaches, which approximate the graph cut solution,
become popular because of the empirical success and ef-
ficiency. Most methods define a continuous classification
function f ∈ R

n×c (n is the number of samples and c is the
number of classes) that is estimated over the graph via min-
imization of a cost function Q. The cost function typically
enforces a tradeoff between the smoothness of f over the
weighted graph and the accuracy of fitting on the labeled
nodes. Previous univariate formulations of such approaches
include the Gaussian fields and harmonic functions (GFHF)
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method [26], and the local and global consistency (LGC)
method [23]. In both of these two methods, the objective is
to derive a smooth classification function which elastically
or rigidly fits on the given labels.
Due to the constraint of local fitness on labeled instances,

the initially given labels dominate the above univariate sys-
tem. The label inference results highly rely on the quality
of the initial labels. However, in practice, the noisy and
erroneous labels occur very often, like the textual tags asso-
ciated with the internet images. To alleviate the dependence
on the initial labels, we developed a novel bivariate formu-
lation to drive alternating optimization on both f and binary
label variable y [22]. Here we briefly describe this bivari-
ate formation and present further revision in the following
sections.
Given a weighted and undirected graph as G = {X, E},

where vertex are the sample set X = {xi}, i = 1, · · · , n
(n = |X|) and the symmetric edge weight matrix W =
{wij}. The sample affinity is applied to compute the edge
weight through a kernel function: wij = k(xi, xj). The
node degree matrix D = diag ([d1, · · · , dn]) is defined as

di =
n∑

j=1

wij . The graph Laplacian is computed as L =

D − W and the normalized graph Laplacian is:

L = D−1/2LD−1/2 = I − D−1/2WD−1/2 (1)

The binary valued variable y ∈ B
n×c is set as yij = 1 if xi

is labeled as class j and yij = 0 otherwise. The objective
function is then defined as:

Q(f, y)=
1
2

∑
i,j

wij(
fi√
di

− fj√
dj

)2+α
∑

i

(fi − viyi)2 (2)

where the first part is called smoothness evaluation and the
second part is fitness measurement. These two components
in the above bivariate formulation are weighted by the co-
efficient α. The variable vi is called label regularizer which
balances the influence of labels from different classes and
modulates the label importance based on the node degree.
The value of v is computed as:

vi =

{
pj(x) · di∑

k ykjdk
: yij = 1

0 : otherwise
(3)

where pj(x) is the prior of class j and is usually set
to uniform values pj(x) = 1/c, j = 1, · · · , c. If we
write the label weighting term as the diagonal matrix v =
diag ([v1, · · · , vn]), the quadratic objective function Q can
be represented as the following matrix form.

Q(f, y) =
1
2

tr
{
f�Lf + α(f − vy)�(f − vy)

}
(4)

Through minimizing the objective function, the classifi-
cation function and the label matrix can be derived as:

(f∗, y∗) = min
f∈R

n×c

y∈B
n×c

Q (5)

In GTAM [22], an alternating optimization approach is
applied to iteratively minimize Q and estimate y. Since
the minimization of objective function Q is convex prob-
lem with respect to variable f , the optimal f can be easily
derived by zeroing the partial differential∇fQ:

∇fQ = 0 ⇒ f∗ = (βL + In)−1
vy = pvy (6)

where In ∈ R
n×n is identity matrix and p = (βL + In)−1

is called propagation matrix (β = 1/α). Substitute f in
the objective function Q by optimal f∗. Then the bivariate
problem is degenerated to an univariate form as:

Q(y) =
1
2

tr
{
y�v� [

pLp + β(p − In)2
]
vy

}
(7)

Notice that the above problem is turned into a linearly
constrained (

∑
j yij = 1) max cut problem and the exact

solution is NP [13]. To solve this, we developed a greedy
gradient based approach to gradually update y through in-
cremental addition of labels [22].

3.2. Label Self Tuning
Compared with univariate methods, the above bivariate

approach achieved much better performance due to its ro-
bustness to noisy data. The performance gain are attributed
to two major factors. First the label weighting term reduces
the side effect from the labels in low density and unreliable
regions. Second, the iterative optimization on both vari-
ables y and f avoids prematurely committing to intractable
prediction results. In order to avoid the possible state of un-
stable oscillation, the alternating minimization approach is
only applied to unlabeled samples but not on the initial la-
beled set. In other works, the initially given labels are con-
sidered as golden truth and thus never changed. Because
of this, GTAM can not handle the problem with mislabeled
samples. We here revise the unilateral greedy search strat-
egy into a bidirectional manner, which leads to our proposed
approach of Label Diagnosis through Self Tuning (LDST).
While preserving the optimal f , LDST executes floating

greedy search among the most beneficial gradient directions
ofQ on both labeled and unlabeled samples. Since the label
regularizer term v associated with the current label variable
y, which converts the label variable into a normalized form
ỹ = vy. Following the equation 7, we derive the differential
as to normalized label variable ỹ:

∇ỹQ=
[
pLp + β(p − In)2

]
ỹ=

[
pLp + β(p − In)2

]
vy (8)
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The above calculation of gradient∇ỹQmeasures the the
change of the objective function in terms of the change of
normalized label variable ỹ. Notice that the manipulation
on y is equivalent to a similar operation on ỹ, i.e. setting
yij = 1 leads to ỹij = vi.
Since y is constraint in binary space, labeling operation

is to change the value from 0 to 1 for a certain element yij

in the label matrix and the unlabeling operation, i.e. remov-
ing the labels, does the reverse by setting yij = 1 → 0.
To reduce the value of the objective function Q, we ma-
nipulate the label variable y in both directions, labeling
and unlabeling. Note that labeling operation is carried out
on the unlabeled nodes with the minimum value of the
gradient min∇ỹQ, while unlabeling operation is executed
on the labeled nodes with the maximum value of gradient
max∇ỹQ. To summarize, we have the following bidirec-
tional gradient decent search, including both labeling and
unlabeling operations, to achieve the steepest reduction on
the cost function Q

(i+, j+) = min
i,j

∇(vyu)Q; yi+j+ = 1

(i−, j−) = max
i,j

∇(vyl)Q; yi−j− = 0 (9)

where (i+, j+) and (i−, j−) are the optimal elements of
variable y for labeling and unlabeling operations, respec-
tively. Different from the labeling procedure, the optimal
element for unlabeling operation is only investigated on the
positions of variable yl where the element has the nonzero
values. In other words, through each bidirectional gradient
decent iteration, we add one most reliable label, and mean-
while remove one least confident label. Since the label regu-
larizer term v is associated with the current labels as shown
in Equation 3, we need to update v after each individual
operation, either labeling or unlabeling.

3.3. Final Algorithm
Here we finalize the LDST method in chart 1. From this

chart, in the first s iterations, a number of unlabeling and
labeling operations are executed in order to eliminate the
problematic labels and add trustable new labels. We refer
to this stage as LDST-self-tuning. In this self tuning stage,
one new label is added to the labeled set after one unre-
liable label is eliminated to maintain a fix number of la-
bels. Moreover, each individual operation of labeling and
unlabeling leads to the update of label regularization ma-
trix v. After executing certain steps of label self tuning, the
subsequent stage, called LDST-propagation, is conducted to
propagate the labels to unlabeled set. Theoretically, the al-
gorithm stops when all the unlabled samples are labeled.
However, this may result in prohibitive computation if the
data size is huge. There are two strategies to speed up the
algorithm to meet the computational needs in realistic appli-
cation. First, the iterative procedure can be early terminated

Input: data set X = {Xl,Xu}, the graph G{X, E}
and the corresponding constants:

normalized graph Laplacian L;
propagation matrix p;
node degree matrix D;
gradient constant g = pLp + β(p − In)2;
initial label variable y0;
label regularizer v0.
Output: optimal prediction function f∗ and labels y∗.
iteration counter t = 0;1

self tuning iteration number s;2

while Xu �= ∅ do3

compute gradient ∇Qt
(vyu) = gvtyt;4

if t ≤ s then5

(i−, j−) = maxi,j ∇Qt
(vyl)

;6

yi−,j− = 0;7

update Xl,Xu;8

recalculate vt;9

end10

(i+, j+) = mini,j ∇Qt
(vyu);11

yi+,j+ = 1;12

update Xl,Xu;13

t = t + 1;14

recalculate vt;15

end16

return y∗, f∗ = pvy.17

Algorithm 1: The algorithmic chart of label diagnosis
through self tuning approach.

after obtaining enough labels. The final prediction results
are computed using the propagation Equation 6. Second,
the computation associated with matrix multiplication for
calculating gradient∇Qt+1

(vyu) can be converted to vector ad-
dition since each step only involves the change of a single
vector entry in∇Qt

(vyu), similar to the incremental labeling
method reported in [21].

4. Experiments
4.1. Toy Demonstration
We first use synthetic noisy two-moon artificial data for

intuitive demonstration. We manipulated the toy data from
[2] by adding 100 random noisy instances to obtain a non-
separable point cloud containing 500 2D samples, as shown
in Figure 1. Larger red markers are the labeled samples and
the shape represents different classes, positive or negative.
Each class is assigned four labeled samples, among which
one is mislabeled.
For this challenging classification task with wrong la-

bels, we compare different approaches, including super-
vised, like standard SVM, and graph based SSL algorithms,
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Figure 3. The values of the cost function Q during optimization
procedure of LDST and GTAM methods.

such as GFHF [26], LGC [23], and GTAM [22]. Moreover,
previous work shows that LapSVM and LapRLS outperform
some existing SSL methods [2]. Therefore, we also include
these in the comparison study. For all the graph based ap-
proaches, we use the common setting to build a KNN graph
with the same number of neighborhoods (k = 6) and adap-
tive RBF kernel size [21]. For other parameters, we adopt
the best setting reported in previous literatures.
The classification results by different methods are shown

in Figure 1 (a)-(h). From this demonstration, the following
findings can be obtained. First, the performance of super-
vised methods is heavily degraded due to the blind trust on
the false labels and the exclusive reliance on the labeled
data. Second, most SSL methods generate erroneous re-
sults even both the labeled and unlabeled data are consid-
ered. The reason lies in the fact that the labeled samples
outweigh the unlabeled data in driving the inference pro-
cess. Especially, some algorithms, like GFHF, clamp the
prediction results on given labels. LGC incorporates elas-
tic fitness term but can not rectify the wrong labels. GTAM
achieved the best accuracy among the existing methods due
to its bivariate formulation and iterative label propagation
procedure. However, it still lost the manifold separation due
to the high level of noise influence. Thus we conclude that
existing SSLmethods are incapable of identifying and elim-
inating the mislabeled samples. On the contrary, the pro-
posed LDST uses the self tuning stage to eliminate unreli-
able labels leading to accurate label prediction results with-
out breaking the structure of the two data clusters, as shown
in Figure 1 (h). Furthermore, since GTAM achieved high
accuracy close to LDST, and both share the common tech-
nique of gradient decent, we analyze the cost function value
Q during the optimization procedure of these two methods
by showing the first 50 iterations in Figure 3. This figure
clearly shows that after pruning the wrong labels by self

Method SVM LapSVM RLS LapRLS GFHF LGC GTAM LDST

Error (%) 34.64 30.16 34.01 30.26 38.76 23.77 5.99 0.91

Std (%) 7.03 10.63 11.23 10.67 3.69 6.82 11.24 2.43

Table 1. The mean and standard deviation of the error rate on 20
random runs of the toy experiment.

tuning (first 8 iterations marked as red circle) to get a con-
sistent label set, the cost rapidly descends afterwards in the
propagation stage. This observation demonstrates that most
of the prediction accuracy can be attributed to the label self
tuning procedure.
In addition, a comprehensive comparison study was con-

duct by 20 rounds of random tests. For each round, three
correct labels and one wrong label are randomly assigned
to each class. The same graph and parameters, like the self
tuning iteration number s = 8, are fixed for all the runs. The
mean and standard deviation of the classification errors are
recorded in Table 1. From this statistical evaluation, LDST
archives much higher and more stable performance under
the situation of mislabeled samples.

4.2. Web Image Search
There is abundant textual tag information available in

most of the current image websites. It makes sense to ex-
ploit such textual tags in image search. To address the
errors associated with the imperfect tags, we use the pro-
posed LDST method to greatly improve the text based im-
age search results. Two assumptions are made. First, the
desired targets are at least one of the majority patterns in the
initially returned image set. Second, the top-ranked images
are more likely to include the targets. These two assump-
tions are typically valid in the practical situations. Based on
these, the top-ranked image are first truncated to create a set
of pseudo positive labels, while the images with lower rank-
ing orders are treated as unlabeled samples. Then LDST is
applied to tune the imperfect labels and further refine the
rank list.
To evaluate our approach on the web image search task,

a total of nine categories of images are acquired from the
photo sharing website Flickr using text search. The selected
categories cover a diverse range of targets, including ani-
mals, plants, man-made objects and scenes. For each set of
text search results, about 1500 returned images are collected
for re-ranking. Example images corresponding to these text
queries are shown in Figure 4.
For image feature representation, we adopt the widely

used Bag-of-Visual-Words (BoW) derived from local key
points, which has shown effective in many applications of
object and scene classification. We use difference of Gaus-
sian as key point detector and SIFT as descriptor [16]. To
quantize the local features to visual words, we adopt the
soft-assignment strategy which has been shown effective in
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Figure 4. Example images of text search results from flickr.com. A
total of nine text queries are used: dog, tiger, panda, bird, flower,
airplane, forbidden city, statue of liberty, golden bridge.

Figure 5. Comparison of the precision of the top 100 ranked im-
ages over different categories of images.

[11, 18].
The pair wise affinity value is computed using cosine

similarity between BoW vectors. The number of nearest
neighbors is uniformly set as 200 (a typical setting for co-
sine similarity graph [1, 22]) to construct KNN graphs for
the returned images from each individual query. Since there
is no clear cue for selecting negative samples for each in-
dividual query, the classification task is degenerated to a
ranking problem [24]. Here the top ranked 60 samples are
treated as pseudo positive labels. Label self tuning is used
to remove visually inconsistent samples and afterward prop-
agation is done to rank the remaining images (the number
of self tuning iteration s is uniformly set as 30). We com-
pare with other automatic re-ranking methods, like Pseudo-
relevance feedback (PRF) framework [17]. Specifically, we
designed PRF-SVM, PRF-LGC and PRF-GTAM for com-
parison. In addition, we compare with the recent Visual-
Rank technique [12], which has shown empirical success
on product image search on Google. The same parameter
setting is applied as suggested by [12]. Moreover, all the
graph based approaches use the same graph, as described
earlier. The precision of the top 100 ranked images are cal-
culated to evaluate the performance, as shown in Figure 5.

From Figure 5, LDST achieves significant performance

Method Text SVM LGC GTAM VisualRank LDST

Accuracy (%) 67.11 74.22 79.89 81.44 79.00 87.56

Table 2. The accuracy of the top ranked Flickr images by different
approaches.

improvement over most semantic categories, like tiger,
panda, and dog. For these cases, the visual content of tar-
gets exhibits consistent pattern though there is strong am-
biguity associated with the keywords. The performance of
VisualRank is degraded since the returned image set from
text search contains multiple conflicting patterns. However,
LDST does not show much gain on the categories of bird
and flower. Because the visual content of the positive sam-
ples associated with these two tags is quite diverse, which
affects the stability of the label self tuning procedure. Over-
all, LDST improves the average accuracy of text search re-
sults from 67.11% to 87.56% on the nine categories (Ta-
ble 2). Compared to the state-of-the-art methods, the LDST
approach also enjoys a clear performance gain (7.5% over
GTAM, and 10.8% over VisualRank).
There are two parameters in LDST for web image search,

the initial number of positive l and the number of tuning
iteration s. In the above experiments, we empirically set
l = 60 images from top ranked list as positive samples and
fix s = l/2. We have carried out an extensive study by
varying the value of l from 20 to 100. The result shows that
LDST achieved fairly consistent and stable performance un-
der different choices of l with the precision of the top 100
ranked images as 87.23 ± 0.6%. In addition, the proposed
method can be made very efficient by applying the super-
posable update model developed in [21]. The current im-
plementation takes only a few seconds to rerank more than
1500 images for each query on a regular PC.

5. Conclusion Remarks
The main contributions of this article consist of the bi-

variate formulation of graph-based semi-supervised learn-
ing (SSL) for handling errors in the initial labeled set, and
its application for re-ranking text-based web image search
results. Conventional SSL methods fail in such cases due to
their trust on initial unreliable labels as golden truth. In this
paper, in order to identify and eliminate wrong labels, we
propose a novel approach, named Label Diagnosis though
Self Tuning (LDST). It combines label diagnosis, manipula-
tion, and propagation in a uniform optimization framework.
Specifically, a floating gradient greedy search method is ap-
plied to manipulate the most beneficial samples and opti-
mize the bivariate objective function.
We validate the effectiveness of the proposed LDST

method through extensive experiments with artificial data
set and text based web image search. The textual tags are
treated as potentially incorrect labels and the LDST method

1396



is applied to correct label mistakes and propagate label in-
formation over the entire collection. The experimental re-
sults over nine diverse categories of Flickr images confirm
the significant performance gain over both text search base-
line and the state-of-the-art reranking methods.
The proposed LDST method is general in the sense that

no prior training process is required. Therefore, it is readily
applicable to broad search scenarios on the Internet using
existing search engines.
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