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G
iven the ability of photorealistic computer 
graphics (photorealistic CG) to emulate photo-
graphic images, as seen in movies and the 
print media today, there is little doubt that 
uninformed  viewers can easily mistake photo-

realistic computer- generated graphics for photographic 
images. In fact, there was already evidence 20 years ago [1] 
that to the naked eye certain computer graphics were visu-
ally indistinguishable from photographic images. Such con-
vincing photorealism qualifies computer graphics as a form 

of image forgery that can be unscrupulously exploited. Some 
popular Web sites [2] even highlight examples of computer-
generated photorealism that human eyes find indistinguish-
able from photographic images.   

While human experts can be called upon to examine and 
detect these deceptive computer images, this will eventually 
become infeasible given the enormous number of images 
 created and circulated every day. Therefore, automated and 
effective computer techniques that can be used to distinguish 
between natural photographic images and photorealistic CG 
are needed to identify or prefilter these fabricated images. In 
criminal investigation (e.g., child pornography), the 

Identifying and 
Prefiltering Images

 [Tian-Tsong Ng and Shih-Fu Chang] 

[ Distinguishing between natural photography 

and photorealistic computer graphics]
 

1053-5888/09/$25.00©2009IEEE

 Digital Object Identifier 10.1109/MSP.2008.931077

IEEE SIGNAL PROCESSING MAGAZINE   [49]   MARCH 2009

Authorized licensed use limited to: Columbia University. Downloaded on July 23, 2009 at 10:45 from IEEE Xplore.  Restrictions apply. 



IEEE SIGNAL PROCESSING MAGAZINE   [50]   MARCH 2009

 verification of  images  captured from real-world scenes (instead 
of synthesized by CG tools) is important from the viewpoint of 
law interpretation and enforcement in some countries (such 
as the United States). For example, an owner of child porno-
graphic images may try to avert legal prosecution by declaring 
the images in question to be computer-generated, rather than 
images of real minors.

Apart from digital forensics, methods for distinguishing 
between photographic and photorealistic CG images are useful 
for automatic image-type classification, indexing, and retriev-
al. In [3], the performance of video key-frame retrieval showed 
improvement when the computer graphics key frames that 
included two-dimensional (2-D) graphics were detected and 
prefiltered prior to retrieval. Nowadays, it is common to see 
graphic content in our everyday environment, such as posters 
on notice boards, movie ads at bus stops, traffic signposts, and 
so on (see Figure 8 for examples). As these types of images are 
often printed on flat surfaces, they provide a strong clue about 
the scene geometry. Therefore, methods for distinguishing 
between photographic and photorealistic CG images that can 
be used to detect such graphic content are also potentially use-
ful for image/scene understanding.

In the following section, we summarize the general process-
ing pipeline used in typical imaging devices and the general 
approaches used in computer graphics to emulate the realism of 
natural photographs. We will highlight the commonalities and 
differences between these two processes in order to select effec-
tive cues that may be used to design automatic techniques for 
detecting computer graphics. 

FORMATION OF PHOTOGRAPHIC IMAGES
A typical real-world scene consists of light sources and three-
dimensional (3-D) objects, where the light sources illuminate 
the scene while the objects reflect, refract, transmit, or dif-
fuse the light impinging on their surfaces. This process of 
light interaction fills the 3-D space with a dense array of light 
rays of various intensities, which can be visualized as a set of 
panoramic images or light rays at different 3-D locations. 

This set of light rays can be represented as the seven-dimen-
sional (7-D) plenoptic function [4] of the space (three dimen-
sions), orientation (two dimensions), time (one dimension) 
and wavelength of the light (one dimension) or equivalently 
as the four-dimensional (4-D) light field, defined as static 
radiance as a function of position and direction in free space 
[5]. Through the light rays a 3-D scene communicates its 
visual information to a human observer and a camera. When 
a camera takes a snapshot of the scene, the camera effectively 
samples an instantaneous cone of light rays at a position in 
the 3-D space. The sampled cone of radiance is recorded on 
the film in a film camera or by a sensor array in a digital 
camera as a 2-D image. This process of photographic image 
formation is illustrated in Figure 1.

Despite the variety in consumer camera brands, the physi-
cal structure and in-camera operation pipeline of most camer-
as are quite similar. In Figure 1, a typical in-camera operation 
pipeline is shown. The radiance from a scene point is focused 
on an optical sensor through a lens or a lens system. Due to 
the foreshortening of the views between the sensors and the 
scene as well as the aperture, the transmittance of most lenses 
falls off as it occurs further away from the optical center. This 
effect is called vignetting and sometimes results in a notice-
able radial brightness falloff on an image. Furthermore, when 
the refractive index of a lens is different for different wave-
lengths of light, a light ray could diverge over the wavelength 
as it passes through the lens (a phenomenon called chromatic 
aberration), resulting in color fringes on an image. Besides 
that, an imperfect lens can also result in geometric distortion 
of an image at various degrees. 

The role of the optical sensor is to convert the light energy into 
electric voltage levels, namely radiance measurements. Most image 
sensors used today, including the charge-coupled device (CCD) 
and the complementary metal-oxide-semiconductor (CMOS) sen-
sor, are pixilated metal-oxide semiconductors. Therefore, they all 
suffer from similar forms of noise, such as pattern noise, dark cur-
rent noise, shot noise, and thermal noise, albeit to a different 
extent [6]. (For further details about camera noise, see [7].) 

[FIG1] The photographic image-formation process.

Illumination
Source

Scene Object

Scene Object

Shadow

Inter-Reflection

Object Geometry
Reflectance Property

3-D Scene

Lens
Distortion

Sensor
Noise

Demosaicking

White
Balance

Enhancing
Operation

Gamma
Correction

Imaging Process 

Camera Response Function

Camera

Photographic
Image

A Dense Array
of Light Rays

 to a
2-D Image

Authorized licensed use limited to: Columbia University. Downloaded on July 23, 2009 at 10:45 from IEEE Xplore.  Restrictions apply. 



IEEE SIGNAL PROCESSING MAGAZINE   [51]   MARCH 2009

The actual color of a light is determined by its spectral 
power distribution. As its perceptual effect can be approxi-
mated by a red, green, and blue (RGB) trichromatic model, 
most cameras measure RGB colors. For most consumer cam-
eras with a single  sensor array, a mosaicked color filter array 
(CFA) is applied on the sensor, with the Bayer pattern being 
the most common type [8]. For mosaicked sensors, only one 
out of the three colors is measured at each pixel site; hence, 
two other colors are missing for each site, as shown in 
Figure 2. The process of interpolating the missing measure-
ments is called demosaicking. Demosaicking may result in 
physically incorrect colors as well as undesirable artifacts. 
Recently, Foveon introduced a new sensor called the Foveon 
X3 sensor (a CMOS sensor) that can mimic color negative 
film by stacking the RGB color-sensitive elements on top of 
each other, in layers, at each pixel site [9]. As a result, it can 
measure three RGB colors at each site, and demosaicking is 
no longer needed. Apart from the Foveon sensor, demosaick-
ing is also not needed for the more expensive three-CCD cam-
eras [10], where the incoming light is physically split by a 
trichroic prism into the three RGB components, measured by 
three separate CCD sensors.

A typical camera also performs white balancing to offset the 
tinge of the illumination color, enhances sharpness and con-
trast, and performs gamma correction for dynamic range com-
pression. Finally, the overall effect of the above-mentioned 
operations from the radiance measurement at the sensors to the 
final intensity output by the camera can be modeled by a camera 
response function with a typical concave shape [11].

FORMATION OF PHOTOREALISTIC 
COMPUTER GRAPHICS
The motivation of synthesizing realistic image has been a 
driving force behind the various technical breakthroughs in 
the physics-based graphics rendering that attempts to emulate 
the photographic image formation process described in the 
previous section. Realistic image synthesis is important for 
applications such as simulation, design, education, and adver-
tising. Despite the general notion of a realistic image, its exact 

definition remains a subject of scholarly debate. In [12], three 
varieties of realism were defined for computer graphics: physi-
cal realism, which provides the same visual stimulation as the 
scene; photorealism, which produces the same visual response 
as the scene; and functional realism, which provides the same 
visual information as the scene (such as an object’s shape and 
depth). Of these three varieties, the image forensics commu-
nity is mainly concerned with photorealistic CG. With today’s 
CG techniques, despite being extremely computationally 
expensive, photorealistic CG is definitely achievable.

The verisimilitude of photorealism is often the collective 
result of various visual effects contained within a 3-D scene. 
There are various levels of complexity in the scene and object 
geometry, illumination, and object reflectance of a scene, as 
illustrated in Figure 3. Complex scene geometry gives rise to 
the color-bleeding effect, where the color of an object may 
spill over to its surrounding due to the interreflection between 
scene objects. Complex illumination consists of multiple types 
of light sources both near and far and coming from all direc-
tions. Finally, complex object reflectance gives rise to the 
appearance of transparency, translucency, reflection, diffuse 
shading, and specularity. All these effects define photorealism.

[FIG2] Bayer filter mosaic for image sensor array. CG images may 
not involve such filters during the synthesis process and thus can 
be distinguished from natural photographic images.

[FIG3] Complex components in real-world image formation lead to the many complex and subtle perceptual effects required in 
photorealism: (a) a complex environment light is reflected on a mirror sphere; (b) subsurface scattering reflectance of a grassy surface 
results in translucency; (c) the fur of a lion causes unique perceptual responses due to its complex geometry and reflectance properties.

(a) (b) (c)
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A 3-D graphics system 
takes a scene made up a set of 
light sources and geometric 
primit ives  with material 
 properties as input and ren-
ders a CG image as output. 
Therefore, the two important 
components of photorealistic 
graphics synthesis are 1) 
scene modeling, which includes the modeling of the illumi-
nation, object reflectance, and object geometry in a scene; 
and 2) scene rendering. With realistic scene modeling 
and correct light-transport simulation, photorealistic CG 
can be generated.

MODELING OF ILLUMINATION, 
OBJECT REFLECTANCE, AND OBJECT GEOMETRY
In recent years, scene modeling has undergone a transition 
from simple parametric modeling to image-based modeling. 
Image-based models are now able to capture the complexity of 
a  real-world scene for which the corresponding parametric 
models only offer a crude approximation. For scene illumina-
tion, synthetic light sources (e.g., point/area light) as used in 
CG are far too simple as compared with the illumination pres-
ent in the real scene, which can be measured as an environ-
ment map using a mirror sphere [13] or with other similar 
methods. The environment map can then be used to model a 
complex light source in CG rendering. However, if the dynamic 
range of the environment map is insufficient for the real-scene 
dynamic range, the rendered image may still be different from 
the photographic one.

Simple parametric surface reflectance models (such as the 
Phong model) are incapable of producing certain visual 
effects, e.g., translucency. To model the complex reflectance 
of real-world surfaces, measuring the reflectance from real 
surface samples is more effective. For instance, spatially vary-
ing surface reflectance (texture) can be measured from multi-
ple-view photographs [14]. However, despite the more 
accurate image-based reflectance model, the color of a reflec-
tance model is often represented in an RGB trichromatic 

 format, and the rendering is 
often done independently for 
each of the color channels. 
The result may fall short of 
the actual interaction of light 
between objects. 

In the CG pipeline, the 
geometry of objects is often rep-
resented as a polygonal mesh. 

The geometry of the real-world objects in the form of a polygonal 
mesh can be obtained via range scanning [15]. Although increas-
ing the mesh resolution can improve the accuracy of the geo-
metric representation, it leads to a higher computational load; 
hence a compromise is needed and is often adopted in practice. 
Despite the various  shading-interpolation methods (e.g., Phong 
shading and Gourand shading) for removing the faceted appear-
ance of a polygonal object during rendering, obvious artifacts 
such as the polygonal silhouette edge can still arise from a 
coarse- resolution mesh.

CG RENDERING
CG rendering simulates the light transport between the illumi-
nation sources and the object surfaces. The light transport can 
be very complicated, as it may involve multiple bounds of light-
from one location of the scene to the others that give rise to 
visual effects such as soft shadow, color bleeding, caustics, and 
so on. This complex process can be described by an integral 
rendering equation [16]. Current photorealistic CG rendering 
methods such as ray tracing and radiosity effectively amount to 
solving the rendering equation in approximation. Solving the 
rendering equation exactly is very challenging, as no closed-
form solution exists for the general case. Various forms of 
assumption result in various levels of photorealism in render-
ing. At the simplistic end, only light originating directly from 
light sources is considered in rendering a local surface, and the 
interreflection between surfaces is ignored. With ray tracing 
and radiosity, on the other hand, multiple light bounds between 
surfaces are simulated to produce the global illumination 
effects often featured nowadays in 3-D rendering software 
such as Autodesk 3D Max Studio (see Figure 4). However, the 

[FIG4] Examples of photorealistic computer graphics rendered using Autodesk 3-D Max Studio. Note the effects of global illumination 
rendering, such as glass refraction.

OTHER TECHNICAL ISSUES CONCERNING 
DISTINGUISHING PHOTOGRAPHIC 

AND COMPUTER GRAPHICS IMAGES 
INCLUDE BENCHMARK DATASETS FOR 

PERFORMANCE EVALUATION AND 
EFFICIENT SYSTEM IMPLEMENTATION.

Authorized licensed use limited to: Columbia University. Downloaded on July 23, 2009 at 10:45 from IEEE Xplore.  Restrictions apply. 



IEEE SIGNAL PROCESSING MAGAZINE   [53]   MARCH 2009

approximation adopted by such 
rendering techniques will only 
result in simulating a simpli-
fied light transport in the 
scene, and the resulting ren-
dered image may still be differ-
ent from the photographic one. 
For example, the ray-tracing 
technique, which discretizes the view plane, may need to gen-
erate a very large number of rays in order to render a diffuse 
scene, while the radiosity technique, which discretizes the 
environment, may need a very large amount of storage to 
render objects with sharp specularity [17]. Finally, after an 
image is rendered, it may often be processed via a simplified 
camera model (e.g., only with gamma correction) in order to 
produce a photographic appearance, while most of the in-
camera operations (such as demosaicking) are not applied.

In this section, we have highlighted some differences 
between photographic image formation and CG image 
 formation, when practical approximations enter into scene 
modeling and rendering. Some of these differences, such 
as the absence of the camera operations and the color-
independence assumption used in CG image production, 
have been exploited to a certain extent for distinguishing 
the two groups of images (see next section), but the arti-
facts due to insufficiently complex lighting models and 
simplified light-transport simulation in CG have yet to be 
explored in this regard.

STATE OF THE ART IN DISTINGUISHING 
PHOTOGRAPHIC AND PHOTOREALISTIC IMAGES
After describing the image formation process for photographic 
and CG images, we now review the state of the art in automatic 
classification of images from these two different sources. 

In an early work [3], clas-
sification of photographic and 
general CG video key-frame 
images was proposed as a pre-
filtering step for a more effec-
tive video key-frame retrieval 
system. The CG images being 
considered were mainly of the 

cartoon type, with saturated, uniform colors, strong, dis-
tinct lines, and so on. The proposed CG detection method 
uses image features such as the average color saturation, 
the ratio of image pixels with brightness greater than a 
threshold to total pixels, the hue-saturation-value (HSV) 
color histogram, the edge orientation and strength histo-
gram, the compression ratio, and the pattern spectrum. In 
contrast, the CG images being studied in digital forensics 
are ones with higher photorealism that that seen in the 
simple CG images discussed in [3]. 

In prior work in digital forensics, one branch of develop-
ment considers statistical models of images. Lyu and Farid 
considered that photographic images have different statisti-
cal characteristics in the wavelet transform domain as com-
pared with photorealistic CG images [18]. The computational 
steps for their method are illustrated in Figure 5. An RGB 
input image is first decomposed into three levels of wavelet 
subbands. In wavelet decomposition, a natural-scene image 
is bandpassed and disintegrated into subbands of wavelet 
coefficients for different scales and orientations, as shown in 
Figure 5. Note that the wavelet coefficients corresponding 
to an edge respond strongly in a subband when the edge 
matches the scale and orientation of the subband. In the 
study of nature image statistics [19], it is well known that, 
for a natural-scene image, the wavelet coefficients in a sub-
band are Laplacian distributed, and correlation exists 

[FIG5] Computational steps for the statistical method in [18].
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between wavelet coefficients of the adjacent subbands. Lyu 
and Farid modeled the former statistics using the moments 
of the wavelet coefficients of a subband and the latter using 
the linear prediction error of the coefficients. Figure 5 illus-
trates how the prediction error is computed using an exam-
ple where the black-box coefficient is linearly predicted 
using the neighboring white-box coefficients from both the 
same subband and the adjacent subbands. The prediction 
error is an indication of the correlation strength between 
the coefficients. Four moments (mean, variance, skewness, 
and kurtosis) of the wavelet coefficient distribution and the 
linear prediction error distribution are then computed from 
each subband and used as input features for an SVM classifi-
er. Lyu and Farid  performed a classification experiment on a 
dataset with 40,000 photographic images and 6,000 photore-
alistic CG images in which the SVM classifier achieved a 
classification rate of 66.8% on the photographic images, 
with a false negative rate of 1.2%. 

In the same vein, [20] proposed a simplified way to com-
pute the statistical features in the wavelet transform 
domain and is able to achieve a classification performance 
comparable with that of [18] but with a four-fold reduction 
in computational time. Chen 
et al. [21] proposed that the 
HSV color space is a more 
effective color space than the 
RGB color space for comput-
ing the wavelet statistics. In 
their work, instead of com-
puting the four moments 
(mean, variance, skewness, 
and kurtosis) of the wavelet 
coefficient distribution and 
the linear prediction error distribution, as in [18], the 
moments of their characteristic function were computed. 
On their dataset, they were able to achieve a classification 
accuracy of 82.1%.

Another branch of development considers the physical 
models of images. Ng et al. [22] studied the photographic 
and CG image formation processes as shown in Figure 1 and 
identified three aspects wherein the two processes have dis-
crepancies. First, photographic images are subject to the 
typical concave response function of cameras, while the CG 
rendering pipeline may not have a standardized postprocess-
ing procedure that mimics camera processing. It was shown 
that the effect of the camera response function manifests on 
the image gradients. Second, the polygonal representation of 
the CG object geometry is often too coarse for capturing 
real-world object geometry with many fine details. The 
coarseness of the polygon can give rise to sharp edges and 
polygon-shaped silhouettes. These sharp features were mea-
sured using the principal curvatures of the image function. 
Third, as mentioned earlier, the three color channels of 
computer graphics images are often rendered independently 
to reduce computational load. The independence assumption 

is in general not true in real scenes, where the incident light 
of a certain spectral band on a surface may induce reflected 
light of a different spectral band. To capture this discrepan-
cy, independence between the color channels is measured 
using the Beltrami flow vectors on an RGB image function. 
The computational steps of the method used in [22] are 
shown in Figure 6. Apart from the above-mentioned image 
gradient, principal curvatures, and Beltrami flow vectors, 
the authors of [22] also computed the local block-based frac-
tal dimension and the local patch vectors. The local fractal 
dimension was meant to capture the texture complexity in 
photographic images, and the local patch vectors were 
meant to capture the characteristics of the local edge profile. 
The five features, taken together, produce a vector field on 
the image domain. The statistics of the vector fields in the 
form of rigid body moments were computed and used as the 
input features for an SVM classifier. On the authors’ open 
dataset (to be discussed later in this article), an average clas-
sification accuracy of 83.5% was attained.

Additional camera-related characteristics associated with the 
in-camera operation pipeline as shown in Figure 1 can also be 
used to separate the photographic and CG images. The authors 

of [23] considered camera noise 
characteristics, and the authors 
of [24] considered both demo-
saicking and the chromatic 
aberration of cameras. In [23], 
the authors demonstrated that 
the noise pattern of photo-
graphic images, extracted via a 
wavelet denoising filter, is dis-
tinguishable from that of CG 
images. Hence, the two groups 

of images can be represented by their respective reference noise 
patterns, and a test image can be classified based on its correla-
tion with the reference noise patterns. On their own dataset, the 
method achieved an averaged classification accuracy of about 
72%. In [24], the authors observed that an image originally 
generated from the Bayer pattern will experience a smaller 
change if it is reinterpolated again based on the Bayer pattern as 
compared with other patterns. This observation enabled detec-
tion of camera images generated from the Bayer pattern. They 
also measured the misalignment among the color channels due 
to the chromatic aberration that operates on the incoming light 
of different wavelengths in a camera. Using these two physical 
characteristics unique to natural photos, the method used 
achieved an average classification accuracy of about 90% on the 
authors’ own dataset.

In [25], the presence of the Bayer-pattern type of demo-
saicking in original-size camera images was detected and 
used to distinguish images captured by cameras from CG 
images, which normally do not bear such cues. The compu-
tational steps for their method are shown in Figure 7. Their 
method is based on two main observations: 1) the interpo-
lated coefficients always have a smaller variance than the 

THE MOTIVATION OF SYNTHESIZING 
REALISTIC IMAGE HAS BEEN A 

DRIVING FORCE BEHIND THE VARIOUS 
TECHNICAL BREAKTHROUGHS IN THE 

PHYSICS-BASED GRAPHICS RENDERING 
THAT ATTEMPTS TO EMULATE 
THE PHOTOGRAPHIC IMAGE 

FORMATION PROCESS.
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[FIG6] The computational steps of the method used in [22].
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original coefficients, and 
 high-pass filtering can make 
the difference more distinct; 
and 2) in the green-color-
channel image with the Bayer 
pattern, the interpolated and 
original  coef f ic ients  are 
respectively grouped togeth-
er in alternate diagonal scan 
lines. Therefore, the variance of the diagonal scan lines 
should have a frequency of two. Their method achieved an 
average classification accuracy of 98.4% on the open 
Columbia dataset [26]. However, their method could be 
sensitive to image resampling or resizing, where the 
restrictive interpolation structure of the Bayer pattern 
may be destroyed.

In a digital forensics setting, there may be attackers who 
want to beat the photographic and photorealistic CG classi-
fier. As one form of attack, one could transform a CG image 
into a photographic one by recapturing it using a camera. 
The rephotographed image is confusing to the detector, as 
it bears the content of the original CG image while also 
carrying photographic characteristics (such as the camera 
response function and the mosaic filter). Ng et al. demon-
strated that this issue can be partially addressed by includ-
ing the rephotographed images in the dataset for classifier 
training [22]. More recently, a physics-based method based 
on the specularity distribution of a printed surface was pro-
posed to detect rephotographed images [27]. In [27], it was 
observed that microstructures on the surface of printing 
paper, appearing as a high-frequency random noise pattern, 
can be found in the specularity component of a high- 
resolution image, even when the paper is printed with 
image contents. The random noise–like specularity pattern 
of photographed CG images can be very different from the 
normal specularity pattern of objects in natural-scene 

images. The method is partic-
ularly effective for distin-
guishing the human face 
(structured image content) 
when printed on paper and 
hence is useful as a counter-
measure for face authentica-
tion spoofing.

BENCHMARKS AND EVALUATION
Other technical issues concerning distinguishing photo-
graphic and computer graphics images include benchmark 
datasets for performance evaluation and efficient system 
implementation. The Columbia benchmark dataset was 
constructed and made accessible to the research communi-
ty [26], and an online public classification system was 
deployed [28]. The Columbia dataset consists of 800 person-
al photographic images, 800 photographic images obtained 
through Google Image Search, 800 photorealistic CG imag-
es from 3-D artist Web sites, and the recapture of the 800 
CG images. The classification accuracies reported using this 
dataset are 83% [22], 82% [21], and 98% (for nonresized 
images and nonrecaptured  images only) [25]. The online 
classification system in [28] offers a way for users to try out 
the fully automatic detection functions on test images they 
choose themselves, allowing for an interactive diagnostic 
setting in which to investigate successes and failures of the 
existing solutions. In [29], an evaluation on the Columbia 
online system was done in terms of its performance with 
regard to images submitted by users. While the classifiers 
in general perform well on images belonging to a clear-cut 
category, there is a group of images that confuse the classi-
fiers. This group includes both photographs with graphic 
content embedded in 3-D real-world scenes and images 
composed using both photographic and CG elements, as 
shown in Figure 8.

[FIG8] Confusing images for the Columbia online classification system. These images include photographs with graphic content in the 
(a) and (b) 3-D real-world scenes and (c) images composed using both photographic and CG elements.
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OPEN PROBLEMS AND FUTURE DIRECTION
One way to assess the effectiveness of a statistical classifier 
is through extensive testing, and this requires a large 
image  dataset. The Columbia benchmark dataset described 
above was constructed in 2005 and consisted of 3,200 
images of various content types [26]. While the number of 
images in the dataset can be increased, images rendered 
using more recent techniques also need to be included to 
keep up with advances in CG technology. Another way to 
reliably assess and boost the classifier performance is 
through the physical modeling of scenes and cameras. 
More detailed physical modeling, which includes l ighting 
modeling, global illumination effect modeling, and model-
ing of various rendering techniques, could be pursued to 
supplement the physical characteristics that have been 
employed in current methods [22]–[25].

Photorealistic CG is a sub-
set of general CG, which also 
includes line drawings, car-
toons, nonphotorealistic ren-
derings of photographs, and 
drawings incorporating geo-
metric design. Furthermore, a 
computer-generated graphic 
may not always be the direct 
output of a computer: it may be rephotographed after having 
been printed on a surface or displayed on a computer screen. 
In the more general setting, if the image forensics problem is 
extended to include the above-mentioned nonphotorealistic 
CG and the graphic content in a photograph, it will open 
doors to a wider range of important applications. After all, the 
respective techniques for distinguishing the natural photo-
graphic images from other groups of images in Table 1 share 
certain commonalities. An immediate advantage of consider-
ing the more general problem is that we will improve our 
ability to handle the confusing cases shown in Figure 8, 
which are essentially photographs with graphic content. 

In the general problem for future consideration, we may 
want to examine the five distinct classes of images shown in 
Table 1, which are grouped according to content source (either 
CG or real scenes) and the final generation processes (either 
rendered by computer tools or photographed by imaging devic-
es). In addition to the case of graphic content in a photograph, 
Table 1 also shows a class of computer-generated images (in the 
top-right box) synthesized from photographs of a real 3-D 

scene, using both image-based rendering (e.g., interpolation of 
photographs taken from different viewpoints—see [30]) and 
 nonphotorealistic rendering of photographs (e.g., generating a 
cartoon-style image from a photograph—see [31]).

The applications arising from tackling this general prob-
lem include digital forensics, preventing recapturing attacks, 
image indexing, and image/scene understanding. While the 
works reviewed in this article provide a starting point for 
addressing this classification problem, further techniques for 
recognizing computer graphics content without exclusively 
relying on the photographic properties of the imaging pipeline 
are required. Such content-based recognition is challenging. 
For example, in the case of rephotographing, the computer 
graphic is displayed or printed on a real physical surface and 
lit by a real illumination [27]. Techniques exploiting camera 
cues alone will no longer prevail; instead, content-based analy-

ses (like those revealing natu-
ral  scene properties and 
statistics) will become more 
important. In fact, the repho-
tographing of images is an art 
form by itself; representative 
works include those by Prince, 
who rephotographed magazine 
advertisements in the 1970s 

[32]. These works, interestingly, created an intense debate 
about photographic copyright issues and the authenticity of 
 photographic images.

Emerging works using computational photography [33] 
also blur the boundaries among the categories in Table 1, and 
arriving at clear distinctions becomes even more difficult. 
Under such a paradigm, imaging devices will no longer be 
simple acquisition systems that faithfully record scene radi-
ance. Instead, sophisticated manipulation techniques may be 
embedded in the imaging pipeline inside a “camera” to modify 
and enhance the images such that the signatures associated 
with the conventional concept of photorealism may no longer 
be completely valid and need to be redefined. However, the 
knowledge and tools discussed in this article about the charac-
terization of CG content will still remain valuable. 

CONCLUSIONS
In this article, we described the problem of distinguishing 
between photographic and photorealistic CG images in digital 
forensics and other related applications, surveyed the related 

[TABLE 1] EXTENSION OF COMPUTER GRAPHICS CONTENT TO MORE GENERAL TYPES OF IMAGES. CLASSIFICATION OF THE 
EXTENDED TYPES WILL LEAD TO APPLICATIONS BROADER THAN IMAGE FORENSICS.

GENERATION 
PROCESSES

SOURCE TYPES

3-D GRAPHICS 2-D GRAPHICS REAL SCENES
COMPUTER RENDERING PHOTOREALISTIC COMPUTER 

GRAPHICS
CARTOONS, MECHANICAL 
DRAWINGS, ETC.

IMAGE-BASED RENDERED IMAGES AND 
NONPHOTOREALISTIC RENDERINGS OF 
PHOTOGRAPHS

PHYSICAL PHOTOGRAPHING RECAPTURED COMPUTER GRAPHICS, PRINTED IMAGES, 
BILLBOARD IMAGES, TRAFFIC SIGNPOSTS, ETC.

PHOTOGRAPHIC IMAGES

ONE WAY TO ASSESS THE 
EFFECTIVENESS OF A STATISTICAL 

CLASSIFIER IS THROUGH EXTENSIVE 
TESTING, AND THIS REQUIRES A LARGE 

IMAGE  DATASET. 
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work, and introduced some benchmark resources and online 
demonstrations that are publicly available. We also described 
the possible extension of the problem to include general CG 
content. This extension leads to a wider range of important 
applications beyond digital forensics, such as image indexing 
and image/scene understanding. Finally, we highlight some 
future directions for a larger and more diverse CG image data-
set, a more detailed modeling of the physical characteristics, 
and the more general problem of content-based computer 
graphics recognition.
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