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a b s t r a c t

With recent advances in fluorescence microscopy imaging techniques and methods of gene knock down
by RNA interference (RNAi), genome-scale high-content screening (HCS) has emerged as a powerful
approach to systematically identify all parts of complex biological processes. However, a critical barrier
preventing fulfillment of the success is the lack of efficient and robust methods for automating RNAi
image analysis and quantitative evaluation of the gene knock down effects on huge volume of HCS data.
Facing such opportunities and challenges, we have started investigation of automatic methods towards
the development of a fully automatic RNAi–HCS system. Particularly important are reliable approaches
to cellular phenotype classification and image-based gene function estimation.
We have developed a HCS analysis platform that consists of two main components: fluorescence image
analysis and image scoring. For image analysis, we used a two-step enhanced watershed method to
extract cellular boundaries from HCS images. Segmented cells were classified into several predefined
phenotypes based on morphological and appearance features. Using statistical characteristics of the iden-
tified phenotypes as a quantitative description of the image, a score is generated that reflects gene func-
tion. Our scoring model integrates fuzzy gene class estimation and single regression models. The final
functional score of an image was derived using the weighted combination of the inference from several
support vector-based regression models. We validated our phenotype classification method and scoring
system on our cellular phenotype and gene database with expert ground truth labeling.
We built a database of high-content, 3-channel, fluorescence microscopy images of Drosophila Kc167 cul-
tured cells that were treated with RNAi to perturb gene function. The proposed informatics system for
microscopy image analysis is tested on this database. Both of the two main components, automated phe-
notype classification and image scoring system, were evaluated. The robustness and efficiency of our sys-
tem were validated in quantitatively predicting the biological relevance of genes.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

High-content screening (HCS) utilizes automated microscopy
techniques and fluorescence probes to visualize details of complex
cellular activities, such as mitosis and cell migration. As a result of
recent technological advances, such as fast and reliable digital
scanning, high-performance computing, and high-precision bioi-
maging techniques, HCS has increasingly been applied in genomic
research and medicine. For example, changes in cellular pheno-
types resulting from gene perturbation can be captured in high-

throughput, allowing rapid identification of genes involved in a
cellular process of interest. Furthermore, HCS technology is being
actively applied in research on disease diagnosis and prognosis,
drug target validation, and lead compound selection [1–3].
Although our manual annotation of images from fluorescence-
based screens has provided encouraging results in small-scale
screens [4], biologists face the enormous challenge of analyzing
the immense volumes of images generated by genome-scale stud-
ies. The goal of informatics for genome-wide HCS is to convert, or
translate, the information displayed in fluorescence images into
quantitative descriptors, which then can be linked to statistical
analysis that scores the image’s overall phenotype. Existing imag-
ing analysis tools are extremely limited in their scope and capacity
to analyze individual difference and spatial information in high-
content, fixed-cell imaging. Major informatics challenges of high-
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content images include fluorescence image processing, cellular
feature quantification and identification, statistical inference mod-
eling and validation of gene scoring (reviewed by [5]). Image-based
functional analysis and target discovery using HCS requires the
cross-disciplinary collaboration of biology, computer science and
mathematics. Recently, there are some emerging approaches pro-
posed for automatic HCS image analysis, such as CellProfiler [6]
and the cellular phenotype classification system proposed in [7].
However, these frameworks mainly focus analysis of cells instead
of quantitatively analysis of HCS screening.

Here, we have built a pipeline for automatically cellular pheno-
type identification and RNAi HCS image scoring, summarized in the
flowchart in Fig. 1 The key components of the proposed informatics
pipeline are: microscopic image processing, automatic phenotype
classification, and image scoring for gene function evaluation. With
the well developed fluorescence image segmentation approach, the
cellular phenotypes are identified using the extracted cell level
morphological and appearance features. Hence, the visual charac-
teristics of an image are obtained statistically based on the distri-
bution of these phenotypes in the fluorescence screening
corresponding to a particular treatment. Finally, a statistical mod-
eling was built to map the image level description to the quantita-
tive identification of gene function regard to the distribution and
changes of the phenotypes observed in HCS. Our experimental re-
sults show the proposed system is a robust and efficient tool for
genome-wide functional analysis using HCS.

The remainder of this paper is organized as follows. In Section 2,
the generation procedure of RNAi HCS images of Drosophila Kc167

cells of is introduced, followed by a brief summary of segmentation
approach for microscopic image. In Section 3, we present the phe-
notype classification model. Section 4 gives the methodology of
image score inference. The experiments on phenotype recognition
and image scoring are conducted in Section 5. Finally, concluding
remarks and our future work will be given in Section 6.

2. Fluorescence image acquiring and preprocessing

2.1. Fluorescence image-based screening of Drosophila Kc167 cells

The morphological diversity of cells results in large part from
the dynamic control of the cytoskeleton. Some of the major cyto-

skeletal regulators are members of the Rho family of small GTPase
proteins, which are essential for morphological changes during
normal development, as well as during disease states such as can-
cer [8,9]. Rho proteins also regulate many other facets of cell
behavior, such as endocytosis, vesicle trafficking, cell polarity,
and cell cycle. Rho GTPases cycle between an active, GTP-bound
state, and an inactive, GDP-bound state. In the active state, Rho
proteins interact with effector molecules and modulate their activ-
ities to relay upstream signals and implement downstream re-
sponses [10]. Identification of novel Rho effectors will elucidate
the mechanisms by which Rho proteins orchestrate their varied
cellular outcomes. Thus, we have designed a cell-based assay for
Rho GTPase activity that is amenable to HCS with the intent of
identifying novel effectors.

Expression of the constitutively active forms of Rho proteins
causes distinct morphological changes to a multitude of cell types
[11], including the Drosophila Kc167 embryonic cell line. Kc167 cells
are small (10 lm) and uniformly round with little filamentous ac-
tin (F-actin) cytoskeletal structure. Expression of the constitutively
active form of Drac1 (RacV12) induces an increase in the levels of F-
actin, as well as the formation of large flat protrusions called lamel-
la, which are dynamic and ruffle, and spike-like protrusions.

To facilitate HCS, we generated a construct containing se-
quences encoding a GFP–RacV12 fusion protein under the transcrip-
tional control of a copper sulfate (CuSO4) inducible promoter on the
same plasmid with a hygromycin resistance gene. We used double
stranded RNA (dsRNA) specific to predicted Drosophila genes to eli-
cit the RNA interference (RNAi) response, which mimics loss-of-
function mutations in the targeted gene [12]. To perform the
screen, dsRNAs were robotically arrayed individually in 384-well
plates. Drosophila cells were plated in each well, where they take
up the dsRNA from the culture media. Two or three images per
well in each of three channels were acquired by automated micros-
copy with a Universal Imaging AutoScope, a Nikon TE300 inverted
fluorescence microscope, using a 40� air objective. An example of
the 3-channel RNAi fluorescence images used for cytological profil-
ing is shown in Fig. 2. The signal in DNA channel indicates the loca-
tions and shape of nuclei of cells (Fig. 2a). The actin channel reveals
cytoskeletal structure, used to determine the morphology of cell
bodies (Fig. 2b). Since relatively little visual information is avail-
able from the GFP–RacV12 channel (Fig. 2c), cytological profiling

Fig. 1. Information processing pipeline for RNAi genome-wide high-content screening-based image score inference system.
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was based on analyzing cell shapes in the actin channel. Each im-
age was visually examined to determine if the dsRNA altered the
cell morphology induced by RacV12.

2.2. Fluorescence microscopy image segmentation

In order to build the automated phenotype classification sys-
tem, the first step was to perform segmentation of the fluorescence
microscopy images. The objective of segmentation is to partition
the images into regions that correspond to the cells, thus allowing
subsequent quantification of cellular phenotypic features.
Although numerous algorithms have been developed for image
segmentation in the past 30 years, there is no state-of-the-art tech-
nique that can be used to segment fluorescence microscopy images
with robust performance and tolerable computation cost [13,14].

The details of our segmentation method are presented else-
where [15–17]. In the proposed framework, we used a two-step
enhanced watershed-based method obtain rough segments, fol-
lowed by segmentation revision by a deformable model approach.
As described in [15], the general seeded watershed method for cell
image segmentation consists of two stages: nuclear segmentation
by the ISODATA thresholding method [18] on DNA channel images,
and cytoplasm segmentation on Actin channel. Basically, this algo-
rithm correctly segmented most isolated nuclei. However, it has
the drawback of over-segmentation problems caused by dividing
cells and isolated nuclei. Therefore, we enhanced the seeded wa-
tershed method using an automatic feedback scheme to interac-
tively validate the segmentation results. Specially, the approach
proposed in [17] was applied in our experiments, in which an auto-
mated feedback system was built to reduce the over-segmentation
in both nuclei and cytoplasm segmentation. Starting from the ini-
tial cell segmentation, the deformable model-based approach was
applied to refine the cell boundaries [16], which especially im-
proved segmentation accuracy for non-regular cells.

3. Cellular phenotype identification

3.1. Phenotype feature extraction and selection

As stated above, HCS images contain a variety of phenotypes. In
our study of Drosophila Kc167 cells, the most prominent cellular
phenotypes were categorized as Normal, Spiky, and Ruffling. Auto-
mated phenotype identification relies on feature extraction, the
most critical step for pattern recognition problems. Even for a sin-
gle cellular phenotype, the overall shape and appearance can be
quite different because the cells could be in different stages of a
certain phenotype. To capture the geometric and appearance prop-
erties, we extracted a total of 214 cellular attributes, which belong
to five types of features: wavelet features, Zernike moments
features, Haralick features, region property features, and pheno-
type shape descriptor features.

3.1.1. Wavelet features
The discrete wavelet transformation (DWT) has been adopted to

investigate image characteristics in both scale and frequency do-
mains. In our work, we applied two important wavelets tech-
niques, the Gabor wavelet [19] and the Cohen–Daubechies–
Feauveau wavelet (CDF9/7) [20], to extract phenotype texture.
The Gabor wavelet features were developed by Manjunath et al.
and is formed by a set of multi-scale and multi-orientation coeffi-
cients to describe texture variations in an image [19]. The Gabor
wavelet features have been used as the texture signature for
numerous image analysis applications, such as image retrieval,
segmentation and recognition [21,22]. As defined in [22], the
two-dimensional complex-value Gabor function is a plane wave
restricted by a Gaussian envelope:

gðx; kÞ ¼ x2

r2 e�
x2k2

2r2 eixk � e�
x2
2

� �
ð1Þ

where eixk is the complex-value plane wave, and e�
x2 k2

2r2 is the Gauss-
ian envelope function, which is applied to restrict the complex-val-
ued plane wave. Assume that the cell image is represented as I(x,y),
the Gabor wavelet transformation can be computed as the spatial
convolution with the Gabor wavelet function given certain param-
eters of scale and orientation. Corresponding to the real and imag-
inary parts of the Gabor wavelet function, the wavelet
transformation outputs real and imaginary components CR,CI,
respectively. The magnitude of the transformed coefficients

kCðx; yÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

R þ C2
I

q
is used as the Gabor vector. In the texture fea-

ture extraction method of [19], the mean l and standard deviation g
of these magnitudes are calculated as the feature representation.
Considering M scales and N orientations, we obtained a
2(M + 1) � (N + 1) dimensional features (l0,0, g0,0, l0,1, g0,1, . . . , lM,N,
gM,N) for each segmented cell. In our experiments, we set the values
as: M = 6, N = 4. Hence, we finally get a Gabor wavelet feature with
70 dimensionality.

Furthermore, we performed the 3-level CDF97 wavelet transfor-
mation [20] on images to extract additional texture signatures. The
minimum value, maximum value, mean value, the median value of
maximum distribution, and the standard derivation are calculated
for each transformed image. For both of these wavelet transforma-
tions, the feature extraction is conducted on a rectangle region
with the cell segment sitting in the center. The region outside
the cell segments is filled with zero intensity pixels. In total, we ob-
tained 15 CDF97 wavelet features of each segmented cell.

3.1.2. Zernike moments features
Zernike moments are classical image features that have wide

applications [23]. Here, we give a brief description for calculating
Zernike moments features for each cell. (1) Calculate the center
of mass for each cell polygon image and redefine the cell pixels
based on this center. (2) Compute the radius for each cell, and de-
fine the average of the radii as r. (3) Map the pixel (x,y) of the cell
image to a unit circle and obtain the projected pixel as (x0,y0). Since

Fig. 2. Drosophila Kc167 cells fluorescence images with three channels: (a) DAPI-stained DNA, (b) TRITC-phalloidin-stained F-actin, and (c) GFP–RacV12.
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the Zernike moments polynomials are defined over a circle of ra-
dius 1, only the pixels within the unit circle will be used to calcu-
late Zernike moments. (4) Calculate the zernike moments based on
the projected image I(x0,y0). We select the order as 12 and use the
magnitude of Zernike moments as the feature to obtain 49 mo-
ments features in total ([24]).

3.1.3. Haralick co-occurrence features
As a traditional texture signature, the Haralick Co-occurrence

features, with a total of 14 attributes, were extracted from each
of the gray-level spatial-dependence matrices [25]. The extracted
co-occurrence features were: angular second moment, contrast,
correlation, sum of squares, inverse difference moment, sum aver-
age, sum variance, sum entropy, entropy, difference variance, dif-
ference entropy, information measures of correlation, and
maximal correlation coefficient [26].

3.1.4. Region property
We also used a set of common region properties to describe the

shape and texture characteristics of the cells. For general texture
description, the maximum, minimum mean value and standard
deviation of the intensity in the segmented cell area were used.
Moreover, we used some weak shape descriptions, such as the
lengths of the longest axis lmax and the shortest axis lmin, the ratio
lmax/lmin, the area of the cell s, the perimeter p of the cell, and the
compactness of the cell compactness = p2/(4ps). If the perimeter
of minimum convex shape is pc, then the roughness is: rough-
ness = p/pc. In all, we extracted 12 general texture and shape fea-
tures for each segmented cell region.

3.1.5. Phenotype shape descriptor
Since the shape information provided in the region property

features is inexact, we developed two additional kinds of shape
descriptors, ratio length of the central axis projection and the area
distribution over each equal sector, as our problem-specific fea-
tures. From the original cellular patch I(x,y), the binary image
f(x,y) can be derived. The centroid of the cellular area (mx, my) is
the first order moments of the binary cell patch. Centered at the
centroid, we get a series of central radial axis as the line La. The
central projection along La denotes the length of the axis. The equa-
tion of is based on the angle of the axis and the centroid coordinate.
The ratio length of the central projection rLa is defined as the value
of the axial length divided by the perimeter of the cellular contour
rLa ¼ 1

p

R
La

f ðrÞdr, where p is the perimeter of the cell. For each dif-
ferent angle, the ratio length of the central axis is calculated. The
angles are evenly sampled with different values to derive a 36-
dimensional ratio length feature that represents the shape of the
cellular boundary. The other shape descriptor is based on the dis-
tribution of sector areas. The ratio area is defined as the area of
the fan bin Sb center at the cellular centroid with even angle to

the area of entire cellular region: rSb
¼
R
ðx;yÞ2Sb

f ðx;yÞdxdyR
f ðx;yÞdxdy

. The entire cel-

lular region is angle-evenly partitioned into 18 sectors. Hence, the
ratio area feature is constructed by the ratios of each sectors. These
two shape descriptors are scale and translation invariant but rota-
tion variant. To achieve independence of rotation, the calculated
ratio length and ratio area are sorted by value.

With the above feature extraction procedures, we obtained a
abundant feature pool for cell segments, covering diverse shape
and texture properties. The abundance of features used for pheno-
type description will be applicable for identifying varied pheno-
types in a wide range of cellular fluorescence images. However,
in each specific biomedical study, such as the fluorescence image
of Drosophila Kc167 cells with three predominant phenotypes in
our experiments, a concise subset of features will make the system

more computationally efficient and well-fit this certain study.
Hence, as shown in the system diagram of Fig. 1, a kernel compo-
nent of automatic feature subset selection is incorporated in the
system to make the framework highly scalable and adaptable to
various HCS study. Simply speaking, the procedure of feature selec-
tion is to remove irrelevant and redundant features from the origi-
nal feature space. In the research community of machine learning
and pattern analysis, there are some techniques proposed for fea-
ture selection [27]. However, most approaches are specifically
developed to certain applications, which may not fit to the HCS
analysis. Thus, we applied a very general random search technique,
Genetic algorithm (GA), to derive an optimal feature subset. GA is a
classical random optimization method, which mimics the evolu-
tionary process of survival of the fittest [28]. In brief, some individ-
ual feature subsets are initially created as the candidates sets,
which are so called Population. In successive iterations, the well-
fitted individual subsets are selected from the population based
on the evaluation of the fitness function. This selected portion of
population breeds a new generation. The evolution procedure of
the GA can be terminated based on conditions, such as the maxi-
mum generations, running time or fitness value threshold, which
can be chosen based on the specific application. In practice, we se-
lected 12, 15 and 18 features from the original feature set and com-
pared the performances; the 15 features selected by the GA
achieved better performance [7].

3.2. Phenotype classification

Traditionally, gene function has been assessed by analyzing
alterations in a biological process caused by the absence or disrup-
tion of a gene. Combining high-throughput methodologies, such as
automated fluorescence microscopy, with techniques to interfere
with gene function, such as RNAi, has become an efficient way to
conduct large-scale functional analysis. Quantification of cellular
phenotypes in fluorescence images of RNAi-treated cells allows
the identification of genes that have a role in the process of inter-
est. In the present work, we sought to identify genes in the Rho sig-
naling pathway by asking which dsRNAs alter the distribution of
the cellular phenotypes caused by expression of RacV12 (Spiky
and Ruffling). The ‘Normal’ cellular phenotype, present in wild-
type RacV12 cells (not expressing RacV12), had a smooth contour,
and the intensity or energy distributed in cell body region is rela-
tively even (Fig. 4a). The ‘Spiky’ cellular phenotype was character-
ized by spike-like extensions of the cell body (Fig. 4b). For the
‘Ruffling’ cellular phenotype, the cytoplasm was increased and
large protrusions (lamella) were seen at the periphery (Fig. 4c).

To classify a segmented cell as one of these three cellular phe-
notypes by automated analysis, we needed to identify features of
the phenotypes that distinguish them from each other. The geo-
metric properties and appearance of the different phenotypes were
represented by the congenital texture features, as described in Sec-
tion 3.1. In order to achieve the computational simplicity and clas-
sification efficiency, Genetic algorithm was applied to select
discriminate subsets of the extracted features that would facilitate
classification. Then, to identify the phenotype of a segmented cell,
we applied different classification methods, including linear dis-
criminant analysis (LDA) and support vector classifier (SVC)
[29,30]. The phenotype classification results will be reported in
Section 5.

3.3. Phenotype statistical property of HCS screening

Thus far, we have captured images of cells treated with specific
dsRNAs, segmented the images to identify individual cells, and
classified and labeled the segmented cells as N (Normal), S (Spiky)
and R (Ruffling) (Fig. 4). The question remains: did the addition of a

J. Wang et al. / Journal of Biomedical Informatics 42 (2009) 32–40 35
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particular dsRNA alter the phenotype? In other words, is it a Screen
Hit? To answer this question, we extracted various parameters
from the entire NSR-labeled fluorescence image to generate statis-
tical properties that describe the overall phenotype. For each cellu-
lar phenotype we extracted three kinds of statistical properties
related to cell number, cell area, and cell perimeter. The ratios of
each cellular phenotype, especially the RacV12-induced phenotypes,
S and R, were key factors in evaluating the image’s phenotype. To
achieve a stable description for a given treatment, images from
three independent sites for each treatment were analyzed; we re-
fer to these as ‘screened sites’.

The first statistical property was the ratio of different pheno-
types. We obtained the number of segmented cells with each phe-
notype as n ¼ fnN

i ;n
S
i ;n

R
i g; i ¼ 1;2; . . . ;K , where i is the index of the

screened sites and K is the number of screened sites. We used the
average ratios of the three cellular phenotypes to represent image
characteristics. Hence, we transformed the features from
n ¼ fni

N;n
i
S;n

i
Rg to rnum ¼ frN

num; r
S
num; r

R
numg, where the ratios were

calculated as: rN
num ¼ 1

k

PK
i

nN
i

ni
, rS

num ¼ 1
k

PK
i

nS
i

ni
, rR

num ¼ 1
k

PK
i

nR
i

ni
, where

ni ¼ nN
i þ nS

i þ nR
i .

The second statistical property was based on the area of each
segmented cell. The ratios of areas of each cellular phenotype in
the image were obtained and represented as
rarea ¼ frN

area; r
S
area; r

R
areag.

The third statistical screening property was the ratio of the
perimeters of each cellular phenotype, which is based on the
sum of the perimeters of all cells of a particular phenotype within
an image. The ratio of cell perimeters was rpre ¼ frN

pre; r
S
pre; r

R
preg.

Finally, these three statistical properties were also calculated
using the average value of the three screened sites corresponding
to a single treatment to achieve reliable and stable results. Thus,

we obtained the overall statistical description of an HCS image’s
phenotype as: x = {rnum, rarea,rpre}.

4. Fuzzy image scoring regression model

After computing the statistical properties for the image were
computed, the task was to model the relationship between the
phenotype property and the image score. Once the model was esti-
mated, we can predict the score of test images. We derived the sta-
tistical properties-based scoring system as following:

F : x ¼ frnum; rarea; rpreg ! y ð2Þ

where F is the prediction function and y is the image score.
Although there are many models to mathematically describe the
relationship between variables and their response values, the fuzzy
theory was a better way to describe such an image scoring problem
because of its intrinsic flexibility. The fuzzy system handles prob-
lems with imprecise and incomplete data and models non-linear
functions of arbitrary complexity. The ground truth score for the
training data was determined manually; therefore, the score was
only an approximation rather than an exact, true value. Moreover,
the manual scoring rules varied depending on complex parameters,
such as cell density, and thus the prediction functions of the model
had to be flexible.

Assume the image has the phenotype distribution descriptor as
x = {rnum, rarea,rpre} and there exists C image classes, which are cor-
responding to C types of genes {g1, g2, . . . , gC}. The fuzzy model-
based scoring system consists of two steps. The first step was to
estimate the fuzzy membership function of the test image x
belonging to different image class gi,i = 1,2, . . . ,C. We had two strat-
egies to estimate the fuzzy membership value p(gi—x). One was
applying fuzzy logic rules to determine the value. The other was

Fig. 3. Fluorescence image segmentation results by seeded two-step enhanced watershed-based method. (a) the extracted nuclei from DNA channel; (b) cell body segm-
entation on Actin channel.

Fig. 4. Three cellular phenotypes of Drosophila Kc167 cells: (a) Normal; (b) Spiky; (c) Ruffling.
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representing the value by the posterior probability using standard

Bayesian theorem pðgijxÞ ¼ pðxjgiÞP C

i
pðxjgiÞ. The second step of the

scoring model was to build a single regression model for each im-
age class as yi = fi(x). Therefore, the scoring model has the formula:

y ¼ FðxÞ ¼
XC

i¼1

pðgijxÞyi ¼
XC

i¼1

pðgijxÞf iðxÞ ð3Þ

4.1. Fuzzy membership estimation

The images used in our experiments were manually classified
into three categories under the experimental hypothesis: nega-
tive controls (NC), positive controls (PC), and screen hits (SH).
As described in the former sections, a gene’s function can be as-
sessed by analyzing alterations in a biological process caused by
the absence of that gene. If disruption of a specific gene results
in differences in the statistical description of the corresponding
images, it is considered a screen hit. For example, PC images
were distinctive because there existed few or no spiky or ruffling
cells in the images, and the manual scores were identical. The
phenotype distribution descriptor clearly distinguished this
group of images, and it was fairly straightforward to apply fuzzy
logic rules to derive the score and membership value. The lin-
guistic terms characterized by the ratios of spiky and ruffling-
phenotypes as:

if rN
num � 0 and rR

num � 0 then :

Pðgi j xÞ ¼
1 gi ¼ positive-controls

0 gi–positive-controls

(

y ¼ 1
lpc

Xlpc

k¼1

e�kx�xkkyk

ð4Þ

where lpc is the number of PC images in the training set.
On the contrary, the distinction between NC and SH images

was less clear. In some cases there existed a big discrepancy be-
tween the manual scoring and the phenotype statistical repre-
sentation. This was especially concerning in cases where
images of dsRNAs targeting genes known to cause phenotypes
were identified by manual scoring but not by the automated
scoring models. To address this discrepancy and assign scores
that more accurately reflect the manually identified phenotypes,
we modeled the variation and similarity of the measured statis-
tical properties using Gaussian mixture models (GMMs) that
treat each gene class as a Gaussian distribution with parameters
in the feature space. The image training data set was modeled as
a sampling from a mixture probabilistic model. For the training
data set, images with enough confidence in both the biological
and informatics domains were manually fixed with a certain
membership value while others held floating fuzzy membership
values. The floating fuzzy membership values were interactively
approximated using the Expectation–Maximization (EM) algo-
rithm [31,32]. Assume the cellular features are represented as
x (Eq. (3)), which is sampled from a mixture of Gaussian pro-
cesses N ¼ fN1; � � � ;NCg, where C corresponds to the number
of phenotypes (C = 3 in this paper). Each Gaussian process can
be described by the prior probability p, mean vector l and
covariance matrix R as: Ni ¼ fpi; li;Rig. The parameter optimiza-
tion approach consisted of two steps:

E-step:

p gijx;Ht
i

� �
¼

p xjgi;H
t
i

� �
p gijHt

i

� �
p xjHt

i

� � ¼
p xjpt

i ; l
t
i ;R

t
i

� �
pt

i ðgiÞPC
j¼1

p xjpt
i ; l

t
i ;R

t
i

� �
pt

i ðgiÞ
ð5Þ

M-step:

ptþ1
i ¼

P
kp xkjgi;H

t� �
K

ltþ1
i ¼

P
kp xkjgi;H

t� �
xkP

kp xkjgi;H
t� �

Rtþ1
i ¼

p xkjgi;H
t� �

xk � ltþ1
i

� �
xk � ltþ1

i

� �T

p xkjgi;H
t� �

ð6Þ

where t denotes the iteration step. After the iteration convergence,
the final fuzzy membership value was estimated with the optimal
parameters as pq(gi—x,Hq).

4.2. Single scoring model by support vector regression

For those images that were labeled with both biological and
informatics confidence, we used support vector regression to build
a single score prediction model for each image class. The conven-
tional empirical risk minimization (ERM) based regression models
have the drawback of the ‘‘over-fitting problem”, such as over-
learning in neural network design. Support vector machine tech-
nique embodies the structure risk minimization (SRM) principle
to ERM to formulate the optimization objective function, which
has better generalization ability [33]. Moreover, support vector
regression (SVR) was appropriate to the image scoring model-
based on a small sample set.

Suppose the manually scored training set has the samples as
ðxi

1; y
i
1Þ; ðxi

2; y
i
2Þ; . . . ; ðxi

l; y
i
lÞ, where xi 2 Ri

X and yi 2 Ri
Y are the input

variables of image class and the target image score, respectively.
The regression function is then:

yi ¼ f iðxÞ ¼
Xli

k¼1

aiI

k � ai
k

� �
� k xi

k; x
i

� �
þ bi ð7Þ

where aiI ; ai
k are Lagrange multipliers, which can be obtained by

solving the optimization problem:

max
ai�

i
;ai

i

� 1
2

Pli
s;t¼1
ðai

s � ai�
s Þðai

t � ai�
t Þ < xi

s � xi
t >

�e
Pn
i¼1
ðai

s þ ai�
s Þ þ e

Pl

t¼1
yi

tðai
t � ai�

t Þ

2
6664

3
7775

s:t:
Xli

s¼1

ðai
s � ai�

s Þ and ai
s; a

i�
s 2 ½0; n�

ð8Þ

f is a constant and the value of e is defined for the so-called insen-
sitive loss function. The computing of bi in Eq. (7) can be exploited
by applying the Karush–Kuhn–Tucker conditions [34]. We used the
Gaussian radial basis function as the kernel function, which is de-
fined as:

kðx; yÞ ¼ e�
kx�yk

2d2 ð9Þ

with the parameters set as: e = 0.01,r = 0.8.

4.3. Mixture fuzzy scoring model

Finally, we calculated an approximate image score by combin-
ing the fuzzy membership estimation and the SVR single scoring
models as:

y ¼ FðxÞ ¼
XC

i¼1

pðgijxÞyi ¼
XC

i¼1

pðgijx;HÞf iðxÞ

¼
XC

i¼1

pðgijx;HÞ �
Xli

k¼1

ai�

k � ai
k

� �
k xi

k;x
i

� �
þ bi

 !
ð10Þ

There are 2-fold merits of the mixture scoring model. First, it is flex-
ibly extended, which allows the model to adapt easily to new image
classes. Second, the model can be incrementally updated. If the new
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image data are fed into the system, the estimated fuzzy member-
ship will be refined to match the new training data.

5. Experiments

5.1. Materials

As described in Section 2, the original fluorescence cellular
images are in the scale of 1280 � 1024 and stored in 12-bit for-
mat. For each image, usually there are over 100 cells in the
scope of the screen. We first built a cell database based on the
segmentation results on the fluorescence images and manually
classify the selected cell patches into the three predefined cate-
gories of phenotypes. Because of the diversity and complexity of
the genome-wide RNAi screening image data, the current cellular
segmentation method cannot generate state-of-art results, espe-
cially in the case that many cells touch together or even overlap
each other. Therefore, when we collect the segmented data for
building training set, those ill-segmented cellular patches are ig-
nored. Finally, we have a cellular phenotype image database,
including around 600 normal-phenotype cells, 200 spiky-pheno-
type cells and 200 ruffling-phenotype cells. Fig. 5 illustrates
some examples of the cellular patches in our cellular phenotype
database. This cell database is used to train and evaluate the
phenotype classification model.

Moreover, we built a database to test our high-content im-
age scoring model. The database contains three images each
for 89 different treatments/dsRNA, including 54 NC, 6 PC and
35 SH, which were manually scored, ranging from 0.3 to 5.0.
The fluorescence screening image database consists of 2 giga-
bytes, with more than 800 images from 3 channels. Cells
(40,221) were identified from all the images. Following the cel-
lular phenotype classification, the statistical description of the
cellular phenotypes was obtained for each image of every treat-
ment. There were distinctive statistical variations for these fluo-
rescence screenings with different treatments. A simple
statistical result for the different image types is summarized
in Table 1.

5.2. Results

First, in order to train and test our phenotype classification pro-
cedure, we conduct the 10-folder leave-one-out cross validation
strategy on the cell database to derive the generalization classifica-
tion error [35]. The experiments were repeated 100 times with
random folder partition. Using 12, 15, and 18 features selected
by GA, LDA classifier achieved the average performance 74.26%,
76.08% and 74.67%, respectively. Moreover, with the same experi-
mental setting, SVC obtained the average performance as 67.10%,
69.73%, and 65.17%. Considering the complexity and diversity of
cellular phenotypes in the high-content fluorescence screening,
most cells contain multiple-phenotype characteristics. Strictly
speaking, it is not reasonable to set hard and exclusive labels to
cells (only belongs to a certain phenotype and not belong to any
other phenotypes). However, to be realistic, it is not feasible to as-
sign a ground truth training set in cell level with soft labels (show-
ing the likelihoods of the cells belongs to different phenotypes).
Therefore, we impose the fuzzy information on the screening level
to reduce the disadvantage of hard labeling. The image level statis-
tics provide more flexible description than the cell level hard labels
in terms of image score prediction.

Moreover, we applied the trained phenotype classifiers on
whole fluorescence images of Drosophila cells, which were cap-
tured for a HCS-based gene functional analysis. After cell level pro-
cessing and analysis, the cellular segmentation (Fig. 3) and
phenotype identification results can provide abundant quantitative
information for investigating the function of the related genes. An
example of the process is shown in Fig. 6, indicating the results of
cellular phenotype classification. Notice that some cells are located
near the boundary of the screen without whole cell body extracted.
We may ignore those cells during the phenotype identification
stage because the broken shape will generate inconvincible
prediction.

Second, we use the image database described in Section 5.1 to
evaluate the image score prediction model. In the experiments,
80% of the images were used to train the regression model. The
remaining 20% was used to test the model. Two different evalua-
tion criteria were used to validate the results. The first criterion
was the mean square loss on test data, which was calculated as:
E ¼

PN
i¼1ðyi � FðxiÞÞ2, where F(xi) is the predicted score and yi is tar-

get score. The other criterion was the coefficient of determination
(COD), which can be computed as:

COD ¼
Pm

i¼1ðFðxiÞ � �yÞ2Pm
i¼1ðyi � �yÞ2

ð11Þ

where m is the number of samples in test set and �y ¼ 1
m

Pm
i¼1 yi is the

ground mean value. Tables 2 and 3 show the experimental results of
the score prediction on the NC, PC, and SH images. Generally speak-
ing, the automatically predicted scores achieve a certain accuracy
and consistence comparing to the manually expert scores. Specially,
the negative control image samples has better prediction perfor-
mance in terms of mean square loss (around 0.021), while positive
control and screen hits samples have a slightly higher COD value
(around 0.713).Fig. 5. Hundred cellular phenotype samples from the database.

Table 1
Statistical variations for the three image types: negative control (NC), positive control
(PC), and screen hits (SH)

Image type �nN �nS �nR �y ry

NC 153.3 15.9 5.8 1.37 0.40
SH 98.0 11.9 2.2 3.57 0.65
PC 172.4 5.3 0.1 5.00 0.00

�nN ; �nS; �nR represent the average number of Normal, Spiky and Ruffling-phenotypes,
respectively. The value �y and ry is the mean and standard deviation of manual score
for each image class.
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6. Discussion and conclusion

Genome-wide RNAi HCS can provide critical visual information
to elucidate the underlying mechanisms of complex cellular pro-
cesses, such as cell division and cell migration. However, manual
analysis of high-content image data sets is a tremendous hurdle.
Here, we report an informatics processing system, containing phe-
notype identification and image scoring models, to quickly process
a huge volume of high-content images and conduct quantitative
analysis of the visual data.

Our automated image scoring system has two key components.
The first part is fluorescence image analysis, including cellular seg-
mentation, feature extraction and cellular phenotype recognition,
and statistical description of the image. The second part of the sys-
tem is the image score prediction model, which incorporates the
fuzzy logical concepts and EM algorithm to conduct gene fuzzy
membership approximation. Support vector machine technique is

applied to derive the single scoring model for each image class
with confident samples in both biological and informatics do-
mains. Using the fuzzy membership values, a fuzzy mixture model
automatically predicted the image score. In other word, a series of
relatively simple regression models are combined with certain
weights to achieve the structural simplicity and generalization of
prediction.

We built the database of high-content, 3-channel, fluorescence
microscopy images of Drosophila Kc167 cultured cells that were
treated with RNAi to perturb gene function. Images were analyzed
for alterations in cellular phenotypes, suggestive of a role in Rac
signaling. The performance of the automated phenotype classifica-
tion was evaluated on the constructed cell database. Forevermore,
the proposed image scoring system generated scores that were
similar to manual annotation. The robustness and efficiency of
our system were validated in quantitatively predicting the biolog-
ical relevance of genes.

Fig. 6. Fluorescence image analysis of Drosophila Kc167 cells: (a) Cellular phenotype classification results on the high-content fluorescence screening. The markers N, S and R
represent Normal, Spiky and Ruffling-phenotype, respectively. (b) Zoom-in view of the rectangular area of (a).

Table 2
Scores of NC images: The first row is the location of the well within the 384-well plate

Well L05 L01 G15 N22 O16 L03 K16 M20 P17 A17

# Normal 145 251 117 182 239 204 111 97 120 135 200 102 134 198 206 192 172 149 134 123 163 174 113 155 193 212 128 67 89 107
# Spiky 16 19 18 9 6 10 12 16 21 18 15 6 15 13 9 21 34 25 6 10 22 26 21 9 15 13 26 23 22 36
# Ruffling 10 0 5 8 4 3 4 6 4 7 3 2 3 3 2 5 5 6 3 7 3 4 10 6 6 6 6 12 8 4
Manual score 1.3 1.2 1.3 1.3 1.3 1.3 1.0 1.3 1.5 1.7
Auto-score 1.41 1.18 1.37 1.40 1.32 1.43 1.39 1.29 1.39 1.70

The second to fourth rows give the number of phenotypes in each of three scanned sites for that well.
Images were scored 0.0–5.0; the higher the score, the more likely that dsRNA is a Hit.
Comparison of the manual score (fifth row) and the automatically predicted score (sixth row) reveals a mean square error is 0.021 and a coefficient of determination is 0.6910.

Table 3
Scores of PC and SH images: The first row is the location of the well within the 384-well plate

Well I18 P09 N01 C02 I02 C21 H04 O22

# Normal 26 26 38 69 97 118 42 55 33 18 65 37 180 173 203 101 104 151 73 118 109 280 205 162
# Spiky 0 1 2 13 8 11 10 7 7 6 4 3 29 19 9 28 23 28 15 13 13 1 1 0
# Ruffling 0 0 0 1 2 1 1 0 2 1 0 0 2 0 4 6 3 1 3 2 5 0 0 0
Manual score 3.3 3.7 3.7 3.3 3.2 3.0 3.7 5.0
Auto-score 3.20 3.52 3.43 3.69 3.65 3.80 3.25 4.85

The second to fourth rows give the number of phenotypes in each of three scanned sites for that well.
Images were scored 0.0–5.0; the higher the score, the more likely that dsRNA is a Hit.
Comparison of the manual score (fifth row) and the automatically predicted score (sixth row) reveals a mean square error is 0.1669 and a coefficient of determination is
0.7131.
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Finally, we remain concerned about how to generalize the pro-
posed approach to process RNAi HCS images from other biological
studies. For the biological study presented in this paper, we kept
the biologist incorporating domain knowledge, such as predefining
phenotypes. However, in order to achieve the general utility, there
are two key problems need to be attacked. The first issue lies in cell
level, which aims to build a semi-supervised learning model to effi-
ciently obtain the phenotype samples for training to replace the
current manually labeling procedure, which is costly prohibited
in large-scale study. Moreover, a more ambitious target is to devel-
op a new machine learning technique to automatically discover
novel phenotypes in different HCS image dataset without ex-
hausted expert interaction. Second, we need to refine an adaptive
image-level feature extraction and selection technique, which
can choose the distinctive image descriptor for evaluating the gene
effects in diverse biological studies. In the current approach, the
feature selection is directly linked to the phenotype classification
instead of high level image scoring. Both of these two open prob-
lems are the interest of our future work.
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