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ABSTRACT
Human visual perception is able to recognize a wide range of
targets under challenging conditions, but has limited through-
put. Machine vision and automatic content analytics can
process images at a high speed, but suffers from inadequate
recognition accuracy for general target classes. In this pa-
per, we propose a new paradigm to explore and combine the
strengths of both systems. A single trial EEG-based brain
machine interface (BCI) subsystem is used to detect objects
of interest of arbitrary classes from an initial subset of im-
ages. The EEG detection outcomes are used as input to
a graph-based pattern mining subsystem to identify, refine,
and propagate the labels to retrieve relevant images from
a much larger pool. The combined strategy is unique in
its generality, robustness, and high throughput. It has great
potential for advancing the state of the art in media retrieval
applications. We have evaluated and demonstrated signifi-
cant performance gains of the proposed system with multiple
and diverse image classes over several data sets, including
those from Internet (Caltech 101) and remote sensing im-
ages. In this paper, we will also present insights learned
from the experiments and discuss future research directions.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human information pro-
cessing; H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval; I.5.2 [Implementation]:
Special architectures

General Terms
Algorithms, Design, Experimentation

Keywords
Image Annotation and Search, Brain Computer Interface,
Visual Pattern Mining, Noisy Label Refinement, EEG Signal
Decoding
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1. INTRODUCTION
The human brain is widely considered to be the most pow-

erful visual information processing system. The human vi-
sual system is able to get the “gist” of a scene in a few
hundred milliseconds [17, 24, 33]. As a result, many efforts
have been made to understand the human vision mechanism
by decoding brain state from neural signals. By monitor-
ing the neural response signals, e.g., those recorded non-
invasively via electroencephalography (EEG) [3], promising
results have been shown in detecting objects of interests
(OOI) contained in the visual stimuli presented to subjects
[2, 8, 15, 25, 27].

One of the ultimate goals for automated computer vision
or media content analysis is to detect and recognize objects,
scenes, people, and events in images or videos. Such ca-
pabilities, if realized, will greatly enhance the performance
and utility of many applications, such as human computer
interaction and visual information search. Recently, impres-
sive progress has been reported in the literature, including
advances in image feature extraction, visual matching, and
object categorization. Several widely participated bench-
marking efforts, such as Caltech 101 [6], PASCAL [5], Im-
ageClef [30], and TRECVID [32], have been organized to
demonstrate and evaluate the state of the art in this field.
A common framework used in such efforts is to learn object
models from a pool of training data, which may have been
wholly or partly annotated over pre-defined object classes.
Such a learning framework has been shown to be powerful.
However, it is limited in its scalability to large-scale applica-
tions. One of main barriers is the dependence on the manual
annotation process, which is laborious and time consuming.
To overcome this, efforts have been reported using interac-
tive annotation with relevance feedback and active learning
in order to reduce the amount of the required manual input
[11, 29]. Recent works have also started to explore the freely
available (but imperfect) metadata associated with images
on the Web [7, 6, 14, 36].

In this paper, we propose a novel framework that combines
the power of brain state decoding and visual content anal-
ysis to maximize the efficiency of the image annotation and
retrieval task in a completely hand free streamlined fash-
ion. The proposed Brain Computer Interface and Visual
Pattern Mining (BCI-VPM) based image annotation sys-
tem, as shown in Figure 1, consists of two critical compo-
nents, EEG-based generic interest detector and graph-based
salient visual pattern discovery. The EEG-based interest
detector mentioned above is generic - a subject-adaptive



Figure 1: System diagram of the proposed BCI-VPM image annotation system. A small subset of images is
shown to users, whose EEG-based neural response signals are used to detect objects of interest that catch
users’ attention. The EEG scores of the subset are then refined and propagated to the entire image collection
through recovering the visual consistency and discovering the salient visual pattern over a visual similarity
graph.

EEG-based detector trained over a generic class can be ap-
plied to detect any new objects of interest. Likewise, the
subsequent graph visual saliency discovery is general as it
does not assume any prior knowledge about image classes
or data sets. Additionally, by completely freeing users from
any manual operation (e.g., button pressing) in the viewing
stage, we achieve the maximal throughput of annotation or
retrieval from a fast stream of image sequence via a process
called rapid serial visual presentation (RSVP) paradigm [28].
RSVP involves images being flashed to the viewer at high
rates, such as 10 frames per second. EEG signal recorded
from an array of transducers placed on the scalp of the sub-
ject are recorded continuously and analyzed to extract dis-
criminative spatial-temporal features. Techniques like Hier-
archical and Bilinear Discriminant Component Analysis [4]
can be applied to analyze EEG signal to generate a proba-
bilistic relevance score for each image. The image sequence
ordered by the EEG scores is then given further visual con-
tent analysis to determine the salient visual patterns that
catch users’ attention. It utilizes a graph-based diffusion
processing to recover visual consistency on a regular graph
constructed from visual similarity. Finally, the unreliable
EEG labels are eliminated, while the EEG scores associated
with the small image subset that have undergone the EEG-
based brain state decoding step are propagated to the entire
database to retrieve further relevant images, including those
not yet shown to users. The regular graph and the diffusion
process with label correction have unique power in handling
imperfect labels and sparse targets with extreme low prior.

In summary, we propose exploration of an integrated paradigm
that marries the strengths of human vision and machine
learning systems in a unique and synergistic way - human
vision for its superb capability in detecting general objects
in diverse and complex conditions and content analytics for
automatic processing of large volumes of data.

We will show effectiveness of the proposed approach over

images from multiple domains. The first is for the task of
target detection in high-resolution satellite imagery, contain-
ing 1051 images with “Helipad” targets. The second set in-
cludes a total of 3798 Internet images with 62 object cate-
gories from the well-known Caltech 101 dataset. Experimen-
tal results from multiple subjects indicate a very promising
performance. In the Internet image experiments, the an-
notation accuracy, measured in terms of average precision
(AP), of one of the object classes Dalmatian was improved
from 1.76% (random baseline) to 36.7% by EEG interest de-
tector, and further boosted to 69.1% by the visual pattern
mining process.

The paper is organized as follows. We present the pro-
posed integrated paradigm in Section 2. The EEG inter-
est detector through decoding brain state is summarized in
Section 3. Section 4 presents the method using graph-based
approach to discover salient visual pattern with uncertain or
unreliable EEG labels. Test case design and evaluation re-
sults are included in Section 5. Section 6 includes reviews of
works in related fields and discussion of unique contributions
of this paper. Discussions and conclusions are summarized
in Section 7.

2. SYSTEM OVERVIEW
The proposed BCI-VPM image annotation framework con-

sists of two subsystems (as shown in Figure 1) - one using
the neural signals measured by EEG to detect generic OOI
present in images, while the other using graph-based visual
pattern mining methods to refine the detection results from
the first subsystem and propagate results to an expanded
data set. We provide a brief overview here and give further
details on each components in later sections.

For EEG-based OOI detection, a small subset of images
(on the order of few hundred) is first randomly sampled from
an image collection and presented as visual stimuli to the



Figure 2: Overview of the processing pipeline of the proposed BCI-VPM image annotation system. The
left demonstrates the RSVP paradigm used for presenting visual stimuli to subjects. The RSVP sequence
contains 1000 randomly selected images, which are further partitioned into 10 blocks and 100 images each.
An image block typically is shown at 5 − 10Hz and each image lasts around 100 − 200 milliseconds. The right
shows the process of graph based visual pattern mining. After ingesting the estimated EEG “interest” scores
as initial labels, the underlying data manifold structure is explored to discover the salient visual pattern
among the top EEG score ranked images to refine the initial labels, retrieve additional relevant images, and
propagate labels to a much large image pool.

subject. The selection process avoids long EEG recording
sessions which may cause subject fatigue. One of our design
goals is to require minimal subject participation, yielding
just sufficient information for the neural state decoder and
the pattern mining module to effectively infer objects that
have attracted a user’s attention and generate labels for all
the images in the collection.

The sampled images are then presented to the subject in
a sequential fashion, following a paradigm called Rapid Se-
rial Visual Presentation (RSVP) [8], as shown in in the left
part of Figure 2. The subject is instructed to focus on a
fixed marker in the screen center in the first 2 seconds, then
each image is shown to the subject for a fixed period of time,
ranging from 100ms to 200ms each (equivalent to 5−10 Hz).
The subject may be given instructions ahead of time to look
for a specific class of object or simply allowed to choose any
object class to their interest on the spot. An array of EEG
electrodes placed on the subject scalp are used to contin-
uously record multiple channels of neural response signals
(e.g., at 1K sampling rate). Spatio-temporal processing and
discriminative analysis are performed on the post-stimulus
signals to compute a score, which predicts the confidence
in detecting the OOI in each image viewed by the subject.
Based on the EEG scores, images are ranked to form initial
results, from which top ranked results are used as pseudo
positive labels and fed to the pattern discovery module for
further refinement and propagation. Note that due to low
signal quality and subject variations, the EEG-based OOI
detector is pre-trained for each subject. However, such one-
time offline training can be done very efficiently without
restricting the generality of the detector. As the detector
is trained to detect shifts in the user’s attention as opposed
to detect the recognition of a specific object, an object class
uncorrelated with the test objects can be used to train the
detector.

The pattern discovery subsystem starts with construction
of an affinity graph, which captures the pairwise visual con-

tent similarity among nodes (corresponding to images) and
the underlying subspace structures in the high dimensional
space (as shown in the right part of Figure 2). Such a con-
struction process is done offline before user interaction. The
small set of pseudo positive labels generated by the EEG-
based interest detector is fed to the initially unlabeled graph
as assigned labels for a small number of nodes, which are
used to drive the subsequent processes of label identification,
refinement, and propagation. Graph based semi-supervised
learning techniques [35, 36] play a critical role here since we
will rely on both the initial labels and the large pool of unla-
beled data points throughout the diffusion process. Finally,
the propagated label predictions over the entire graph can
be used to generate annotations for every single image in the
collection, or to re-rank the images based on the detection
scores. The top ranked results, as shown in Figure 6, 7, 8,
and 12 (b), are expected to be more accurate (in terms of
both precision and recall) than the baseline of using EEG-
based detection alone.

3. GENERIC INTEREST DETECTOR VIA
SINGLE TRIAL EEG DECODING

There has been increasing interest in investigating the ap-
plication of BCI for image annotation and search [8, 26, 15,
1]. Motivated by humans’ ability to make very rapid and ac-
curate visual decisions in “the blink of an eye” [9], we extend
the usage of the BCI based image search system in [8] to de-
sign an generic interest detector, where users are instructed
to look for specific object classes in sequences of images pre-
sented using the RSVP paradigm. Examples of segments
of the RSVP image sequences used in our experiments are
shown in Figure 3. A crucial aspect of this particular an-
notation system is that we can measure brain signals, in
real-time, that can be used to annotate or rank an image
given a desired object class. We know from neuroimaging
studies that there are neural signals that can be measured
non-invasively which are related to the detection and recog-



(a)

(b)

Figure 3: Example images shown to subjects with target objects highlighted with a color bounding box. a)
Satellite imagery with target “helipad”; b) Caltech101 images with targets “dalmatian”, “starfish” and “menorah”.

nition of rapidly shown images [33, 17]. A very robust signal
measurable from the EEG is the P300. It reflects a percep-
tual “orienting response” or shift of attention which can be
driven by the content of the sensory input stream. Below
we briefly describe the method we use to map the EEG into
an “interest score” to be used for annotating the imagery.

Given the RSVP paradigm for presenting a rapid sequence
images to the subject, we simultaneously record EEG, using
64 scalp electrodes (Figure 4), and map the activity to an
”interest score”for each image. The interest score is meant to
reflect how much of a user’s attention was directed toward an
image. From a neuroscience perspective it can be seen as the
single trial correlate of the P300-related orienting response.
The algorithm we use to decode the EEG and ultimately
map it to an interest score has been described previously
[8]. Briefly, our approach begins with the linear model

zt =
X

i
αisit (1)

where sit represents the electrical potential measured at time
t for electrode i on the scalp surface, while αi represents the
spatial weights which will be learned based on a set of train-
ing data. The goal is to combine voltages in the electrodes
linearly such that the sum zt is maximally different between
two conditions. The two conditions are “target of interest”
vs “distracter”. We also assume that this maximally dis-
criminant activity is not constant but changes its spatial
distribution within the second that follows the presentation
of an image, thus we assume a stationarity time T of ap-
proximately 100ms. As a result, we find distinct optimal
weight vectors, αki for each 100ms window following the
presentation of the image (index k labels the time window):

zkt =
X

i
αkisit , t = (k − 1)T · · · kT (2)

These different zkt are then combined in an average over
time to provide the optimal discriminant activity over the
entire second of data, with the result being our “interest
score” e for the image.

e =
X

t

X

k
vkztk. (3)

For on-line implementation purposes we use the method of
Fisher Linear Discriminants to train coefficients αik within
each 100ms time window. The coefficients vk are learned
using penalized logistic regression after all exemplars have

Figure 4: Demonstration of the EEG-based generic
interest detector. The scalp surface shown is moni-
tored with 64 electrodes. The bottom left color scalp
maps show the spatial distribution of the recorded
cortical signal at different time intervals. The right
part shows the signal decoding procedure by Hier-
archical Discriminant Component Analysis.

been observed. Because of the two step process of first com-
bining activity in space, and then again in time, the above
EEG decoding method is termed Hierarchical Discriminant
Component Analysis [26]. One advantage of such two-stage
hierarchical modeling is the significant reduction of the num-
ber of model parameters that need to be learned - from about
105 to 104 (a 10 fold reduction). Colored scalp maps indi-
cating spatial distribution of recorded cortical signal with
different time interval are shown in Figure 4. It is important
to confirm a strong correlate with the P300 attention orient-
ing neural response, suggested by the neurological studies.
Detectors built based on such single trial spatio-temporal
EEG signal analysis have shown very promising results in
various tasks such as people detection and image triage [8].
We will discuss the effectiveness of such a detector in detect-
ing diverse objects such as those in Caltech 101 database [6]
in Section 5.1.



4. VISUAL PATTERN MINING WITH NOISY
EEG LABELS

Assume that the generic interest detector outputs the EEG
score e = {e1, e2, · · · , en} from a RSVP sequence X =
{x1,x2, · · · ,xn} shown to the subject 1. Usually, the top
ranked images based on scores e do not match the desired
OOI due to the noisy nature of EEG signals in practice, as
shown in Figure 6, 7, 8, and 12 (a). Previous study shows
that the existing semi-supervised methods cannot handle
cases with extremely noisy labels [36]. In order to refine
the noisy EEG scores, our method first extracts the salient
image pattern and recover the visual consistency among the
top ranked images. In other words, an improved interest
measurement f is estimated using an image based represen-
tation and initial EEG scores as {X , e} → f . We formulate
the following process of EEG label refinement and visual
pattern mining.

1. Convert the image representation to a visual similarity
graph X → G = {V, E, W}, where vertices V are the
image samples X and the edges E with weights W
measure the pairwise similarity of images.

2. Transfer the interest scores to pseudo EEG labels e =
{e1, e2, · · · , en} → y = {y1, y2, · · · , yn}. In other words,
a binarization function g(·) is applied to convert EEG
scores to EEG labels as y = g(e), where yi ∈ {1, 0}
and yi = 1 for ei > ε, otherwise yi = 0. The value ε is
called interest level for discretizing the EEG scores.2

3. Apply the bivariate regularization framework to define
the following risk function

Eγ(f ,y) = Q(f ,y) + γVG(f) (4)

which imposes the tradeoff between the smoothness
measurement VG(f) of function f and empirical error
Q(f ,y). Specifically, the function smoothness is eval-
uated over the undirected graph G.

4. Alternatively minimize the above risk function with
respect to f and y to finally achieve the optimal f∗

f∗ = arg min
f ,y

Eγ(f ,y) (5)

In the following discussion, we follow the above procedure
to detail our method for salient visual pattern mining with
noisy EEG labels.

4.1 Image Features and Graph Construction
For the image feature extraction, we applied the widely

used Bag-of-Visual-Words (BoW) derived from local key points,
which has been shown to be effective in many applications
of object and scene classification. In particular, we use the
difference of Gaussian (DOG) and Harris-Affine as key point
detector and SIFT as descriptor [19, 21]. To weigh the im-
portance of a visual word to an image, a soft-assignment
strategy for computing the frequency of visual words is adopted
[13]. With a constructed visual vocabulary (size is 5000), the

1For an RSVP image sequence, the decoded EEG score
vector e = {e1, e2, · · · , en} is usually normalized as ei ∈
[0, 1], i = 1, · · · , n.
2In practice, the value of ε is set dynamically to achieve a
fixed-number l of EEG positive labels, i.e.

P

i yi = l.

sparse representation of BoW features for each image is ex-
tracted. The χ2 distance is often used for the calculation of
dissimilarity Aij between histograms of BoW as:

Aij =
X

k

(xi,k − xj,k)2

xi,k + xj,k
(6)

where xi,k is the kth element of feature vector xi. We have
also used global features (texture and shape feature) and Eu-
clidean distance for part of the experiments, such as satellite
images. Such features have been shown to be efficacious in
previous work [34]. Starting from the distance matrix A,
the graph construction X → G = {V,E,W} is addressed in
two steps, graph sparsification and edge weighting. Spar-
sity is important to ensure that a graph based algorithms
remain efficient and robust to noise. The most common
algorithm for recovering a sparse subgraph is the K near-
est neighbors algorithm (KNN), where each node greedily
connects with its K neighbors with the minimal distance.
However, the KNN method typically produces asymmetric
and irregular graphs, where the connectivity is uneven over
different parts of the graph. This situation generates unre-
liable learning results if X contains very imbalanced class
ratios, which occur very often in realistic image annotation
settings, such as the 1.76% prior of target images in our
Caltech 101 experiments. Recent investigation shows that
b-matched graph is superior to kNN graph in terms of sta-
bility and accuracy for semi-supervised learning approaches
[12]. Though the comparison between kNN and b-matched
graph is not provided in this article due to space limitation,
KNN graphs poorly performed in our experiments because
the OOI is very infrequent in the tested image database.

With the vertex sparsified subgraph, the edge weights Wij

are estimated by applying heat kernel function on the χ2

distance Aij as: Wij = exp(−Aij

2σ2 ). Realize the samples X
might be draw unevenly, here we re-weight the similarity
measure using an adaptive kernel size σ as suggested in [10].

4.2 Graph based Visual Pattern Mining
Given the constructed b-matched graph with edge weight

W, the node degree matrix D = diag ([d1, · · · , dn]) is de-
fined as di =

Pn
j=1 Wij . The normalized graph Laplacian

is computed as L = I − D−1/2WD−1/2. Starting from the
regularization framework in Equation 4, we formulate the
following risk function:

Eγ(f ,y) = ‖f − y‖2 + γ‖f‖2
G (7)

where ‖f−y‖2 is the empirical square loss with pseudo EEG
label y = g(e). The semi-inner product ‖f‖G measures the
function smoothness over the graph G, which reflects the
visual consistency.

‖f‖2G =< f , f >= f� L f (8)

The above risk function is different from the existing reg-
ularization frameworks. For example, compared with regu-
larization based kernel function learning in [20], and graph
regularization for semi-supervised learning in [37], our prob-
lem is formed in a bivariate risk function and the empirical
risk is estimated using unreliable pseudo EEG labels. Moti-
vated by the alternating optimization approach, such as the
one used in [35], we derive partial differentials with respect
to y and f , respectively, and iteratively update the function
values to refine EEG labels.



Algorithm 1 : EEG label refinement and visual pattern
mining

Input : initial EEG scores e;
Graph G and normalized graph Laplacian L;
Constant matrix: pγ = (I + γL)−1.

Initialization:
The number of pseudo EEG labels l;
Iteration number M = l/2;
Initialize function f with EEG scores f0 = e.

Loop: τ = 0, · · · , M
Convert EEG scores to labels:

yτ = g(fτ ), satisfying
P

i yτ
i = l;

Compute gradient:
∇yτ Eγ =

˘

‖pγ − I‖2 + γp�
γ Lpγ

¯

yτ ;
Update EEG label with truncated gradient:

yτ+1 = yτ − T (∇yτ Eγ)
Recalculate interest level function:

fτ+1 = pγy
τ+1;

Output : the refined EEG scores f∗.

Since f ∈ R
n is a continuous valued function, the optimal

one can be derived by zeroing the partial differential ∇fEγ :

∂Eγ

∂f
=

∂Q(f ,y)

∂f
+ γ

∂V(f)

∂f
= 2(f − y) + 2γLf = 0

⇒ f∗ = (I + γL)−1y = pγy (9)

where pγ = (I + γL)−1 is a constant matrix in R
n×n and I

is identity matrix. Replace function f in Equation 7 by the
optimal one f∗ and rewrite the risk function as:

Eγ(y) = ‖pγ − I‖2‖y‖2 + γy�p�
γ Lpγy (10)

Derive the partial differential ∇yEγ and ignore the constant
coefficient:

∂Eγ

∂y
∝
n

‖pγ − I‖2 + γp�
γ Lpγ

o

y (11)

Note that y ∈ B
n is a binary vector representing class labels.

The conventional approaches, such as zeroing ∇yEγ or stan-
dard stochastic gradient is not appropriate for minimizing
Eγ with respect to the binary-valued variable y. Here, we
truncate the gradient ∇yEγ and discretize it to T (∇yEγ):

T (∇yiEγ) =

8

<

:

1 : ∇yiEγ = max(∇ylEγ)
−1 : ∇yiEγ = min(∇yuEγ)

0 : otherwise
(12)

where yl,yu are the labeled and unlabeled parts of the label
variable y. Then the variable y can be updated with this
truncated stochastic gradient T (∇yEγ):

y ← y − T (∇yEγ) (13)

Intuitively, the above updating by truncated gradient de-
scent will remove one unreliable EEG label, and meanwhile
choose the most suitable one from the remaining data as
a new EEG label. Through iteratively repeating this trun-
cated gradient descent updating, the EEG label set will be
gradually refined to derive visually consistent visual pattern
from the top ranked image list. Note that the gradient trun-
cation approach is different with the method developed in
[18], where the truncated gradient is applied to induce spar-
sity in the continuous-valued weights for online learning. We

Figure 5: The summary of the experimental results
on Caltech 101 dataset. The performance is eval-
uated in terms of average precision (AP). A total
of four subjects and three OOI are tested (12 tri-
als of RSVP presentations). The APs of random
sequence, EEG detector and BCI-VPM refinement
are recorded. The yellow color table cells highlight
the significant improved trials (8 out of 12).

summarize the proposed method for EEG label refinement
and visual pattern mining in algorithm chart 1.

5. EXPERIMENTS
We tested the developed BCI-VPM annotation system on

the image data from various domains, including satellite im-
agery (DigiGlobe images) and Internet image collections (i.e.
Caltech 101) to show the scalability and generalization. The
detailed experimental setting and performance evaluation
are reported below. The experimental scenario is that a user
is instructed to look for a certain OOI in each presentation
of an RSVP image sequence. The BCI interest detector gen-
erates probability based EEG confidence scores, which mea-
sure the relevance of the presented image to the instructed
OOI. The estimated EEG score are then fed into the subsys-
tem of visual pattern mining for refinement and propagation.
During these tests, EEG data was recorded at 2048 Hz using
a 64-electrode EEG recording system (Biosemi, BrainProd-
uct, Germany) in a standard (10-20) setting.

5.1 Caltech 101 Object Annotation
Data filtering: Caltech 101 is a very challenging dataset

for EEG decoding because it contains fairly common and
diverse object categories with large intra class variations.
Moreover, images greatly vary in both resolutions and scales.
This can significantly affect the user’s detection performance
during the EEG signal decoding. To design a practical set of
intial EEG experiments, we first filter the object categories
by selecting 62 categories that provide 3798 images that have
similar scales and resolutions. When displayed during the
RSVP, these images are re-scaled to a size of 240 × 240 to
achieve the desired uniformity in view.

Experimental scenario: As it is impractical to require
a user to perceive 62 OOI simultaneously, we also narrowed



(a)

(b)

Figure 6: The experimental results (top 20 images)
of the trial from Subject A on Caltech 101 RSVP
with OOI as Dalmatian. a) ranking by interest scores
from EEG detector; b) ranking by scores after label
refinement.

(a)

(b)

Figure 7: The experimental results (top 20 images)
of the trial from Subject B on Caltech 101 sequence
with OOI as Starfish. a) ranking by interest scores
from EEG detector; b) ranking by scores after label
refinement.

th choice of target categories that a user has to detect to one
specific target each time. Specifically, users were instructed
perceive Starfish, Dalmatian, and Chandelier/Menorah 3 for
each pass of RSVP (with the target order being varied be-
tween subjects). Notice that this simplification still did not
reduce much of the challenge due to the diverse object cate-
gories and sparse targets. For example, “Starfish” and “Dal-
matian” only account for 2.26% and 1.76% of the data set,
respectively. For the BCI interest detector training, we use
two popular objects, Soccer Ball or Baseball Gloves as OOI
to train the EEG-based detector. Most subjects are famil-
iar with such objects without the need of special instruction
and thus they serve as adequate common patterns that can
catch user’s attention. The Caltech 256 database was used
to select training images to differentiate between the train-
ing and testing images.

Image database down sampling: Furthermore, in or-
der to show the scalability of the proposed method, we
randomly partition the 62-object database into two parts
X = {Xs,Xu}. The subset Xs containing 1000 images is
randomly ordered to form a RSVP image sequence shown
to all test subjects. The RSVP image sequences were shown
in 10 blocks of 100 images each, with images shown at 6Hz
within each block. The other subset Xu containing a to-
tal of 2798 images is treated as EEG-unlabeled samples in
later label refinement stage by setting their EEG scores as
eu = 	0. This strategy shows that with only partial images

3The experiments were initially designed to annotate the
object class Chandelier. Realizing the ambiguity between
Chandelier and Menorah due to visual similarity, we decided
to treat the samples from these two object categories as the
same class in these experiments.

(a)

(b)

Figure 8: The experimental results (top 20 images)
of the trial from Subject C on Caltech 101 sequence
with OOI as Chandelier/Menorah. a) ranking by inter-
est scores from EEG detector; b) ranking by scores
after label refinement.
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Figure 9: The performance evaluation on Cal-
tech101 image sequence by Precision-Recall (PR)
curve (the trial of Subject A annotating “Dalma-
tian”).

processed by the BCI detector, the proposed BCI-VPM sys-
tem can extend the usage of the BCI annotation to the im-
ages that are not processed by BCI interest detector. This
merit is extremely critical because it provides the capability
and scalability to annotating a large collection of images.

Results: Four subjects are drawn from undergraduate
and graduate students, staff and faculty that were not digi-
tal media analysts, but were familiar with EEG work. These
subjects participated in the experiments and were instructed
to identify three object classes from RSVP presentations. A
total of 12 trials of RSVP presentations are evaluated in
terms of average precision (AP), as shown in Figure 5. AP
is a performance metric commonly used in information re-
trieval [32]. It approximates the area under the precision-
recall curve. The experiments show promising results. For
example, the BCI detector achieved 33.73% and BCI-VPM
label refinement further improved to 69.1% for subject A
annotating “Dalmatian”. Among the 12 trials of tests, 8
trials achieved significant performance improvement. Even
for some tough cases, where the BCI detector only obtained
less than 10% AP, the label refinement process still signifi-
cantly bootstraps the annotation accuracy. Figure 6, 7, and
8 showed the top 20 images from the BCI detector and BCI-
VPM label refinement from three different test subjects,
where significant precision gain can be observed. In Figure
9, we analyze the precision-recall(PR) curves of one of the
successful case (Subject A annotating “Dalmatian”), which
further confirms the efficiency of the proposed BCI-VPM
annotation system.

However, there are some cases, where possibly due to
users’ misunderstanding of the OOI or some uncontrolled
distractions, the BCI detector generated very poor perfor-
mance, typically less than 7% AP. In those cases, the top



Subject Method AP-30 AP-60 AP-100 AP-ALL

A EEG score 19.76 15.83 14.9 30.97
BCI-VPM score 50.19 32.65 25.46 37.89

B EEG score 8.76 9.79 9.56 23.71
BCI-VPM score 87.31 63.29 46.07 57.41

C EEG score 12.70 19.58 16.54 29.62
BCI-VPM score 90.82 63.30 41.21 53.66

D EEG score 10.68 11.87 11.75 24.45
BCI-VPM score 91.87 60.62 40.24 52.70

Table 1: The performance comparison of annota-
tion performance of EEG interest detector and the
BCI-VPM refined EEG score in terms of average
precision of top 30, 60, 100 ranked images and en-
tire satellite image dataset (the number of pseudo
EEG labels l = 30).

Figure 10: Simulated evaluation of the dependency
of the BCI-VPM re-ranking performance (in terms
of top-20 precision) on the performance of the ini-
tial EEG detection. Individual curves for differ-
ent classes (Dalmatian, Chandelier/Menorah, Starfish)
and the average results across three categories are
shown.

ranked images do not contain a majority consistent pattern.
Therefore, the subsequent label refinement process is unable
to extract the salient visual patterns.

To analyze the sensitivity of the combined BCI-VPM ac-
curacy to the quality of the front end BCI detection preci-
sion, we further evaluate the effectiveness of the BCI-VPM
system with a varying number of true positive samples con-
tained in the top images (e.g., 20) of the initial EEG-based
ranking. The positive images are randomly drawn from the
target category and the negative images are randomly drawn
from the database. Average performances of 200 random
runs per category and the average results among the three
targets are shown in Figure 10. The results confirm that the
combined BCI-VPM approach can effectively improve the
precision by using the EEG detector alone. They also con-
firm the monotonic relationship between the final accuracy
and the initial EEG detection accuracy. For example, the
average top-20 precision is improved from 20% to 35% and
from 30% to about 55%. Such performance curves can be
used to determine the required accuracy for the initial EEG
component given a target detection performance for the final
combined system. The results can also be used to roughly
measure the visual pattern complexity and the difficulty in
re-ranking the three targets - Starfish is more difficult than
Chandelier/Menorah, which is in turn more difficult than
Dalmatian. Such ordering matches the intuitive expectation
of the relative complexities of the object classes.

5.2 Target Annotation in Satellite Imagery
The other type of RSVP image sequence shown to test
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Figure 11: The Mean Average Precision of top 30,
60, 100, and entire satellite image set using different
numbers of EEG scores as initial labels.

(a)

(b)

Figure 12: The experimental results of Subject C on
“helipad”target RSVP, showing the top 20 ranked im-
ages . a) ranking by original EEG scores; b) ranking
by the BCI-VPM refined interest score.

subjects consists of blocks of chipped images taken from
satellite imagery with each chip potentially containing a tar-
get, as shown in Figure 3 (a). Among the 1051 samples in
the RSVP sequence of satellite imagery, 105 images have a
target “helipad” centered. This sequence is displayed to the
subjects with a speed of 10 Hz, i.e. 10 images per second.
A total of 4 subjects were tested with single trial of pre-
sentation of RSVP. The performance is evaluated in terms
of average precision of the top 30, 60, and 100 and entire
dataset of the BCI interest detector and the final refined re-
sults, as shown in Table 1. Compared with the Caltech 101
experiments, Table 1 shows much more consistent perfor-
mance gain for all trials. The reason lies in that the targets
of “helipad” have salient visual clue of “H” symbol, which
easily attracts users’ attention. In addition, the non-target
image blocks are very noisy and mostly unmeaningful, which
reduces level of distraction.

Since the value of l is applied for truncating the EEG
scores to create initial binary labels, it is necessary to evalu-
ate the performance using different l. We vary the value of l
from 20 to 50 and evaluate the performance in terms of mean
average precision (MAP) (averaging among four subjects).
As shown in Figure 11, a fairly stable performance range is
with the value of l in [30, 50]. As an illustration, Figure 12
shows the test results from Subject C. The sub-figure (a)
gives the top 20 image blocks by ranking the original EEG
interest scores e and the sub-figure (b) shows the top 20
images from the ranking of the refined interest score f .

6. COMPARISON WITH PRIOR WORKS AND
UNIQUE CONTRIBUTION

Despite the growing interest in BCI, few works can be



System C3Vision [8] HAC [31] HAC-CV[15] BCI-VPM

System Structure pure BCI pure BCI hybrid BCI+CV hybrid BCI+CV
Neural Signal Trials single trial single/multiple trials multiple trials single trial

single subject single/multiple subjects single/multiple subjects single subject
Object Class people vs. background face vs. animal face, animal, general object class

animal vs. inanimate and inanimate
Target Frequency 2% 25% 50% ∼ 2%
Manual Labels No Yes Yes No

Image Presentation Speed 5 − 10 HZ 1 − 2 HZ 1 − 2 HZ 5 − 10 HZ
Learning Method unsupervised supervised supervised unsupervised

Table 2: Comparison of the existing BCI-based image analysis system and our proposed BCI-VPM image
annotation system.

found in using BCI for image annotation and search. We
summarize the ideas of the prior works and point out the
unique contributions of the work presented in this paper.

The pioneer system (called Cortically-Couple Computer
Vision, C3Vision) using EEG-based neural measurement in
image target detection was reported in [8]. Its RSVP vi-
sual presentation paradigm and spatio-temporal discrimi-
nant analysis approaches are extended to develop the inter-
est detector in this paper. Compared to the current work, it
focused on less diverse object classes (e.g., people vs. back-
ground) and had not been combined with the pattern dis-
covery subsystem for label refinement and propagation.

Recently, a supervised learning approach (called Human
Aided Computing, HAC) was proposed in [31] to develop an
EEG-based classifier for recognition of distinct objects in im-
ages, such as face vs. no-face, or animals vs. inanimate ob-
jects. The proposed method showed performance improve-
ment when neural response measurements from multiple tri-
als (i.e., same images presented multiple times) and/or mul-
tiple subjects were combined. However, the technique is
limited due to the requirement of predefined object classes
and ground truth labels for training the object detectors. In
contrast, our work focuses on robust detection using only
single trial EEG signals and scalability to detection of arbi-
trary object classes. The only training session is done offline
only once per subject using an object class that is indepen-
dent of the test targets.

Computer vision component was added to the HAC method
(HAC-CV) in [15] to fuse the EEG signals and the image
features in the same target classifier. Multiple trials were
used and improved performance was reported compared to
detection using EEG signals alone. Again, the method is re-
stricted as target classes are predefined, labeled, and trained
in a supervised fashion.

Other works have also explored the use of fMRI imag-
ing to decode brain state [22, 16, 23]. Such approaches en-
joy a higher spatial resolution at the cost of lower temporal
throughput. In our work, we focus on the system utilizing
a non-invasive continuous recording BCI framework based
on EEG. Table 2 lists the comparison between our proposed
method and the prior works discussed above. The key fea-
tures and unique contributions of the proposed system in-
clude:

. Generality: No predefined target classes and annota-
tions are needed.

. Robustness: The combination of BCI and pattern
discovery results in greatly improved accuracy in generic
object detection.

. High-throughput: Only a small subset of images
need to be viewed by the subject via a single trial set-
ting. The results are automatically propagated over to
the rest of images in a large collection.

In addition, our proposed system can handle rare target
classes with a prior as low as 1.8% (as demonstrated in Sec-
tion 5.1) at a high speed (5-10 images per second).

7. DISCUSSIONS AND CONCLUSIONS
In this paper we propose joint exploration of neurotech-

nology for brain state decoding and media content analyt-
ics for improving the performance of image retrieval sys-
tems. The brain state decoding subsystem utilizes advanced
spatio-temporal analysis of neural response signals measured
by EEG in a single trial setting. The content analytics com-
ponent implements a graph-based diffusion process that is
capable of handling rare targets, small label size, and noisy
conditions. The former has unique power in recognizing
generic target classes, while the latter is suitable for high-
throughput processing. The proposed system explores the
synergy of the two and has shown promising performance in
detecting generic target classes in a high throughput fashion.

Several aspects of the system merit further investigation.
First, in the current setting subjects are instructed to look
for certain object classes during the image viewing session.
It will be interesting to relax this and allow subjects to “lock
in” on any object class fitting his/her interest on the fly
without instruction. This will result in greater ambiguity
in the user’s understanding and perception of targets and
less consistent target-specific neural responses. Second, the
graph-based pattern discovery output can be used to con-
tinuously assess the quality of EEG interest detector and
provide a closed-loop feedback mechanism to incrementally
update the detector. The re-ranked images could also be
used to adjust the order of image presentation in the RSVP
viewing stream in order to improve sensitivity/specificity of
the neural response signals.
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