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Abstract

A new framework, termed Spatially Aligned Pyramid
Matching, is proposed for Near Duplicate Image Identifica-
tion. The proposed method robustly handles spatial shifts
as well as scale changes. Images are divided into both
overlapped and non-overlapped blocks over multiple lev-
els. In the first matching stage, pairwise distances between
blocks from the examined image pair are computed using
SIFT features and Earth Mover’s Distance (EMD). In the
second stage, multiple alignment hypotheses that consider
piecewise spatial shifts and scale variation are postulated
and resolved using integer-flow EMD. Two application sce-
narios are addressed – retrieval ranking and binary clas-
sification. For retrieval ranking, a pyramid-based scheme
is constructed to fuse matching results from different parti-
tion levels. For binary classification, a novel Generalized
Neighborhood Component Analysis method is formulated
that can be effectively used in tandem with SVMs to se-
lect the most critical matching components. The proposed
methods are shown to clearly outperform existing methods
through extensive testing on the Columbia Near Duplicate
Image Database and another new dataset.

1. Introduction

Near duplicate images refer to a pair of images in which
one is close to the exact duplicate of the other, but different
in conditions related to capture, edits, and rendering. It is
a challenging task to identify near duplicate images due to
the presence of significant piecewise spatial shifts, scale and
photometric variations (See Fig. 1 and 2).

There are two related tasks in Near Duplicate Identifica-
tion (NDI): Near Duplicate Retrieval (NDR) and Near Du-
plicate Detection (NDD) [17, 19]. NDR aims to find all
images that are near duplicates to an input query image,
which can be formulated as a ranking problem. NDD aims

to detect all duplicate image pairs from all possible pairs
from the image source, which can be considered as a two-
class classification problem. NDR has broad applications
in copyright infringement detection and query-by-example
application, and NDD has been used to link news stories
and group them into threads [17] as well as filter out the re-
dundant near duplicate images in the top results from text
keywords based web search [15]. As shown in [17, 19],
NDD is more difficult than NDR.

Zhang and Chang [17] formulated a stochastic Attributed
Relational Graph (ARG) matching framework for NDI.
However, the graph matching method involves a complex
process of stochastic belief propagation and thus identifica-
tion speed is slow [19]. Based on PCA-SIFT, Ke et al. [5]
developed a point set matching method, while Zhao et al.
[19] and Wu et al. [15] proposed a one-to-one symmetric
matching algorithm. However, because of the large num-
ber of interest points in images (possibly exceeding 1000),
direct matching based on interest points is extremely time-
consuming and inappropriate for online NDI. Chum et al.
[1] addressed large-scale NDI by utilizing both global fea-
tures and local SIFT descriptors. However, they used a bag-
of-words model [6][11] to deal with SIFT features without
considering any spatial information.

Distances between images are crucial in NDI. Recently,
multi-level matching methods were proposed for efficient
distance computation and demonstrated promising results
in different tasks, such as object recognition, scene classi-
fication and event recognition in news video [3, 6, 7, 16].
They involved pyramidal binning in different domains and
led to improved performances resulting from information
fusion at multiple levels. The prior work Spatial Pyramid
Matching (SPM) [6] used fixed block-to-block matching for
scene classification and assumed that images from the same
scene have similar spatial configurations. Recently, a multi-
level temporal matching technique, referred to as Temporal
Pyramid Matching (TPM) [16] here, was proposed to rec-
ognize events in broadcast news videos. In TPM, one video
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Figure 1. Illustration of Spatially Aligned Pyramid Matching at level-
2. (a) and (b): A pair of near duplicate images, which are divided into
4× 4 non-overlapped blocks and 7× 7 overlapped blocks (as shown with
different colors) respectively. (c): A 16 × 49 distance matrix between any
two blocks. (d): A 16× 49 integer flow matrix. For better viewing, please
see the color pdf file.

clip is divided into non-overlapped subclips, and the sub-
clips across different temporal locations may be matched.
However, even when TPM is converted to the spatial do-
main, TPM cannot cope with the full range of spatial shifts
because of its strict non-overlapped partitioning scheme.
Moreover, TPM does not consider scale variations.

To solve these problems, in section 2 we propose a two-
stage Spatially Aligned Pyramid Matching (SAPM) frame-
work. Images are first divided into multiple tiers of over-
lapped and non-overlapped blocks. Matching is carried out
in two stages, first in which pairwise EMD-based distances
are computed between every pair of block signatures com-
prising SIFT descriptor clusters [18], followed by a sec-
ond block-alignment stage where different block correspon-
dences at the same level as well as across different lev-
els are hypothesized. The output of SAPM is a set of 45
characteristic multi-level distances, each of which approx-
imately measures the validity of a specific hypothesis, in-
volving spatial shift and scale change. These distances can
be used in a single ranking measure for NDR.

In section 3, SAPM is applied to NDD. The multi-level
distances are combined as a 45D feature vector for NDD
classification. The Generalized Neighborhood Component
Analysis (GNCA) method is developed for selecting the
most critical matching components prior to SVM learning
and classification. Section 4 includes extensive experiments
to evaluate SAPM and GNCA. The results show clear supe-
riority of these methods as compared to prior work.

2. Spatially Aligned Pyramid Matching

We developed a two-stage matching framework for near
duplicate identification. Adopting the approach in SPM
[6], we divide an image x into 4l non-overlapped blocks
at level-l, l = 0, . . . , L-1, in which the block size is set as
1/2l of the original image x in both width and height. In
this work, we set L = 3 based on the empirical observation

in [6] that the performance does not increase beyond three
levels. Moreover, we consider a finer partition in which
overlapped blocks with size equaling 1/2l of the original
image (in width and height) are sampled at a fixed interval,
say 1/8 of the image width and height. The denser tiling
is intended for subimage matching at finer spatial displace-
ments than that of the non-overlapped partition described
above. Fig. 1(a) and (b) illustrate two kinds of partitions.
There are a total of five block partition categories, for which
we use p = {0, 1, 2, 3, 4} to indicate partitions designated
as level-0 non-overlapped (L0-N), level-1 non-overlapped
(L1-N), level-1 overlapped (L1-O), level-2 non-overlapped
(L2-N), and level-2 overlapped (L2-O). The total number of
blocks in these five categories are 1, 4, 25, 16 and 49 respec-
tively. We represent image x in the p-th partition category
as {xp

r , r = 1, . . . , Rp}, where xp
r denotes the r-th block and

Rp is the total number of blocks. Image y in the q-th par-
tition category is represented as {yq

c , c = 1, . . . , Cq}, where
yq

c and Cq are similarly defined. For simplicity, we omit the
superscript p and q unless needed.

2.1. First Stage Matching

The goal of the first matching stage is to compute the
pairwise distances between any two blocks xr and yc. We
represent each block as a bag of orderless SIFT descriptors
and specify a distance measure between two sets of descrip-
tors of unequal cardinality. EMD [10] is chosen because of
its effectiveness in several different applications [10, 18].

EMD is used to measure the similarity between two
signatures B1 and B2. Following [18], we cluster the
set of descriptors in block xr to form its signature B1 =
{(μ1, wμ1), . . . , (μm, wμm)}, where m is the total number
of clusters, μi is the center of the i-th cluster and wμi is the
relative size of the i-th cluster. Experiments in [18] demon-
strated that EMD is relatively robust to the number of clus-
ters in object recognition. In this work, we set m as 40, 20
and 20 respectively for the three different levels. The weight
wμi is equivalent to the total supply of suppliers or the to-
tal demand of consumers in the original EMD formulation.
We also cluster the set of descriptors in block yc to form its
signature B2 = {(ν1, wν1), . . . , (νn, wνn)}, where n is the
total number of clusters, and νi and wνi are defined simi-
larly. We define dij as the ground distance between μi and
νj and use the Euclidean distance as the ground distance in
this work because of its simplicity and success in [18]. The
EMD between xr and yc can be computed by

Drc =

∑m
i=1

∑n
j=1 f̂ijdij∑m

i=1

∑n
j=1 f̂ij

(1)

where f̂ij is the optimal flow that is determined by solving



(a) Query image and blocks (b) Near duplicate image and 
matched blocks from SPM
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Figure 2. Comparison of three pyramid matching methods at level-2. Three blocks in the query images (i.e.,(a)) and their matched counterparts in near
duplicate images (i.e.,(b), (c), (d)) are highlighted and associated by the same color outlines. For better viewing, please see the color pdf file.

the following linear programming problem:

f̂ij = arg min
fij

m∑
i=1

n∑
j=1

fijdij

s.t.
m∑

i=1

n∑
j=1

fij = min(
m∑

i=1

wμi ,

n∑
j=1

wνj ); fij ≥ 0;

n∑
j=1

fij ≤ wμi , 1 ≤ i ≤ m;
m∑

i=1

fij ≤ wνj , 1 ≤ j ≤ n. (2)

Euclidean distance is a metric and the total weight of
each block is constrained to be 1, therefore the EMD dis-
tance defined above is a metric [10] (i.e., non-negativity,
symmetry and triangle inequality properties hold). The
complexity of EMD is O(m3log(m)) [10] when the total
number of clusters in two blocks are the same, i.e., m = n.
The first matching stage produces the distances between all
pairs of blocks. Fig. 1 (c) presents a visual representation of
the 16× 49 distance matrix, where brighter intensities indi-
cate higher distance values between corresponding blocks.

2.2. Second Stage Matching

The second matching stage aims to align the blocks from
one query image x to corresponding blocks in its near du-
plicate image y. Unlike fixed block-to-block matching used
in SPM [6], one block may be matched to another block
at a different position and/or scale level to robustly handle
piecewise spatial translations and scale variations.

Suppose the total number of blocks in x and y are R and
C, and the pair-wise distances between any two blocks are
Drc, r = 1, . . . , R and c = 1, . . . , C. The alignment process
involves computing a flow matrix F̂rc comprising binary el-
ements, which represent unique matches between blocks xr

and yc. For cases when R = C, this can be formulated as
an integer programming problem embedded within a linear
programming framework as suggested by [16]. The follow-
ing theorem is utilized:

Theorem 1 ([4]) The Linear Programming problem,

F̂rc = argmin
Frc

C∑
r=1

C∑
c=1

FrcDrc, s.t.

0 ≤ Frc ≤ 1, ∀r, c;
C∑

c=1

Frc = 1, ∀r;
C∑

r=1

Frc = 1, ∀c, (3)

will always have an integer optimum solution when solved
with the simplex method

If R �= C, then assuming that R < C without loss of
generality, the EMD formulation for block matching has to
be broadened to

F̂rc = argmin
Frc

R∑
r=1

C∑
c=1

FrcDrc, s.t.

0 ≤ Frc ≤ 1, ∀r, c;
C∑

c=1

Frc = 1, ∀r;
R∑

r=1

Frc ≤ 1, ∀c. (4)

Nevertheless, the formulation in Eq (3) can be re-
established from Eq (4) by 1) adding C − R virtual blocks
in image x, and 2) setting Drc = 0, for all r satisfying
R < r ≤ C. Hence for any solution of Eq (3), a flow
matrix for Eq (4) can simply be obtained by removing the
elements related to the virtual blocks. An integer solution
for Eq (3) with virtual blocks can then be obtained via the
simplex method as indicated by Theorem 1, from which the
integer solution for Eq (4) may be easily extracted. An out-
come of this process is illustrated in Fig. 1(d), indicating the
matches of the local image areas in two images (e.g., face,
text, etc.).

Fig. 2 compares SPM [6] and TPM [16] with SAPM at
level-2, in which three blocks from each query image (i.e.,
Fig. 2(a)) and their matched counterparts in the near du-
plicate images (i.e., Fig. 2 (b), (c) and (d)) are highlighted
and associated by the same color outlines. Obvious spatial



shifts and scale variations (which also cause spatial shifts)
are observable between the near duplicate images. SPM
[6] use of fixed block-to-block matching does not handle
non-proximal spatial changes. We also converted TPM to
the spatial domain to obtain the result in Fig. 2(c), which is
equivalent to allowing matching between blocks in different
spatial positions across the two compared images. However,
the TPM results were still poor as the strict non-overlapped
block partitioning scheme does not cope with the full range
of spatial changes. When compared with SPM and TPM,
results from SAPM were much better, which demonstrates
its robustness against spatial shifts and scale variations.

It is worthwhile to point out that SAPM utilizes spatial
information because spatial proximity is preserved in higher
levels (e.g., level-1 and level-2). An advantage is that the in-
terest points in one spatial block are restricted to match to
only interest points within another block in SAPM at a cer-
tain level, instead of arbitrary interest points within the en-
tire image as is the case in the classical bag-of-words model
(e.g., SPM at level-0) [6].

Discussions: 1) Suppose we divide x and y into blocks
with the p-th and q-th partition category respectively, and
we denote the distance measure from xp to yq as S(xp →
yq), which can be similarly computed with Eq (1). There
are in total 25 distances different variations between the
two images: a) If the query image was divided into
non-overlapped blocks (e.g., L2-N) and the corresponding
database images were divided into overlapped blocks (e.g.
L2-O) at the same level, spatial shifts and some degree of
scale change are addressed (e.g., S(xL2−N → yL2−O)); b)
a broad range of scale variations is considered by matching
the query image and the database images at different lev-
els1(e.g., S(xL1−N → yL2−O); c) Ideally, SAPM can deal
with any variations from spatial shift and scale variation by
using more denser scales and spatial spacings.

2) From Eq (4), we have the following observations: 1) if
p = q, S(xp → yq) = S(yp → xq); 2) if p �= q, S(xp → yq)
may not be equal to S(yp → xq). This is obvious because
xp includes different blocks from xq , and also yp and yq .
The two distances are different because the block partition-
ing schemes are different, hence we describe the distance
measure as asymmetric.

3) For comparison, we also use another possible weight-
ing scheme, in which normalizing weights 1/R and 1/C
were applied to the two signatures to replace the unit
weights 1 in Eq (4). We denote the distance measure from
x to y in this case as S̃(xp → yq), which is again asymmet-
ric. We will compare the two different weighting schemes
for Image NDR in Sec. 4.1.

1Subimage cropping is also considered in this work (e.g.,
S(xL0−N → yL1−O) and S(xL1−O → yLO−N )). It is treated
as a special case of scale variation.

2.3. Fusion of Information from Different Levels for
NDR

As shown in previous pyramid matching work [3, 6, 7,
16], the best results can be achieved when multiple reso-
lutions are combined, even when results using individual
resolutions are not accurate. In this work, we directly fuse
the distances from different levels for NDR:

SFuse(x → y) = h0S(x0 → y0) +
L−1∑
l=1

hlS(x2l−1 → y2l), (5)

where hl is the weight for level-l. Similar to [16], we tried
two weighting schemes: 1) equal weights, and 2) unequal
weights. Our experiments demonstrate that the results from
different weighting schemes are comparable, similar to the
findings obtained for TPM [16].

3. Generalized Neighborhood Component
Analysis for Near Duplicate Detection

As a ranking problem, NDR can be directly conducted
based on the distance measures from SAPM. NDR is eas-
ier than NDD and amenable to the use of asymmetric dis-
tance measures. NDD, conversely, is essentially a two-class
classification problem, i.e., an image pair is classified as a
duplicate or non-duplicate, which in any case requires sym-
metric measures. For classification, we need a proper repre-
sentation for the image pair. A simple solution is to use the
difference vector of features in the two images, but we have
found that such raw differences are insufficient in detecting
duplicate images with large potential variations. Instead,
we use 45 matching distances as new input features for the
NDD task, with the expectation that near-duplicate image
pairs will cluster around the origin in this new feature space
while dissimilar image pairs will be far from the origin.

Recall that each weighting scheme in the second stage
matching outputs 25 distances, forming a combined 50 dis-
tances, except that S(xp → yp) = S̃(xp → yp) for p =
0, . . . , 4, which means there are only 45 unique distances.
Considering that the distance measures are asymmetric, we
represent the k-th pair of images (say images x and y) as
two samples, denoted as t1k ∈ R

45 and t2k ∈ R
45, where

t1k is comprised of the 45 distances from x to y, and t2k
is comprised of another 45 distances from y to x. The
same class label (1 or 0) is assigned for t1k and t2k. De-
note T as the total number of image pairs in the train-
ing set, then the training samples are then represented as
{t1, . . . , t2T } = {t11, t21, . . . , t1T , t2T }, and their class labels
are denoted as ci, i = 1, . . . , 2T . The index set of samples
with same class label as xi (excluding self) is denoted as
πi = {j|ci = cj , i �= j}. In the test stage, the classifica-
tion scores based on two samples t1k and t2k are combined
to estimate the likely class. While it is possible to use other



approaches (e.g., average or aggregation in a long vector) to
handle the asymmetric matching, we decide to use the dual
sample approach mentioned above so that patterns associ-
ated with individual feature of the asymmetric pair can be
preserved and used to detect near duplicates.

In order to select and appropriately emphasize the most
discriminative distance-based features, the feature vector
comprising the 45 distances is transformed into a lower di-
mensional feature space via a matrix A ∈ R

45×d, where d
is the dimension after feature selection. We need to decide
the transformation matrix A. It plays two roles here, that of
feature weighting and selection. Inspired by recent work on
Neighborhood Component Analysis [2], we develop a new
feature extraction algorithm, called Generalized Neighbor-
hood Component Analysis (GNCA), for this purpose.

Let ρij be the probability of sample xi being assigned
the class label of xj (based on a stochastic nearest neighbors
framework [2]) in the transformed feature space,

ρij =
exp(−‖AT ti − AT tj‖2)∑

k �=i exp(−‖AT ti − AT tk‖2)
, i �= j. (6)

Thus the probability that sample i is correctly classified is

τi =
∑
j∈πi

ρij , i = 1, . . . , 2T. (7)

The overall goal is to maximize the probability of correct
classification for all samples, and a reasonable objective
function for GNCA is defined as

G(A) =
2T∑
i=1

τα
i , (8)

where 0 < α < 1. If α = 1, then GNCA is exactly NCA.
Setting a lower α < 1 value effectively lowers the re-

duced probability target for the individual samples, such
that the final correct-classification probabilities among all
samples are more even; i.e. a set of samples with mid-
range probabilities is preferred to a configuration of highly
probable samples mixed with improbable samples. For
example, in a two-class classification problem with four
training samples, the solutions of (1.0, 1.0, 0.2, 0.2) or
(0.6, 0.6, 0.6, 0.6) for τi’s have the same value for the objec-
tive function with α = 1 and are equally desired; however,
setting α < 1 (e.g., α = 0.5) will lead to a preference for
the latter, resulting in all, rather than only half, the training
samples being correctly classified. Let tij = ti− tj , then the
gradient of G(A) with respect to A can be computed as,

∂G(A)
∂A

=
2T∑
i=1

ατα−1
i

∂τi

∂A

= 2αA

2T∑
i=1

(τα
i

2T∑
k=1

ρiktiktTik − τα−1
i

∑
j∈πi

ρijtijt
T
ij). (9)

Gradient descent is used to search for the best matrix
A. Based on the computed A from GNCA, the k-th pair
of images t1k and t2k are converted into the d dimensional

feature space as t
1
k = At1k and t

2
k = At2k. Subsequently, SVM

[13] is used for classification. In the testing stage, SVM
outputs two decision values η1

k and η2
k for the k-th pair of

images, and then the final decision value is computed as
follows:

ηk =
0.5

1 + exp(−η1
k)

+
0.5

1 + exp(−η2
k)

. (10)

4. Experiments

We conducted extensive experiments to test SAPM and
GNCA. The default dataset used is the Columbia Near Du-
plicate Image Database [17], in which the images are col-
lected from TRECVID 2003 corpus [12]. We also annotated
another near duplicate image database, referred to as New
Image Dataset, in which the images are chosen from the
key-frames of the TRECVID 2005 and 2006 corpus [12].
Moreover New Image Dataset contains both substantial spa-
tial translations and scale variations. In both datasets, there
are 150 near duplicate pairs (300 images) and 300 non-
duplicate images. When compared with the synthesized
data used in [5], image duplicates in our data set are more
challenging, as they are collected from real broadcast news
(rather than edits of the same image by the authors). We
will make our newly annotated database publicly available.

For performance evaluation in image NDR, we used all
near duplicate pairs as queries. For each query, other images
were ranked based on computed distances. The retrieval
performance was evaluated based on probability of success-
ful top-k retrieval [17, 19], i.e., P (k) = Qc/Q, where Qc is
the number of queries that rank their near duplicates within
the top-k positions, and Q is the total number of queries.

Considering that NDD is a two-class classification prob-
lem, we used Equal Error Rate (EER) for NDD, which mea-
sures the accuracy at which the number of false positives
and false negatives are equal. In our experiments, we ex-
tracted SIFT features via the Laplacian detector [8]. We
use the notation “L2-N → L2-O” to indicate a matching, in
which the query and database images are divided as L2-N
and L2-O respectively. We may also omit L2 and use “N →
O” to indicate matching at any level.

4.1. Comparison of SAPM under Different Config-
urations for Image NDR

We compared SAPM for Image NDR under different
overlapped and non-overlapped block partition schemes as
well as two weighting schemes in the second stage match-
ing (See Sec. 2.2). Tables 1 and 2 show the top-1 retrieval
performances from two weighting schemes (unit and nor-
malized weights) on the Columbia database and New Image



Query Image in Database
Image L0-N L1-N L1-O L2-N L2-O
L0-N 73.7/73.7 48.0/37.7 65.3/51.7 25.3/6.3 32.7/9.7
L1-N 39.0/61.3 74.7/74.7 78.0/71.7 62.0/20.7 65.7/25.3
L1-O 52.7/61.0 56.3/62.3 76.0/76.0 13.0/14.3 54.7/23.3
L2-N 16.7/46.7 46.0/63.3 65.3/65.7 69.7/69.7 79.0/65.7
L2-O 17.0/49.3 40.0/66.7 67.0/71.3 52.0/64.3 71.0/71.0

Table 1. Top-1 retrieval performance (%) with different block par-
tition categories on the Columbia database. Each table cell reports
performances (with unit weights) / (with normalized weights).

Dataset respectively. In both databases, the best results at
level-1 and level-2 (shown in bold) are obtained from “L1-
N → L1-O” and “L2-N → L2-O” with unit weights respec-
tively, which will be used as the default configuration in
later experiments. We also have the following observations.

With unit weights, there are four options at each level
(i.e., “N → N”, “O → N”, “N → O” and “O → O”): 1)“N
→ N” restricts shift distances to be integral multiples of
block size, and thus cannot handle shifts that is smaller
than the block size; 2) “O → N” may have some of the
query blocks matched to empty blocks padded in solving
the integer-flow EMD problem, thus losing the information
contained in those “lost” query blocks; 3) “N → O” is the
most natural matching scheme, which is analogous to the
block-based motion estimation method used in the MPEG
video compression standard [14].In the integer-flow EMD
solution, some blocks in the database image may be “lost” if
they are matched to padded empty blocks. But losing infor-
mation in database images is acceptable since our objective
is to find duplicates of the query image, not the database im-
age; 4) Conceptually, “O → O” provides the most flexible
matching, and its performance indeed is the second highest
among the above four options (as shown in Table 1 and 2).
However, it is still less effective than “N → O”. One possi-
ble explanation is that in this method the number of blocks
increases (e.g., from 16 to 49 at level 2), resulting in a higher
normalization total flow in EMD matching (denominator in
Eq (1)). This makes duplicates of partial image matches less
detectable (due to normalized lower EMD matched scores).

We also observe that the matching distances within the
same level are consistently better than those across differ-
ent levels, especially for the Columbia Dataset. However,
for the New Image Data Set, cross-level distances are sig-
nificantly better than for the Columbia Dataset. This can
be attributed to the Columbia Dataset having much smaller
scale variation than the New Image Dataset. In practice,
cross-level distances deal with greater scale variations, and
within-level distances address a smaller range of scale vari-
ations. Ideally, SAPM can deal with any scale variations
with denser scales and spatial spacings. Finally, the results
in each diagonal cell of Tables 1 and 2 are the same, be-
cause the distances computed by the two different weight-
ing schemes are expected to be identical in these cases.

Query Image in Database
Image L0-N L1-N L1-O L2-N L2-O
L0-N 82.0/82.0 62.3/36.0 77.0/55.3 29.3/5.7 41.3/7.0
L1-N 51.0/72.3 79.3/79.3 87.7/80.3 71.7/17.3 79.3/21.3
L1-O 68.0/69.7 65.0/70.0 84.3/84.3 13.0/14.7 70.3/22.3
L2-N 26.3/48.0 53.0/67.3 78.0/76.3 64.7/64.7 82.7/68.7
L2-O 28.7/51.7 52.0/71.0 79.3/80.7 46.3/64.3 78.3/78.3

Table 2. Top-1 retrieval performance (%) with different block par-
tition categories on New Image dataset. Each table cell reports
performances (with unit weights) / (with normalized weights).

L0-N → L1-N → L1-N L2-N→L2-N
L0-N (or L1-O) (or L2-O)

Single-level (SPM) 73.7 76.3 73.3
Single-level (TPM) 73.7 74.7 69.7

Single-level (SAPM) 73.7 78.0 79.0
Multi-level (SPM) 76.7 / 76.0 78.0 / 77.3 / 77.7
Multi-level (TPM) 75.0 / 75.3 75.7 / 74.7 / 75.3

Multi-level (SAPM) 77.7 / 78.0 79.3 / 80.0 / 80.7
Table 3. Top-1 retrieval performance (%) comparison of SAPM,
SPM and TPM from single level and multiple levels on Columbia
database. In the last three rows, the first number is from the equal
weighting scheme and the last one or two numbers in each cell are
from the unequal weighting scheme when fusing multiple levels.

4.2. Comparison of SAPM with SPM and TPM for
Image NDR

We compared SAPM with SPM and TPM for cases when
matching was done at individual levels as well as when fus-
ing multiple levels. We tried two weighting schemes for
cases when multiple resolutions are fused: 1) equal weights,
h0 = h1 = h2 = 1, and 2) unequal weights: h0 = 1 and h1 =
2 for fusing only the first two levels as well as h0 = h1 = 1,
h2 = 2 and h0 = 1, h1 = h2 = 2 for fusing all three levels.

The results are listed in Tables 3 and 4, in which the de-
fault configuration is used for SAPM at level-1 and 2. The
following observations can be made: 1) When compared
with SPM and TPM, the results from SAPM are better, ei-
ther at a single level (i.e., level-1 or level-2) or with multi-
level fusion. 2) For SAPM, in all cases better performance
can be achieved when multiple resolutions are combined,
even for resolutions that are independently poor; moreover,
there is no single level that is universally optimal in the two
databases. Therefore the best solution is to combine the
information from multiple levels in a principled way. 3)
For SAPM the results from different weighting schemes are
generally comparable, similar to findings from [16]. 4) The
results from TPM are worse than SPM, possibly because
near duplicate images retain somewhat similar spatial lay-
outs, which fits the SPM model. We also observed that the
best result from fusing the first two levels is better than that
from fusing all three levels for SPM and TPM in New Image
Dataset, which is consistent with prior work [6, 16].

On the Columbia database, our best top-1 retrieval result
is 80.7%, higher than the recent result of 79.0% in [19].
Furthermore, [19] involves complex matching of individual
interest points (possibly exceeding 1000) in two images.



L0-N → L1-N → L1-N L2-N→L2-N
L0-N (or L1-O) (or L2-O)

Single-level (SPM) 82.0 82.0 71.0
Single-level (TPM) 82.0 79.3 64.7

Single-level (SAPM) 82.0 87.7 82.7
Multi-level (SPM) 85.3 / 84.3 84.7 / 81.3 / 82.3
Multi-level (TPM) 84.0 / 82.7 83.0 / 79.3 / 80.7

Multi-level (SAPM) 87.3 / 88.0 88.3 / 88.0 / 88.0
Table 4. Top-1 retrieval performance (%) comparison of SAPM,
SPM and TPM from single level and multiple levels on New Image
Dataset. In the last three rows, the first number is from the equal
weighting scheme and the last one or two numbers are from the
unequal weighting scheme when fusing multiple levels.

Columbia Database New Image Dataset
SPM 84.8 ± 2.3 90.1 ± 1.0
TPM 85.7 ± 1.9 90.1 ± 1.3

SAPM 86.3 ± 2.6 91.7 ± 1.1
SAPM+NCA 88.8 ± 1.2 92.6 ± 2.8

SAPM+GNCA 91.2 ± 1.0 94.4 ± 2.2
Table 5. Equal Error Rate (EER %) Comparison of algorithms for
Image NDD on the Columbia database and Near Image Dataset.

4.3. GNCA for Image NDD

Finally we compared the feature selection method
GNCA with NCA for Image NDD. As baseline algorithms,
we used the 3 distances computed at 3 independent levels
from SPM, TPM and SAPM (default configuration) as in-
put features, and further applied SVMs for classification.
In SAPM+NCA and SAPM+GNCA, we used NCA and
GNCA to convert a 45-dimensional feature into 3D space
and then applied SVM. We randomly partitioned the data
into training and test sets. All experiments were repeated 10
times with different random training and test samples, with
means and standard deviations reported in Table 5. In each
run, we used 20 positive and 80 negative samples to train
the projection matrices in NCA and GNCA, while another
40 positive and 160 negative samples were used for SVM
training. For SPM, TPM and SAPM, all training samples
(60 positive and 240 negative) were used for SVM training.
The total number of positive and negative test samples are
90 and 4840 respectively. As observed from Table 5: 1)
SAPM outperforms SPM and TPM for Image NDD; 2) the
best results are from SAPM+GNCA, demonstrating GNCA
as an effective feature extraction algorithm to choose the
most critical matching components from SAPM, leading to
a framework robust to spatial shift and scale variation.

5. Conclusions

A multi-level spatial matching framework with two stage
matching is proposed to deal with spatial shifts and scale
variations for image-based near duplicate identification. For
the NDD task, the GNCA algorithm was proposed to aid in
feature extraction. Extensive experiments on the Columbia
near duplicate database and one new dataset clearly demon-
strate the strong potential of SAPM and GNCA. In the fu-
ture, we will study efficient and effective algorithms for

video near duplicate identification.
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