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ABSTRACT

To narrow the semantic gap in content-based image retrieval
(CBIR), relevance feedback is utilized to explore knowledge
about the user’s intention in finding a target image or a
image category. Users provide feedback by marking images
returned in response to a query image as relevant or irrel-
evant. Existing research explores such feedback to refine
querying process, select features, or learn a image classifier.
However, the vast amount of unlabeled images is ignored
and often substantially limited examples are engaged into
learning. In this paper, we address the two issues and pro-
pose a novel effective method called Relevance Aggregation
Projections (RAP) for learning potent subspace projections
in a semi-supervised way. Given relevances and irrelevances
specified in the feedback, RAP produces a subspace within
which the relevant examples are aggregated into a single
point and the irrelevant examples are simultaneously sepa-
rated by a large margin. Regarding the query plus its feed-
back samples as labeled data and the remainder as unla-
beled data, RAP falls in a special paradigm of imbalanced
semi-supervised learning. Through coupling the idea of rele-
vance aggregation with semi-supervised learning, we formu-
late a constrained quadratic optimization problem to learn
the subspace projections which entail semantic mining and
therefore make the underlying CBIR system respond to the
user’s interest accurately and promptly. Experiments con-
ducted over a large generic image database show that our
subspace approach outperforms existing subspace methods
for CBIR even with few iterations of user feedback.
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1. INTRODUCTION
Content-based image retrieval (CBIR) [17] has been an ac-

tive research area in the last decade. In the CBIR paradigm,
an image is usually represented by a set of low-level vi-
sual features, which often do not have direct connection to
high-level semantic concepts. The gap between high-level
semantic concepts and low-level visual features remains to
be the major obstacle hindering development of CBIR sys-
tems. Among several promising efforts, relevance feedback
[15][19][10][11][12][13][20][3] has been proposed to narrow
the gap. The relevance feedback mechanism is an iterative
learning process, which is conventionally treated as super-
vised learning [15][19][10][12]. During each iteration, the
user labels some images to be “relevant” or “irrelevant” ac-
cording to the query image he provides and the semantic tar-
get in mind. The system uses the labeled images as training
samples to successively refine the learning model and gives
better retrieval quality in the subsequent iteration.

Two key stages known in CBIR are querying and relevance
feedback. In the first stage, the user raises a query image as
an example of his interested“concept”and the CBIR system
later returns the most relevant images with appropriate fea-
tures (global or local) and a suitable distance metric. In the
second stage, the user labels the returned images as positive
or negative samples according to their relevances or irrel-
evances to the query. After that, the CBIR system either
refines the distance metric or learns a classification model,
which leads to another set of returned images. This pro-
cess will be iterated until the system’s outcome converges
to the user’s provided concept, gradually narrowing the gap
between the user’s intention and the response of the system.

In each iteration of relevance feedback, discriminative mod-
els such as support vector machines [16] have been used to
explore the positive and negative labeled samples to build
a decision function which is able to classify any unlabeled
samples as relevant or irrelevant. However, traditional CBIR
methods [19][10][12] greatly suffer from the scarcity of avail-
able labeled images. Characteristics of the vast amount of
images remaining in the database that have not been la-
beled are ignored. As we know, the performance of CBIR
depends on the generalization capacity of the adopted mod-
els on abundant unlabeled images to be retrieved. All these
aspects urge us to draw on the unlabeled samples.



Semi-supervised learning [4] (SSL) is a promising machine
learning technique designed for the situations where only
few labeled data are available and a large amount of data
are unlabeled. The core idea of SSL is to take advantage
of both labeled and unlabeled data in optimizing some ob-
jective functions considering various criteria such as consis-
tence with known labels, prediction smoothness, and local-
ity preservation. This technique can be readily applied to
a wide variety of real-world classification problems in which
unlabeled data can be easily obtained, while the acquisition
of labeled data is expensive. A family of semi-supervised
learning algorithms [22][21][2] have been proposed based on
spectral graph theory [6].

In general, the dimensionality of an image space is very
large, ranging from several hundreds to thousands. When
CBIR systems apply statistical techniques to interactive re-
trieval tasks, one crucial issue called the“curse of dimension-
ality”is usually encountered. The high dimensionality makes
many methods which are computationally manageable in
low dimensional spaces completely intractable. Hence, re-
ducing the dimensionality of the image space is necessary
when pursuing computationally manageable techniques for
CBIR. Due to the limitations related to the above two is-
sues, current CBIR solutions have not been able to achieve
satisfactory performance with adequate generalization capa-
bilities to diverse domains.

Recently, dimensionality reduction has also been a cen-
tral topic of machine learning research. It assumes that
a linear subspace or a nonlinear submanifold be embed-
ded in a high-dimensional ambient space such as an image
space. Since 2000, many nonlinear dimensionality reduc-
tion methods such as [18][14][1] have emerged in the sub-
area called “manifold learning” which attempts to discover
or learn the low-dimensional submanifold. However, many
existing methods are unsupervised and not applicable to new
data points. In contrast, linear dimensionality reduction or
subspace learning can be naturally extended to novel data
points outside the training set and is thus more compatible
with the setting described above for CBIR.

Two of the most popular subspace learning techniques
are PCA and LDA [7] which have been extensively used in
numerous computer vision and pattern recognition applica-
tions. PCA finds a maximum metric subspace for data rep-
resentation and reconstruction. LDA seeks a discriminative
subspace for classification. PCA is unsupervised while LDA
is fully supervised. Locality Preserving Projections (LPP)
[8] aim to find a set of projections on which data are pro-
jected with local geometric structures preserved. Following
LPP, Local Discriminant Embedding (LDE) [5] generalizes
standard LDA from the point of view of locality discrimina-
tion. LDE is essentially a supervised version of LPP.

Subspace learning is broadly exploited due to its ease of
implementation. A good subspace A readily sets up a dis-
tance metric as (xi − xj)

T AAT (xi − xj) between any two
points xi and xj in the subspace, and will alleviate the high-
dimensionality problem discussed above. To exploit the po-
tential of unlabeled data, subspace learning should be re-
designed to work under a semi-supervised setting. With
both unlabeled images and labeled images collected from rel-
evance feedback, image representation within semi-supervised
subspaces can better reveal the semantic structure of the
image data and meanwhile improve the generalization capa-
bilities of the underlying CBIR systems.

Interesting semi-supervised subspace learning algorithms
for CBIR have been developed recently, including Augmented
Relation Embedding (ARE) [13], Semantic Subspace Pro-
jection (SSP) [20] and Spectral Regression [3]. All of these
algorithms are based on a manifold assumption that images
reside in or close to a submanifold embedded in the am-
bient space. Analogous to the principle used in Laplacian
Eigenmaps [1], they employ the graph Laplacian [6] to push
nearby images close to each other in the desired subspaces
and maintain certain discriminating properties from the la-
beled images. These approaches have been shown useful
for CBIR in several experiments. Nonetheless, information
is lacking about the intrinsic dimensions of the subspaces
learned by these algorithms although they hold on the same
manifold assumption. Moreover, all of the prior work ignores
the intrinsic asymmetry in CBIR that requires to treat the
“relevant” and “irrelevant” sets unequally with more empha-
sis needed for the “relevant” set. The relevant images are
more important for semi-supervised subspace learning be-
cause they (along with the query image) jointly define the
underlying semantic target.

In this paper, we develop a novel framework for semi-
supervised subspace leaning in the context of CBIR with rel-
evance feedback. SSL has been applied to solve many com-
puter graphics and vision problems ranging from interactive
image colorization, interactive image segmentation, object
categorization, and object tracking. The proposed learning
framework successfully marries relevance feedback and SSL,
addresses the two fundamental problems mentioned earlier,
and is thus expected to reduce the gap between low-level
features and high-level semantics. Using the framework, we
propose a new algorithm Relevance Aggregation Projection
(RAP) to learn a set of semantically meaningful projections
which span the image subspace for retrieval. Our algorithm
relies on the simple geometric intuition that a good sub-
space is one within which the relevant examples including
the query are aggregated into a single point and the ir-
relevant examples are simultaneously separated by a large
margin. We construct a constrained quadratic optimization
problem whose solution generates such a subspace via QR
factorization and Laplacian regularization.

The rest of this paper is organized as: Section 2 reviews
the related work in subspace learning applied to CBIR. Sec-
tion 3 describes our subspace learning method based on rele-
vance aggregation. Section 4 presents an experimental study
on a large database composed of generic images. Conclu-
sions are drawn in Section 5.

2. RELATED WORK
We first describe a general framework for subspace learn-

ing, which unifies almost all existing subspace learning al-
gorithms from the viewpoint of optimization. We state that
learning a subspace A ∈ R

d×r (r ≤ d) for a special intent
may be formulated as maximizing the generalized Rayleigh
quotient

max
A
R(S1, S2, A) =

tr(AT S1A)

tr(AT S2A)
, (1)

where S1 and S2 are d×d real symmetric matrices. The op-
timal A is solved such that its columns are the eigenvectors
corresponding to the maximum eigenvalues of the general-
ized eigen-problem:

S1a = λS2a. (2)



The general framework eq. (1) shows that the two matri-
ces S1 and S2 play essential roles in designing subspace ap-
proaches. The choices of S1 and S2 can be very flexible, and
with different choices this framework will lead to many pop-
ular subspace algorithms, e.g., PCA, LDA, LPP and LDE.
Let us denote the total scatter matrix, the within-class scat-
ter matrix, and the between-class scatter matrix as St, Sw,
and Sb, respectively (St = Sw + Sb). When S1 = St and
S2 = I, the framework reduces to PCA. When S1 = Sb and
S2 = Sw, the framework becomes LDA.

To this end, we do not access the manifold assumption
to which diverse kinds of machine learning techniques such
as nonlinear dimensionality reduction and spectral cluster-
ing conform. The common characteristic of manifold-based
learning techniques is to resort to graphs and their Lapla-
cians to approximate the manifold structure of the observed
data. Specifically, we construct an undirected weighted graph
G(V,E, W ) over all n data points {xi}

n
i=1 ⊂ R

d, including
labeled and unlabeled, of which each point xi corresponds
to a node vi ∈ V in the graph. An edge (vi, vj) ∈ E is
established between two nodes vi and vj if the correspond-
ing two points xi and xj are close, i.e., they are among k
nearest neighbors of each other. Afterwards, we may weight
the edge (vi, vj) as Wij = exp(−‖xi−xj‖

2/σ2). This forms
the weight matrix W ∈ R

n×n as well as the diagonal degree
matrix D ∈ R

n×n where Dii =
∑

j Wij (notice Wii = 0).
It is noticeable that G and W can be redefined to charac-
terize certain statistical or geometric properties of the data
set. The k-NN graph and the weighting function of the
RBF kernel are the most intuitive ones. What’s more, we
can construct graphs supervisedly in contrast to traditional
unsupervised graph construction schemes.

Over a well-defined graph, dimensionality reduction is de-
scribed as mapping each node of the graph to a low dimen-
sional data vector which is expected to maintain connec-
tions between adjacent nodes. Obviously, the connections
are measured by the edge strengths, i.e. weights. This map-
ping process is called as graph embedding in [9]. Typically,
LPP introduces a local scatter matrix Slocal to implement
linear graph embedding:

Slocal =
1

2

n∑

i,j=1

(xi − xj)(xi − xj)
T Wij = XLXT , (3)

where X = [x1, · · · ,xn] is the sample matrix and L =
D −W ∈ R

n×n is the graph Laplacian matrix. As a key
ingredient of spectral graph theory [6], graph Laplacians
have received increasing attention in a lot of fields including
dimensionality reduction, clustering, and semi-supervised
learning. We find that LPP still falls in the general frame-
work eq. (1) since its objective is

ALPP = arg max
A

tr(AT XWXT A)

tr(AT XLXT A)
. (4)

For the sake of CBIR, we will briefly review three state-
of-the-art subspace learning algorithms: Augmented Rela-
tion Embedding (ARE) [13], Semantic Subspace Projection
(SSP) [20], and Spectral Regression (SR) [3]. All these algo-
rithms also conform to the general framework. Particularly,
the disadvantages of these algorithms will be pointed out
within this framework.

2.1 Augmented Relation Embedding (ARE)
To embody the semantic relations, ARE uses an extra

relational graph GARE to encode the label information de-
termined in the user’s relevance feedbacks. Suppose F+ de-
notes the index set of relevant images including the query
in one iteration of feedback, and F− denotes the index set
of irrelevant images. In a supervised way, ARE builds a
relational graph as:

W ARE
ij =





−α, i ∈ F+ ∧ j ∈ F+ ∧ i 6= j
1, (i ∈ F+ ∧ j ∈ F−) ∨ (i ∈ F− ∧ j ∈ F+)
0, otherwise

(5)
where α > 0 is a parameter in charge of the possibility of
unbalanced feedback. Note that W ARE

ii = 0.
ARE acquires the optimal subspace by:

AARE = arg max
A

tr(AT XLAREXT A)

tr(AT XLXT A)
, (6)

where LARE = DARE − W ARE is the graph Laplacian of
the new graph GARE . Clearly, ARE and LPP share and use
the same denominator of the general framework.

Now we analyze the intrinsic dimension r(< d) of the sub-
space AARE learned by ARE. In accordance with eq. (2),
AARE is composed of the eigenvectors associated with the r
largest eigenvalues of the eigen-system eig(XLAREXT , XLXT ).
Because LARE , L, XLAREXT and XLXT are all positive
semidefinite, the considered eigenvalues must not include
zeros in order to exclude trivial eigenvectors in AARE . As
shown in [6], L has at least one zero eigenvalue while LARE

has exactly n − |F+ ∪ F−| + 1 zero eigenvalues since the
maximal connected subgraph GARE({vi}i∈F+∪F−) is single-
connected. Consequently, we have

r = rank(AARE) ≤ min{rank(XLAREXT ), rank(XLXT )}

≤ min{rank(LARE), rank(L)}

≤ min{|F+ ∪ F−| − 1, n− 1}

= |F+ ∪ F−| − 1, (7)

which reveals that ARE can provide at most |F+ ∪ F−| − 1
nontrivial projections to span the desired subspace AARE .

2.2 Semantic Subspace Projection (SSP)
Following ARE, SSP also defines a relational graph GSSP

to encode the label information provided by the user’s rele-
vance feedbacks, that is

W SSP
ij =





1, (i ∈ F+ ∧ j ∈ F−) ∨ (i ∈ F− ∧ j ∈ F+)

0, otherwise
(8)

SSP looks for the optimal subspace by:

ASSP = arg max
A

tr(AT XW
T
LSSP WXT A)

tr(AT XL̃XT A)
, (9)

where LSSP is the graph Laplacian of GSSP and W =

D−1W . Let us define a diagonal matrix D̃ ∈ R
n×n with

the entries being the row sums of W + W
T
. Then we com-

pute L̃ = D̃ −W −W
T

that behaves as a new Laplacian

matrix corresponding to the weight matrix W + W
T
.

Similar to GARE , the maximal connected subgraph
GSSP ({vi}i∈F+∪F−) is also single-connected, which implies



rank(LSSP ) = |F+ ∪ F−| − 1. We herewith derive follows

r = rank(ASSP ) ≤ min{rank(XLSSP X
T
), rank(XL̃XT )}

≤ min{rank(LSSP ), rank(L̃)}

≤ min{|F+ ∪ F−| − 1, n− 1}

= |F+ ∪ F−| − 1, (10)

where X = XW
T
. So far, it turns out that SSP is also able

to learn at most |F+ ∪F−| − 1 nontrivial projection vectors
like ARE.

2.3 Spectral Regression (SR)
To utilize the label information, SR constructs a labeled

graph GSR as

W SR
ij =





1/|F+|, i ∈ F+ ∧ j ∈ F+

1/|F−|, i ∈ F− ∧ j ∈ F−

0, otherwise
(11)

in which two “classes” F+, F− are explicitly formed. Notice
W SR

ii 6= 0 for i ∈ F+∪F−. Define a diagonal matrix DSR ∈
R

n×n where DSR
ii =

∑n
j=1 W SR

ij .
The optimal subspace of SR is obtained by

ASR = arg max
A

tr(AT XW SRXT A)

tr (AT X(DSR + L)XT A)
, (12)

which invokes to solve the dense eigen-system eig(XW SRXT ,
X(DSR + L)XT ). When the image dimension d is rather
large, the eigen-solver takes high computational cost. Hence,
SR instead solves the sparse eigen-system:

ySR = arg max
y

yT W SRy

yT (DSR + L)y
, (13)

where W SR, DSR, L are all sparse due to the sparse con-
struction schemes of graphs GSR, G. According to each
learned eigenvector ySR, SR finds the optimal projection
vector using the following ridge regression

aSR = arg min
a
‖XT a− ySR‖2 + β‖a‖2, (14)

where β > 0 is the regularization parameter to control the
shrinkage of the above regularized least square problem.

We also derive the dimension of the SR subspace by

r = rank(ASR) = |{ySR}|

= min{rank(W SR), rank(DSR + L)}

= min{2, rank(DSR + L)} = 2. (15)

Thus, the dimension of the SR subspace is the number of
classes formed in W SR.

3. RELEVANCE AGGREGATION PROJEC-

TIONS (RAP)
In all CBIR systems, the involved learning process must

tackle a fundamental problem: what features are more rep-
resentative for explaining the current query concept than
the others. This refers to the problem of feature extrac-
tion. Projecting the original vector-formed samples into a
known subspace is linear feature extraction, which is the is-
sue we mainly address in this paper. Compared with other
machine learning problems, subspace learning for CBIR has
two challenges. 1) Small size of the labeled set: the labeled

images, specified by the user during each query session, are
very few compared with the image dimension and the size
of the database. Therefore, the unlabeled samples should
be utilized to prevent overfitting the few labeled samples.
2) Intrinsic asymmetry: the images labeled to be “relevant”
during a query session share some common semantic cues,
while the“irrelevant” images are different from the“relevant”
ones in different ways. Thus, the relevant images are more
important for the system to grasp the query concept. This
asymmetry requirement makes it necessary to treat the rel-
evant and irrelevant sets unequally with an emphasis on the
relevant one. Through reviewing previous work in Section
2, we find that both SSP and SR fail to engage the asym-
metry inherent in relevance feedback. SSP only emphasizes
the irrelevant set, while SR treats the relevant and irrelevant
sets equally, i.e., two classes. Our method will highlight the
difference between the relevant and irrelevant sets.

The subspace dimension is a key parameter for a great
number of projection-related methods: if the dimension is
too small, important features might concentrate on the same
projection direction, and if the dimension is too large, the
projections undergo noise and, in some cases, are unstable.
Since the user labels a very small fraction of image samples,
|F+ ∪ F−| ≪ n holds. The conclusions in eq. (7)(10)(15)
tell that any of ARE, SSP and SR produces a very low-
dimensional subspace. Especially, SR produces a 2D sub-
space. In this section, we will seek a subspace of higher
dimensions.

3.1 Learning Prototype

query margin =1

margin =1

(b) RAP(a) PCA

query

Figure 1: Schematic illustration of relevance aggre-
gation. For the query point, two points with the
same color and shape share the same label, and the
others take different labels. (a) 2D projections by
PCA; (b) 2D projections by RAP which optimizes
projections such that: (i) the positive points are ag-
gregated into a single point; (ii) the negative points
lie outside the unit square centered on the query,
with a margin of at least one unit distance at each
projection direction.

Regarding the query plus its feedback images as labeled
data and the remainder as unlabeled data, the feedback
scheme actually provides an imbalanced paradigm of semi-
supervised learning. Let us consider the relevant images (in-
cluding the query) in F+ as positive labeled samples, and the
irrelevant images in F− as negative labeled samples. Also
let l+ = |F+| and l− = |F−|. We form the sample matrix
X = [x1, · · · ,xl,xl+1, · · · ,xn] such that the first l = l+ + l−

columns correspond to the labeled samples.



As a basis of imbalanced semi-supervised subspace learn-
ing, the learning prototype is depicted in follows

min
A∈Rd×r

tr(AT XLXT A) (16)

s.t. AT xi =
∑

j∈F+

AT xj/l+, ∀ i ∈ F+

∥∥∥∥∥∥
AT (xi −

∑

j∈F+

xj/l+)

∥∥∥∥∥∥

2

≥ r,∀ i ∈ F−

Like LPP, this prototype also minimizes the local scat-
ter of tr(AT XLXT A) so that nearby samples are pushed
together in the target subspace A. What’s more, this pro-
totype enforces two constraints in eq. (16) to successfully
endow the subspace with a good property of margin maxi-
mization.

From the viewpoint of projection vectors {ai}
r
i=1 spanning

A, we parsimoniously transform eq. (16) to follows in terms
of each projection vector a ∈ R

d

min
a

aT XLXT a (17)

s.t. aT xi = aT c+, ∀ i ∈ F+

∥∥∥aT (xi − c+)
∥∥∥

2

≥ 1, ∀ i ∈ F−

in which c+ =
∑

j∈F+ xj/l+ is the positive center. Fig-
ure 1 schematically illustrates the geometrical intuition be-
hind eq. (17) that on each projection direction, (i) the pos-
itive points collapse into a single point; (ii) the negative
points and the aggregated positive points maintain a large
margin of at least one unit distance. Naturally, we call the
projections optimized by eq. (17) as Relevance Aggrega-
tion Projections since the relevant images, i.e. the positive
samples, are indeed aggregated.

3.2 Solution
Eq. (17) formulates a quadratically constrained quadratic

optimization problem, but the quadratic constraint is not
convex. So it is very hard to solve directly. Here we adopt
a heuristic trick to explore the solution.

3.2.1 Initialization with PCA

We intend to obtain initial projections using PCA. With-
out loss of generality, we assume that {xi}

n
i=1 be zero-centered.

This can be simply achieved by subtracting the mean vector
from all xis. Let U consist of the r < min{d, n} principle
eigenvectors of XXT , i.e., U = [u1, · · · ,ur], corresponding
to the eigenvalues λ1, · · · , λr in a decreasing order. Then we
define the diagonal matrix Λ = diag(λ1, · · · , λr) and have

UT XXT U = Λ. (18)

We calculate the whitened eigenvectors V ∈ R
d×r by

V = UΛ−1/2, (19)

such that

V T XXT V = Λ−1/2UT XXT UΛ−1/2 = I. (20)

For each column vector v ∈ R
d in V , eq. (20) leads to

vT XXT v = 1

=⇒
n∑

i=1

(
vT xi

)2

= 1

=⇒ |vT xi − vT xj | < 2, i, j = 1, · · · , n. (21)

3.2.2 Relevance Aggregation with QR Factorization

If the two constraints were removed, eq. (17) would be
easy to solve via routine optimization procedures. Prompted
by eq. (21), we may amend the 1D projections {vT xi}

l
i=1 of

the labeled points as

yi =





vT c+, i ∈ F+

vT xi, i ∈ F− ∧ |vT xi − vT c+| ≥ 1
vT c+ + 1, i ∈ F− ∧ 0 ≤ vT xi − vT c+ < 1
vT c+ − 1, i ∈ F− ∧ −1 < vT xi − vT c+ < 0

(22)
Suppose Xl = [x1, · · · ,xl] ∈ R

d×l and y = [y1, · · · , yl]
T .

We impose

XT
l a = y, (23)

which entirely satisfies the two constraints of eq. (17). Due
to l≪ d in this paper, QR factorization on Xl results in

Xl = [Q1 Q2]

[
R
0

]
= Q1R, (24)

where [Q1 Q2] ∈ R
d×d is a unitary matrix, forming a set

of bases in R
d. Furthermore, Q1 ∈ R

d×l, Q2 ∈ R
d×(d−l),

QT
1 Q2 = 0, and Rl×l is an invertable matrix.
The target projection vector a satisfying eq. (23) must be

expressed in

a = Q1b1 + Q2b2, (25)

and then we deduce

XT
l a = RT QT

1 (Q1b1 + Q2b2) = RT b1 = y

=⇒ b1 = (RT )−1y. (26)

With solved b1 and arbitrary b2, a in the expression of
eq. (25) implements relevance aggregation as well as margin
maximization.

3.2.3 Semi-supervised Learning with Regularization

Most semi-supervised learning approaches [22][21][2] try
to minimize a transductive energy function containing 1) a
fidelity term ensuring the consistency of the labels of graph
transduction and the prior labels provided by the user; and
2) a regularization term ensuring that neighboring data points
are likely to have the same labels. Again, we develop a novel
transductive framework to optimize projections instead of
labels, and the fidelity term is designed as ‖a− v‖2. Incor-
porating the objective function of eq. (17) into the regular-
ization term, our framework is formulated by

f(a) = ‖a− v‖2 + γaT XLXT a, (27)

where γ > 0 is the regularization parameter that controls the
trade-off between PCA initialization and Laplacian-driven
transduction. Plugging a = Q1b1 + Q2b2 into the above
equation, we have

min
b2

f(b2) = bT
2 (b2 − 2QT

2 v)

+ γbT
2 QT

2 XLXT (Q2b2 + 2Q1b1). (28)



The derivatives of eq. (28) with respect to b2 will vanish at
the minimizer b∗

2:

b∗
2 =

(
I + γQT

2 XLXT Q2

)−1 (
QT

2 v − γQT
2 XLXT Q1b1

)
. (29)

So far, we grasp a close-form solution a∗ = Q1b1 + Q2b
∗
2 to

the original optimization problem eq. (17).

3.3 Algorithm
The proposed prototype for imbalanced semi-supervised

subspace learning and its solution lead to the Relevance Ag-
gregation Projection (RAP) algorithm, which is summarized
in below. It is appreciable that the dimensionality r of the
RAP subspace is independent on the size of the labeled set
and can stretch until r = min{d, n− 1}.
−−−−−−−−−−−−−−−−−−−−−−−−−−−
1. Construct a k-NN graph: Construct an undirected,
weighted graph G upon all n input samples {x1, · · · ,xn}

1:

Wij =





exp (−
‖xi−xj‖

2

σ2 ), xi ∈ N
k(xj) ∨ xj ∈ N

k(xi)

0, otherwise
(30)

in whichN k(xi) denotes the set consisting of k-nearest neigh-
bors of xi. Calculate the graph Laplacian L = D−W where
Dii =

∑n
j=1 Wij , and the local scatter matrix S = XLXT .

2. PCA initialization: Run PCA on {x1, · · · ,xn} to get
the matrix V = [v1, · · · ,vr] ∈ R

d×r (r < d) such that
V T XXT V = I.
3. QR factorization: Perform QR factorization on the
labeled data matrix Xl ∈ R

d×l, resulting in Q1, Q2, R ac-
cording to eq. (24).
4. Transductive Regularization:

For j = 1 to r
given {vT

j xi}
l
i=1, use eq. (22) to form y;

b1 ←− (RT )−1y;

b2 ←−
(
I + γQT

2 SQ2

)−1 (
QT

2 vj − γQT
2 SQ1b1

)
;

aj ←− Q1b1 + Q2b2;
End.

5. Projecting: Form the matrix ARAP = [a1, · · · ,ar], and
then project any sample x ∈ R

d into an r-dimensional Eu-
clidean space with the new vector (ARAP )T x.
−−−−−−−−−−−−−−−−−−−−−−−−−−−

4. EXPERIMENTS
Interactive image search or relevance feedback is the pro-

cess which helps a user highlight his search intention and
target difficult concepts. This process often consists of par-
tially labeling a very small fraction of an image database and
iteratively refining some learning model using both labeled
and unlabeled data. Training this kind of learning models is
referred to as semi-supervised learning. In this section, we
evaluate several semi-supervised subspace learning models
with relevance feedback.

4.1 Features
The experiments were conducted on a large database with

10,000 generic images from the Corel gallery [12]. These
images were pre-grouped to 100 categories by high-level se-
mantics (defined by a large group of human observers as
standard groundtruths), such as autumn, balloon, bird, dog,

1Let {xi}
n
i=1 be zero-centered, i.e.,

∑n
i=1 xi = 0.

eagle, sunset, tiger, etc. Each category contains 100 images
and represents a semantic concept. Some images sampled
from category 1, 16, 33, and 49 are shown in Figure 2. Two
types of color features and two types of texture features are
used in the experiments, which are: the nine-dimensional
color moments in LUV color space (the first three-order
moments) and the 64-dimensional color histogram in HSV
color space; the ten-dimensional coarseness vector and the
eight-dimensional directionality. Therefore, we obtain a 91-
dimensional data vector for each image.

4.2 Relevance Feedback Scheme
We illustrate an automatic feedback scheme to simulate

a CBIR system. During each query session, the user looks
for images carrying the same concept with the query image.
Provided each submitted query, the CBIR system uses some
distance metric to rank the images in the database and con-
ducts five feedback iterations. At each feedback iteration,
the top-10 ranked images among the returned ones, which
have not been labeled in previous feedback iterations, are
labeled as the feedback images. Their label information, rel-
evant or irrelevant to the query in semantics, is employed for
re-ranking. Note that the images which have been selected
at previous iterations are excluded in later iterations.

4.3 Image Retrieval Performance
The statistical average top-N precision is used for perfor-

mance measurement. N is referred to as the scope of which
top-ranked images will be returned to the user. The preci-
sion is the ratio of the number of relevant images presented
to the user to the scope N . We use the precision-scope
curves [12] to testify the effectiveness of subspace-based im-
age retrieval approaches. This kind of curves capture the
precision with various scopes and hence take on an overall
performance evaluation. We also use the precision-iteration
curves to describe the precision dynamics with feedback it-
eration enumerated from 1 to 5.

To start relevance feedback, the Euclidean distance met-
ric in the original 91-dimensional space is used to rank im-
ages for the first time. After the user labels the top-10 re-
turned images, the first feedback iteration begins with ap-
plying RAP, SR, ARE, SSP, and PCA, respectively. Form
the distance metrics AAT with subspaces A learned by the
five algorithms, and then apply them to re-rank images.

To sustain fair comparisons, we construct the same k-NN
graph G for RAP, SR, ARE, and SSP where k is fixed to 6.
Set the parameters α = 2, β = 10−6, and γ = 0.01 in ARE,
SR, and RAP, respectively. The dimensions of ARE and
SSP subspaces change with the size of the labeled set, while
that of SR subspace is always 2. Both PCA and RAP use
76-dimensional subspaces since PCA contributes the initial
solution to RAP.

Figure 3 shows the precision-iteration curves as well as the
precision-scope curves for five subspace algorithms. Partic-
ularly, figure 4 shows the precision-scope curves correspond-
ing to four concepts. We find that the proposed RAP al-
gorithm consistently outperforms the other four algorithms
on the entire scope and at all feedback iterations, and that
ARE exhibits second best at the 5th feedback iteration. In
summary, these quantitative comparisons show a clear and
consistent gain of our subspace learning algorithm with re-
spect to the state-of-the-art subspace learning algorithms in
CBIR, especially over a small scope.



(a) (b) (c) (d)

Figure 2: Corel image examples. (a) Concept 1: Antelope; (b) Concept 16: Car; (c) Concept 33: EasterEgg;
(d) Concept 49: Jewelry.
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Figure 3: Comparisons of the retrieval performance of five subspace methods. (a) The precision-iteration
curves of RAP, SR, ARE, SSP, and PCA over top-100 retrieved images (scope=100); (b) the precision-scope
curves of RAP, SR, ARE, SSP, and PCA at feedback iteration 5.

5. CONCLUSIONS
In this paper, a new subspace learning technique, Rel-

evance Aggregation Projections (RAP), for content-based
image retrieval is proposed. It exploits the labeled images
provided in the user’s relevance feedback to learn a semantic
subspace within which the positive (relevant) samples col-
lapse to a single point while the negative (irrelevant) samples
are pushed outward with a large margin. Our technique falls
in the general category of imbalanced semi-supervised learn-
ing, and can be conveniently implemented in interactive im-
age search systems. Experimental results on the COREL im-
age database demonstrate the proposed method can achieve
a significantly higher precision for image retrieval than the
stat-of-the-art subspace learning algorithms even with few
feedback iterations.
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