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Abstract

Graph transduction methods label input data
by learning a classification function that is
regularized to exhibit smoothness along a
graph over labeled and unlabeled samples. In
practice, these algorithms are sensitive to the
initial set of labels provided by the user. For
instance, classification accuracy drops if the
training set contains weak labels, if imbal-
ances exist across label classes or if the la-
beled portion of the data is not chosen at ran-
dom. This paper introduces a propagation al-
gorithm that more reliably minimizes a cost
function over both a function on the graph
and a binary label matrix. The cost func-
tion generalizes prior work in graph trans-
duction and also introduces node normaliza-
tion terms for resilience to label imbalances.
We demonstrate that global minimization of
the function is intractable but instead pro-
vide an alternating minimization scheme that
incrementally adjusts the function and the la-
bels towards a reliable local minimum. Un-
like prior methods, the resulting propagation
of labels does not prematurely commit to an
erroneous labeling and obtains more consis-
tent labels. Experiments are shown for syn-
thetic and real classification tasks including
digit and text recognition. A substantial im-
provement in accuracy compared to state of
the art semi-supervised methods is achieved.
The advantage are even more dramatic when
labeled instances are limited.

Appearing in Proceedings of the 25 th International Confer-
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right 2008 by the author(s)/owner(s).

1. Introduction

Graph transduction refers to a family of algorithms
that achieve state of the art performance in semi-
supervised learning and classification. These meth-
ods incur a tradeoff between a classification func-
tion’s accuracy on labeled examples and a regularizer
term that encourages the function to remain smooth
over a weighted graph connecting the data samples.
The weighted graph and the minimized function ulti-
mately propagate label information from labeled data
to unlabeled data to provide the desired transductive
predictions. Popular algorithms for graph transduc-
tion include the Gaussian fields and harmonic func-
tions based method (GFHF) (Zhu et al., 2003) as well
as the local and global consistency method (LGC)
(Zhou et al., 2004). Other closely related methods
include the manifold regularization framework pro-
posed in (Sindhwani et al., 2005; Belkin et al., 2006)
where graph Laplacian regularization terms are com-
bined with regularized least squares (RLS) or sup-
port vector machine (SVM) function estimation cri-
teria. These methods lead to graph-regularized vari-
ants denoted as Laplacian RLS (LapRLS) and Lapla-
cian SVM (LapSVM) respectively. For certain syn-
thetic and real data problems, graph transduction ap-
proaches do achieve promising performance. However,
this article identifies several realistic settings and la-
beling situations where this performance can be com-
promised. An alternative algorithm which generalizes
the previous techniques is proposed by defining a joint
iterative optimization over the classification function
and a balanced label matrix.

Even if one assumes the graph structures used in the
above methods faithfully describe the data manifold,
graph transduction algorithms may still be misled by
problems in the label information. Figure 1 depicts
several cases where the label information leads to in-
valid graph transduction solutions for all the aforemen-
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tioned algorithms. The top row of Figure 1 shows a
separable pair of manifolds where unbalanced label in-
formation affects the propagation results. Although a
clear separation region is visible between the two man-
ifolds, the imbalance in the labels misleads the previ-
ous algorithms which prefer assigning points to the
class with the majority of labels. In the bottom row
of Figure 1, a non-separable problem is shown where
two otherwise separable manifolds are peppered with
noisy outlier samples. Here, the outliers do not be-
long to either class but once again interfere with the
propagation of label information. In both situations,
conventional transductive learning approaches such as
GFHF, LGC, LapRLS, and LapSVM fail to give ac-
ceptable labeling results.

In order to handle such situations, we extend the graph
transduction optimization problem by casting it as a
joint optimization over the classification function and
the labels. The optimization is solved iteratively and
remedies the instability previous methods seem to have
vis-a-vis the initial labeling. In our novel framework,
initial labels simply act as the starting value of the
label matrix variable which is incrementally refined
until convergence. The overall minimization over the
continuous classification function and the binary label
matrix proceeds by an alternating minimization over
each term separately and converges to a local mini-
mum. Moreover, to handle the imbalanced labels is-
sue, a node regularizer term is introduced to balance
the label matrix among different classes. These two
fundamental changes to the graph transduction prob-
lem produce significantly better performance on both
artificial and real datasets.

The remainder of this paper is organized as the follows.
In Section 2, we revisit the graph regularization frame-
work of (Zhou et al., 2004) and extend it into a bi-
variate graph optimization problem. A corresponding
algorithm is provided that solves the new optimization
problem by iterative alternating minimization. Section
3 provides experimental validation for the algorithm
on both toy and real classification datasets, including
text classification and digital recognition. Compar-
isons with leading semi-supervised methods are made.
Concluding remarks and a discussion are then pro-
vided in Section 4.

2. Graph Transduction

Consider the dataset X = (Xl,Xu) of labeled in-
puts Xl = {x1, · · · ,xl} and unlabeled inputs Xu =
{xl+1, · · · ,xn} along with a small portion of cor-
responding labels {y1, · · · , yl}, where yi ∈ L =
{1, · · · , c}. For transductive learning, the objective is

to infer the labels {yl+1, · · · , yn} of the unlabeled data
{xl+1, · · · ,xn}, where typically l << n. The graph
transduction methods define an undirected graph rep-
resented by G = {X , E}, where the set of node or ver-
tices is X = {xi} and the set of edges is E = {eij}.
Each sample xi is treated as the node on the graph
and the weight of edge eij is wij . Typically, one uses
a kernel function k(·) over pairs of points to recover
weights, in other words wij = k(xi,xj) with the RBF
kernel being a popular choice. The weights for edges
are used to build a weight matrix which is denoted
by W = {wij}. Similarly, the node degree matrix

D = diag ([d1, · · · , dn]) is defined as di =
n
∑

j=1

wij . The

binary label matrix Y is described as Y ∈ Bn×c with
Yij = 1 if xi has label yi = j and Yij = 0 oth-
erwise. This article will often refer to row and col-
umn vectors of such matrices, for instance, the ith row
and jth column vectors of Y are denoted as Yi· and
Y·j , respectively. The graph Laplacian is defined as
∆ = D −W and the normalized graph Laplacian is
L = D−1/2∆D−1/2 = I−D−1/2WD−1/2.

2.1. Consistent Label Propagation

Graph based semi-supervised learning methods propa-
gate label information from labeled nodes to unlabeled
nodes by treating all samples as nodes in a graph and
using edge-based affinity functions between all pairs
of nodes to estimate the weight of each edge. Most
methods then define a continuous classification func-
tion F ∈ Rn×c that is estimated on the graph to min-
imize a cost function. The cost function typically en-
forces a tradeoff between the smoothness of the func-
tion on the graph of both labeled and unlabeled data
and the accuracy of the function at fitting the label
information for the labeled nodes. Such is the case for
a large variety of graph based semi-supervised learn-
ing techniques ranging from the the mincuts method
(Blum & Chawla, 2001), the Gaussian fields and har-
monic functions (GFHF) method, and the local and
global consistency (LGC) method. A detailed survey
of these methods is available in (Zhu, 2005).

In trading off smoothness for accuracy, both GFHF
and LGC approaches attempt to preserve consistency
on the data manifold during the optimization of the
classification function. The loss function for both
methods involves the additive contribution of two
penalty terms the global smoothness Qsmooth and local
fitness Qfit as shown below:

F∗ = arg min
F

Q(F) = arg min
F

{Qsmooth(F) + Qfit(F)}

(1)
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(a) (e)(d)(c)(b)

Figure 1. A demonstration with artificial data of the sensitivity graph transduction exhibits for certain initial label settings.
The top row shows how imbalanced labels adversely affect even a well-separated 2D two-moon dataset. The bottom row
shows a 3D two-moon data where graph transduction is again easily misled by the introduction of a cloud of outliers. Large
markers indicate known labels and the two-color small markers represent the predicted classification results. Columns
depict the results from (a) the GFHF method (Zhu et al., 2003); (b) the LGC method (Zhou et al., 2004); (c) the LapRLS

method (Belkin et al., 2006); (d) the LapSVM method (Belkin et al., 2006); and (e) Our method (GTAM).

In particular, recall that LGC uses an elastic regular-
izer framework with the following cost function (Zhou
et al., 2004).

Q(F) =
1

2

(

n
∑

i,j=1

wij

∥

∥

∥

∥

Fi·√
Dii

− Fj·√
Djj

∥

∥

∥

∥

2

+ µ

n
∑

i=1

‖Fi· − Yi·‖2

)

(2)

where the coefficient µ balances global smoothness and
local fitting penalty terms. If we set µ = ∞ and use
a standard graph Laplacian for the smoothness term,
the above framework reduces to the harmonic function
formulation as shown in (Zhu et al., 2003).

While LGC and GFHF formulations remain popular
and have been empirically validated in the past, it is
possible to discern some key limitations. First, the
optimization can be broken up into a separate paral-
lel problems since the cost function decomposes into
terms that only depend on individual columns of the
matrix F. Because each column of F indexes the la-
beling of a single class, such a decomposition reveals
that biases may arise if the input labels are dispropor-
tionately imbalanced. In practice, both propagation
algorithms tend to prefer predicting the class with the
majority of labels. Second, both learning algorithms
are extremely dependent on the initial labels provided
in Y. This is seen in practice but can also be explained
mathematically by fact that Y is starts off extremely
sparse and has many unknown terms. Third, when
the graph contains background noise and makes class
manifolds nonseparable, these graph transduction ap-
proaches fail to output reasonable classification results.
These difficulties were illustrated in Figure 1 and seem
to plague many graph transduction approaches. How-

ever, the proposed method, graph transduction via al-
ternating minimization (GTAM) appears resilient.

To address these problems, we will make modifications
to the cost function in Eq. 1. The first one is to explic-
itly show the optimization over both the classification
function F and the binary label matrix Y:

(F∗,Y∗) = arg min
F∈Rn×c,Y∈Bn×cQ(F,Y). (3)

Where Bn×c is the set of all binary matrices Y of size
n×c that satisfy

∑

j Yij = 1 and, for the labeled data
xi ∈ Xl, Yij = 1 if yi = j. More specifically, our loss
function is:

Q(F,Y) =
1

2
tr
{

FT LF + µ(F−VY)T (F−VY)
}

(4)
where we have introduced the matrix V which is a
node regularizer to balance the influence of labels from
different classes. The matrix V = diag(v) is a function
of the current label matrix Y:

v =

c
∑

j=1

Y·j ⊙D~1

YT
·jD~1

(5)

where the symbol ⊙ denotes the Hadamard product
and column vector ~1 represents ~1 = [1 · · · 1]T . This
node regularizer permits us to work with a normalized
version of the label matrix Z defined as: Z = VY.

By definition, we see that the normalized label matrix
satisfies

∑

i Zij = 1. Using the normalized label ma-
trix Z in a graph regularization allows labeled nodes
with high degree to contribute more during the graph
diffusion and label propagation process. However, the
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total diffusion of each class is kept equal and normal-
ized to be one. Therefore, the influence of different
classes is balanced even if the given class labels are
imbalanced. If class proportion information is known
a priori, it can be integrated by scaling the diffusion
with the prior class proportion. However, because of
the nature of graph transduction and unknown class
prior knowledge, equal class balancing leads to gen-
erally more reliable solutions than label proportional
weighting. This intuition is in line with prior work
that uses class proportion information in transductive
inference such as (Chapelle et al., 2007) where class
proportion is enforced as a hard constraint on the la-
bels or in (Mann & McCallum, 2007) where such infor-
mation is used as a regularizer. We next discuss the
alternating minimization procedure which is the key
modification to the overall framework.

2.2. Alternating Minimization Procedure

In our proposed graph regularization framework, the
cost function involves two variables to be optimized.
While simultaneously recovering both solutions is in-
tractable due to the mixed integer programming prob-
lem over binary Y and continuous F, we will pro-
pose a greedy alternating minimization approach. The
first update of the continuous classification function F

is straightforward since the resulting cost function is
convex and unconstrained allowing us to recover the
optimal F by setting the partial derivative ∂Q

∂F
to be

zero. However, since Y ∈ B is a binary matrix and
subject to linear constraints of the form

∑

j Yij = 1,
the other step in our alternating minimization requires
solving a linearly constrained max cut problem which
is NP (Karp, 1972). Due to the alternating minimiza-
tion outer loop, investigating guaranteed approxima-
tion schemes (Goemans & Williamson, 1995) to solve
a constrained max cut problem for Y is unjustified
due to the solution’s dependence on the dynamically
varying classification function F during the alternat-
ing minimization procedure. Instead, we use a greedy
gradient based approach to incrementally update Y,
while keeping the classification function F at the corre-
sponding optimal setting. Moreover, because the node
regularizer term V normalizes the labeled data, we
also interleave updates of V based on the revised Y.

Minimization for F :
The classification function F ∈ Rn×c is continuous and
its loss terms are convex allowing the minimum to be
recovered by zeroing the partial derivative:

∂Q

∂F∗ = 0 =⇒ LF∗ + µ(F∗ −VY) = 0

=⇒ F∗ = (L/µ + I)−1VY = PVY(6)

where we denote P = (L/µ + I)−1 as the propagation
matrix and assume the graph is symmetrically built
(i.e. L = LT ).

Greedy minimization of Y:

To update Y, first replace F in Eq. 4 by its optimal
vlue F∗ from the solution of Eq. 6.

Q(Y)=
1

2
tr(YT VT PT LPVY (7)

+µ(PVY −VY)T (PVY −VY))

=
1

2
tr
(

YT VT
[

PT LP + µ(PT − I)(P− I)
]

VY
)

The optimization still involves the node regularizer V

in Eq. 5, which depends on Y and normalizes the la-
bel matrix over columns. Due to the dependence on
the current estimate of F and V, only an incremental
step will be taken greedily to reduce Q(Y). In each
iteration, we find position (i∗, j∗) in the matrix Y and
change the binary value of Yi∗j∗ from 0 to 1. The di-
rection with largest negative gradient guides our choice
of binary step on Y. Therefore, we need to evaluate
‖ ▽QY‖ and find the largest negative value to deter-
mine (i∗, j∗).

Note that setting Yi∗,j∗ = 1 is equivalent to a similar
operation on the normalized label matrix Z by setting
Zi∗,j∗ = ǫ, 0 < ǫ < 1, and Y,Z have one to one corre-
spondence. Thus, the greedy optimization of Q with
respect to Y is equivalent to greedy minimization of
Q with respect to Z. More formally: ∂Q

∂Y
= ∂Q

∂Z

∂Z

∂Y
and

with straightforward algebra we see that:

(i∗, j∗) = arg min
i,j

∂Q

∂Y
= arg min

i,j

∂Q

∂Z
(8)

Then we can rewrite the loss function using the vari-
able Z as:

Q(Z) =
1

2
tr
(

ZT
[

PT LP + (PT − I)(P− I)
]

Z
)

=
1

2
tr
(

ZT AZ
)

(9)

where A represents A = PT LP + (PT − I)(P − I).
Notice that A is symmetric if the graph is symmetri-
cally built. We derive the gradient of the above loss
function and recover it with respect to Y as:

∂Q

∂Z
= AZ = AVY (10)

As described earlier, we search the gradient matrix
∇ZQ to find the minimal element for updating

(i∗, j∗) = arg min
xi∈Xu,1≤j≤c∇Zij

Q (11)
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Then update the label matrix by setting Yi∗j∗ = 1.
Because of the binary nature of Y, we simply set
Yi∗j∗ = 1 instead of using a continuous gradient ap-
proach. In the t + 1th iteration, the node regularizer
vt+1 can be recalculated with the updated Yt+1.

The update Y is indeed greedy. Therefore, it could os-
cillate and backtrack from predicted labelings in pre-
vious iterations without convergence guarantees. We
propose a straightforward way to guarantee conver-
gence and avoid backtracking, inconsistency or un-
stable oscillation in the greedy propagation of labels.
Once an unlabeled point has been labeled, its labeling
can no longer be changed. Thus, we remove the most
recently labeled point (i∗, j∗) from future considera-
tion and only permit the algorithm to search for the
minimal gradient entries corresponding to the remain-
ing unlabeled examples. Thus, to avoid changing the
labeling of previous predictions, the new labeled node
xi∗ will be removed from Xu and added to Xl.

In the following, we summarize the updating rules from
step t to t + 1 in the alternative minimization scheme.
Although the optimal F∗ is being computed in each
iteration as shown in Eq. 6, we do not explicitly need
to update it. Instead, it is implicitly used in Eq. 8 to
directly update Y.

∇ZQ
t = Adiag(vt)Yt (12)

(i∗, j∗) = arg min
xi∈Xu,1≤j≤c∇Zij

Qt

Yt+1
i∗j∗ = 1

vt+1 =
c
∑

j=1

Yt+1
·j ⊙D~1

Yt+1
·j

T
D~1

X t+1
l ←− X t

l + xi∗ ; X t+1
u ←− X t

u − xi∗

The procedure above repeats until all points have been
labeled.

2.3. Algorithm Summary and Convergence

From the above discussion, our method is unique
in that it optimizes the loss function over both
continuous-valued F space and binary-valued Y space.
Starting from a few given labels, the method itera-
tively and greedily updates the label matrix Y, node
regularizer v, and gradient matrix ∇ZQ. In each indi-
vidual iteration, new labeled samples are obtained to
drive a better graph propagation in the next iteration.
In our approach, we directly acquire new labels instead
of calculating F∗ and then conducting a mapping to Y,
which is the regular procedure in other graph transduc-
tion methods like LGC and GFHF. This unique feature
makes the proposed algorithm very efficient since we
only update the gradient matrix ∇ZQ in each itera-

tion. Furthermore, similar to the graph superposition
approach introduced in (Wang et al., 2008), the cal-
culation of the node regularizer v and gradient matrix
∇ZQ can be more efficient by incremental updating as
a result of the newly gained labels.

Due to greedy assignment, the algorithm can only loop
the alternative minimization (or the gradient compu-
tation equivalently) at most n−l times. The update of
the graph gradient, finding the largest element in the
gradient and the matrix algebra involved can be done
efficiently by modifying only a single entry in Y per
loop. Each minimization step over F and Y thus re-
quires O(n2) time and the total runtime of the greedy
GTAM algorithm is O(n3). Empirically, the value of
the loss function Q decreases rapidly in the the first
dozen iterations and achieves steady convergence af-
terward. This phenomenon indicates that the label
propagation loop could be early stopped by solving for
the labels from the optimized F∗ (Eq. 6) after only a
few iterations. The above algorithm chart summarizes
the proposed GTAM method.

3. Experiments

In this section, we demonstrate the superiority of the
proposed GTAM method in comparison to state of the
art semi-supervised learning methods over both syn-
thetic and real data. For instance, on the WebKB
data, previous work shows that LapSVM and LapRLS
are better than other semi-supervised approaches, such
as Transductive SVMs TSVM (Joachims, 1999) and
∇TSVM. Therefore, we only compare our method
with LapRLS, LapSVM and two related methods,
LapRLSjoint and LapSVMjoint (Sindhwani et al.,
2005). In all experiments, we used the same param-
eter settings reported in the literature. The GTAM
approach only requires a single µ parameter which con-
trols the tradeoff between the global smoothness and
local fitting terms in the cost function. Although our
experiments show that GTAM is fairly robust to the
setting of µ, we set µ = 99 throughout all experiments.

For all real implementations of graph-based methods,
one needs a construction method that builds a graph
from the training data X , which involves a proce-
dure for computing the weight of links via a kernel or
similarity function. Typically, practitioners use RBF
kernels for image recognition and cosine distances for
text classification (Zhou et al., 2004; Ng et al., 2001;
Chapelle et al., 2003; Hein & Maier, 2006). However,
finding adequate parameters for the kernel or similar-
ity function, such as the RBF kernel size δ, is not
always straightforward particularly if labeled data is
scarce. Empirical evidence has shown that the prop-
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Algorithm 1 Graph Transduction via Alternating
Minimization (GTAM)

Input: data set X = {x1, · · · ,xl,xl+1, · · · ,xn},
labeled subset Xl = {x1, · · · ,xl}, unlabeled sub-
set Xu = {xl+1, · · · ,xn}, labels {y1, · · · , yj , · · · , yl},
where yj ∈ L = {1, · · · , l}. Affinity matrix W =
{wij}, node degree matrix D, initial label matrix
Y0;
Initialization:

iteration counter t = 0;
normalized graph Laplacian L = D−1/2∆D−1/2;
propagation matrix P = (L/µ + I)−1;
matrix A = PT LP + (PT − I)(P− I);

node regularizer v0 =
∑c

j=1

Y
0
·j⊙D~1

Y
0
·j

T
D~1

.

repeat

Compute graph gradient:
Zt = diag(vt)Yt, ∇ZtQt = AZt;

Find the optimal element in ∇ZtQt:
(i∗, j∗) = arg min

xi∈Xu,1≤j≤c∇Zij
Qt;

Update label matrix to obtain Yt+1 by setting:
Yt+1

i∗j∗ = 1; also yi∗ = j∗;
Update node regularizer by:

vt+1 =
∑c

j=1

Y
t+1

·j
⊙D~1

Y
t+1

·j

T
D~1

;

Remove xi∗ from Xu: X t+1
u ←− X t

u − xi∗ ;
Add xi∗ to Xl: X

t+1
l ←− X t

l + xi∗ ;
Update iteration counter: t = t + 1;

until X t
u = ∅

Output:

The labels of unlabeled samples {yl+1, · · · , yn}.

agation results highly depend on the kernel param-
eter selection. Motivated by the approach reported
in (Hein & Maier, 2006), we use an adaptive kernel
size based on the mean distance of k-nearest neigh-
borhoods (k = 6) for the experiments on real USPS
handwritten digit data. On the WebKB data, we use
the same graph construction suggested by (Sindhwani
et al., 2005). For each dataset, the same graph is used
for all the compared transductive learning approaches.

3.1. Two Moon Synthetic Data

Figure 1 illustrated synthetic experiments on 2D and
3D two-moon data. Despite the near-perfect classifica-
tion results reported on such datasets in the literature
(Zhou et al., 2004), we showed how small perturba-
tions to the problem can have adverse effects on prior
algorithms. The prior methods are overly sensitive to
locations of the initial labels, ratios of the two-class
labels, and the level of ambient noise or outliers.

A more thorough experimental study is also possible

(b)(a)

Figure 2. Performance comparison of LGC, GFHF,
LapRLS, LapSVM, and GTAM on noisy 3D two moon
data. Only one label is given for one class, while the other
class has a varying number of labels, shown as imbalance
ratio on the horizontal axis: (a) The mean of the test
error; (b) The standard deviation of the test error.

for the two-moon data by exploring the effect of class
imbalance. We start by fixing one class to have one
observed label and select r labels from the other class.
Here, r is also the imbalance ratio and the range we
explore is 1 ≤ r ≤ 20. These experiments use the 3D
noisy two-moon data which contain 300 positive and
300 negative sample points as well as 200 additional
background noise samples. Multiple round tests (100
trails) are evaluated for each imbalance condition by
calculating the average prediction accuracy on the rel-
evant 600 samples. For a fair comparison, we use the
same graph Laplacian, which is constructed using k-
NN (k = 6) neighbors with RBF weights. Moreover,
the parameter for LGC is set as α = 0.99. The param-
eters for LapRLS and LapSVM are γA = 1, γI = 1.

Figure 2 demonstrates the performance advantage of
the proposed GTAM approach versus the LGC, GFHF,
LapRLS, and LapSVM methods. From the figure, we
can conclude that all the four strawman approaches
are extremely sensitive to the initial labels and label
class imbalance since none of them can produce per-
fect accuracy and the error rates of LGC and GFHF
are dramatically increased when the label class be-
comes more imbalanced even though more information
is being provided to the algorithm. However, GTAM is
clearly superior, achieving the best accuracy regardless
of the imbalance ratio and despite contamination with
noisy samples. In fact only 1 or 2 of the 100 trails for
each individual setting of r were imperfect using the
GTAM method.

3.2. WebKB Dataset

For validation on real data, we first evaluated our
method using the WebKB dataset, which has been
widely used in semi-supervised learning experiments
(Joachims, 2003; Sindhwani et al., 2005). The WebKB
dataset contains two document categories, course and
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non-course. Each document has two types of informa-
tion, the webpage text content called page representa-
tion and link or pointer representation. For fair com-
parison, we applied the same feature extraction proce-
dure as discussed in (Sindhwani et al., 2005), obtained
1051 samples with 1840-dimensional page attributes
and 3000 link attributes. The graph was built based
on cosine-distance neighbors with Gaussian weights
(number of nearest neighbors is 200 as in (Sindhwani
et al., 2005)). We compared our method with four
of the best known approaches, LapRLS, LapSVM,
and the two problem specific methods, LapRLSjoint ,
LapSVMjoint reported in (Sindhwani et al., 2005). All
the compared approaches used the same graph con-
struction procedure and all parameter settings were set
according to (Sindhwani et al., 2005), in other words
γA = 10−6, γI = 0.01. We varied the number of la-
beled data to measure the performance gain with in-
creasing supervision. For each fixed number of labeled
samples, 100 random trails were tested. The means of
the test errors are shown in Figure 3.

Figure 3. Performance comparison on text classification
(WebKB dataset). The horizontal axis represents the num-
ber of randomly observed labels (guaranteeing there is at
least one label for each class). The vertical axis shows the
average error rate over 100 random trials.

As the Figure reveals, the proposed GTAM method
achieved significantly better accuracy than all the
other methods, except for the extreme case when only
four labeled samples were available. The performance
gain grows rapidly when the number of labeled sam-
ples increases, although in some cases the error rate
does not drop monotonically.

3.3. USPS digit data

We also evaluated the proposed method in an im-
age recognition task. Specifically, we used the data
in (Zhou et al., 2004) for handwritten digit classifi-

cation experiments. To evaluate the algorithms, we
reveal a subset of the labels (randomly chosen and
guaranteeing at least one labeled example is available
for each digit). We compared our method with LGC
and GFHF, LapRLS, and LapSVM. The error rates are
calculated based on the average over 20 trials.

Figure 4. Performance comparison on handwritten digit
classification (USPS database). The horizontal axis shows
the total number of randomly observed labels (guarantee-
ing there is at least one label for each class). The vertical
axis shows the average error rate over 20 random trials.

From Figure 4, we can conclude that GTAM signifi-
cantly improved the classification accuracy, compared
to the other approaches, especially when very few la-
beled samples are available. The mean accuracies of
GTAM are consistently low for different numbers of
labels and the standard deviation values are also very
small (10−4 level). This demonstrates that the GTAM
method is insensitive to the numbers and specified lo-
cations of the initially given labels. Only 1% of the
test digit images were mislabeled. These failure cases
are presented in Figure 5 and are often ambiguous or
extremely poorly drawn digits. Compared to the per-
formance on WebKB dataset shown in Figure 3, the
USPS digit database experiments exhibit even more
promising results. One possible reason is that the
USPS digit dataset has relatively more samples (3874)
and a lower feature dimensionality (256), compared to
the WebKB dataset (which has 1840 samples in 4800
dimensions). Therefore the graph construction pro-
cedure is more reliable and the estimation of graph
gradients in our algorithm is more robust.

Figure 5. USPS handwritten digit samples which are incor-
rectly classified.
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4. Conclusion and Discussion

Existing graph-based transductive learning methods
hinge on good labeling information and can easily be
misled if the labels are not distributed evenly across
classes, if the choice of initial label locations is varied
or if excessive noise or outliers corrupt the underlying
manifold structure. These degenerate settings seem
to plague real world problems as well, compromising
the performance of state-of-the-art graph transduction
methods. Our experiments over synthetic data sets
(two moon data sets) and real data sets (USPS dig-
its and WebKB) confirm the shortcomings of existing
tools.

This article addresses these shortcomings and pro-
poses a novel graph based semi-supervised learning
method, graph transduction via alternating minimiza-
tion (GTAM). Therein, both the classification function
and the label matrix are treated as variables in a cost
function that is iteratively minimized. While the op-
timal classification function can be estimated exactly,
greedy optimization is applied to update the label ma-
trix. The algorithm iterates an alternating minimiza-
tion between both variables and is guaranteed to con-
verge via a greedy scheme. In each individual iteration,
through the graph gradient, the unlabeled node with
the largest cost reduction is labeled. We gradually up-
date the label matrix by adding more labeled samples
while keeping the classification function at its optimal
setting. Furthermore, we enforce normalization of the
label matrix to avoid degeneracies. This results in an
algorithm that can cope with all the aforementioned
degeneracies and in practice achieves significant gains
in accuracy while remaining efficient and cubic in the
number of samples. Future work will include out of
sample extensions of this method such that new data
points can be added to the training and test set with-
out requiring a full retraining procedure.
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