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ABSTRACT
The amount of available digital multimedia has seen expo-
nential growth in recent years. While advances have been
made in the indexing and searching of images and videos,
less focus has been given to aiding users in the interactive
exploration of large datasets. In this paper a new frame-
work, called visual islands, is proposed that reorganizes im-
age query results from an initial search or even a general
photo collection using a fast, non-global feature projection to
compute 2D display coordinates. A prototype system is im-
plemented and evaluated with three core goals: fast brows-
ing, intuitive display, and non-linear exploration. Using
the TRECVID2005[15] dataset, 10 users evaluated the goals
over 24 topics. Experiments show that users experience im-
proved comprehensibility and achieve a significant page-level
precision improvement with the visual islands framework
over traditional paged browsing.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Visual Islands, image browsing, visualization, image and video re-
trieval

1. INTRODUCTION
The importance of video indexing and search has dramatically

increased as web and user-generated content continues to grow.
When searching video content for a specific target, visually in-
specting many lines and pages of irrelevant results actually wastes
a user’s time. Modern multimedia information retrieval systems re-
turn thousands of candidate results, often providing a high recall
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while sacrificing precision. While this approach is simple and easy
to implement, the burden on the user is tremendous. This burden
is exacerbated when the search interface is small with very little
usable landscape, as in mobile devices. Authors in [4],[12] attempt
to solve this problem by only showing the most interesting parts
of an image. Using approximate human attentional models, faces,
complicated textures, and non-static backgrounds are identified to
be important regions of interest. After resizing and cropping out
these regions, they are inherently more compact and suitable for
smaller displays. This solution, although innovative, may cause
some dissatisfaction if the user is instead searching for results with
less object-centric content, like images of majestic scenes or a very
complicated urban street.
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Figure 1: Comparison of conventional and new
approaches using dimensionality reduction. Con-
ventional methods analyze features for all results
whereas the new algorithm minimizes disruption of
original result ranking with page-based dimension-
ality reduction.

Works in result visualization often employ feature reduction as
a technique to map images with high-dimensional raw-features to
a fixed display, as demonstrated in fig. 1. To provide grounds for
equal comparison in this paper, all methods are assumed to start
with the results either from an executed user query or a personal.
In the conventional pipeline, a system using dimensionality reduc-
tion performs a global analysis over all results and then applies a
clustering or dimensionality reduction algorithm. Afterwards, ei-
ther pagination or a customized display method is applied to pro-
duce user-browsable content. A second approach, proposed in this
work, also performs dimensionality reduction, but only after an ini-
tial pagination of the search results. There are a few significant
advantages to this alternative. First, the clustering or feature re-
duction algorithms are allowed to make local, dynamic choices of
optimal features based exclusively on the content that is currently
displayed, not all results. Second, this approach is significantly
faster because there are far fewer samples (in this example 30 vs.
1000) to be analyzed and clustered. Third, instead of deriving an



text-based search results from broadcast-news corpus
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Figure 2: Visual Islands process (top) and raw and snapped results from a text-based search (bottom).

entirely new rank based on similarity in the reduced feature space,
the new method roughly approximates the original rank at a coarse
page level. This is advantageous because the original rank was de-
termined by a direct query from the user instead of a ranking based
on similarity in the raw-feature space alone. Additionally, analyz-
ing results at a local page level naturally allows for non-linear result
exploration by jumping between pages, which is further explored
in sec. 2.3.

One less computationally tangible side effect of a challenging
interactive display is the fatigue and frustration that a user might
experience. In real-world situations, the time available to explore
and identify relevant images for a query is often limited, so users
are hard-pressed to quickly explore a large set of results. Taking
this paradigm to an extreme, [7] evaluated the utility of allowing
only a fraction of a second for a user to small sets of result im-
ages from a single query. Although the authors found that users
were able to annotate quite a few images, the overall user exhaus-
tion from this annotation was significant and thus not viable for
most environments. Another concern for an interactive system is
the layout of images, which has traditionally been in a grid format.
In [17],[14] the authors explore a number of alternative display con-
figurations to mitigate this problem. One method provides multiple
search threads for the user may choose, but its main display iterates
through images on a single row. While this display was shown to
be useful, users may have difficulty learning how to use the inter-
face and cope with the loss of 2D image context, as opposed to a
traditional grid display, which they are more accustomed to.

In this paper, a framework and prototype implementation are pre-
sented that optimize layout configurations for a fixed-size display to
improve human comprehensibility and reduce required inspection
time. This method leverages similarity within an abstraction layer

to more intuitively present search results to a user with only a few
contrast dimensions that maximize feature contrast. This innova-
tive framework is a significant shift from traditional paradigms that
limit users to either list- or grid-based exploration of results accord-
ing to their query-ranked order. In another break from convention,
raw-feature analysis is performed at a page level instead of glob-
ally over all results, allowing for a fast, dynamic computation of an
abstraction layer and coarsely maintaining the original ranks of the
user’s initial query. The rest of this paper is organized as follows.
Sec. 2 gives an overview of important principle goals and how they
effect modern image search applications. Sec. 3 introduces system
design considerations and its implementation is defined in sec. 4.
Sec. 5 and sec.6 provide experimental results and conclusions.

2. PRINCIPLES
Waste less time browsing, intuitively understand results, and al-

low non-linear exploration; these are the three guiding principles
for this work. Although automated information retrieval systems
may be improving in accuracy, there are inherent problems when
directly transplanting automatically generated results into a user-
search environment. The proposed system operates not only on
image retrieval results from an initial query topic, but also on col-
lections of personal images.

Fig. 2 demonstrates a few powerful traits of the visual islands
framework. First, comparing images in the bottom row, one can
see that the visual islands framework naturally places images with
some visual (and conceptual) similarity near each other. Visual is-
lands employs a middle layer of abstraction between raw-features
and the user display to better organize images by maximizing fea-
ture contrast. Second, the tags (or concepts) chosen for the vertical
and horizontal axes are usually orthogonal, indicating that the data



was strongly separable by these tags (or concepts). Finally, upon
inspecting the final image, one can find several prominent visual is-
lands. In the broadcast news example above, there are two notable
islands with outdoor vegetation on the left and another with com-
puters and a news-studio setting on the right. With these examples
demonstrating how intuitive, concept-based islands can be formed,
the remainder of this section is devoted to defining the principle
goals of the visual islands framework.

2.1 Coherence and Diversity
Humans make relevance judgements more quickly on items that

are related. However, discovering a relationship that is ideal for
this judgement process is not trivial. The most simple approach is
to identify images that are exact- or near-duplicates of one another.
Prior work in [3],[18] uses a robust graph-based model to identify
image near duplicates. These duplicates are thus be immediately
grouped together so that a relevant judgement for one image could
be applied to all near-duplicate images and therefore maximizing
image diversity. While this method is robust for a very similar set of
images, it is not suitable for a highly diverse collection for two rea-
sons. First, the method will not identify and match the contents of
two images if they share non-salient but similar backgrounds. Sec-
ond, if there are no duplicates in the entire collection of images, no
reliable image relationships can be established and the problem of
image grouping remains unanswered. A common approach in im-
age visualization is to arrange images by their clustered low-level
features. Authors in [16] use color, texture, and structure of im-
ages and create multiple low-dimensional projections using a prin-
cipal component analysis. The authors demonstrate that a deliber-
ate spatial layout, using low-level feature projections does help to
improve the identification of relevant images. Global coherence in
visual features is maximized therein, but when a query topic itself
is not easy to qualitatively represent using low-level features (i.e.
Find shots of a tall building (with more than 5 floors above
the ground)), this method may fail. To better handle a very large
collection of diverse images, authors in [11] use a hierarchical clus-
tering system (or self-organizing map) which ensures that both co-
herence (via clustering) and diversity (via a multi-level hierarchy)
are maximized for a set of images. Unfortunately, even for modern
search systems, the computational requirements of this algorithm
are still too great. These requirements are more pronounced over
a large set of results because the entire collection of images must
be organized in this algorithm. In this work, high coherence and
diversity are achieved with low computational cost because results
are processed at the page-level (instead of globally) in small sets,
which also permits the feature reduction algorithms to run quite
quickly.

2.2 Intuitive Display
One problem in inspecting image results is human understand-

ing of what the search engine was trying to judge as relevant; not
even state-of-the-art query processing algorithms can directly map
human query input to effective automatic searches. Instead of ad-
dressing the problem at query input, an alternative approach is adopted
to assist the user in understanding image search results and more
generally, sets of unordered images. For every image in a system’s
database, there are certain low- (color, edge, etc.), mid- (semantic
concepts, contextual links), and even high-level (text annotation,
tags) pieces of information that can be used to assist visualization.
Methods employing dimensionality reduction, like PCA [16], for
display purposes do achieve some success in that they project raw-
feature similarities and differences into a 2D display. However,
the usefulness of feature dimensionality reduction with PCA is di-

minished if focus is not given to the underlying features in the 2D
space. A second approach alters the sizing and placement of im-
ages based on their similarity to a single probe image [8]. While
this display may assist a user in finding images that are most similar
to the probe image (like the image of a world leader) it can not help
the user find or understand correlations between a many diverse
images (like world leaders and their nation’s flags). The proposed
system analyzes and presents information about features on a page
level, which aide the user in quickly understanding how the results
on a page related beyond their raw-features. Two dynamically de-
tected, intuitive dimensions that maximize abstract layer contrast
are naturally aligned to a fixed-size 2D interface for display.

Surveying the larger field of multimedia processing, alternative
methods were discovered that could be used for display configura-
tion. Extending the usefulness of a PCA analysis, authors in [10]
proposed that the first step in visualizing similarity within an image
set should be giving images a physical representation. The authors
utilize PCA for dimensionality reduction to 2D. They then add a
width and height to the reduced dimensions and apply an incre-
mental algorithm that nudges the images in different directions to
eliminate any possible overlap. While this approach is a suitable
complement to low-level clustering, the resulting display may not
resemble the features derived from PCA due to distortions incurred
from the incremental movement process, especially in regions of
the 2D PCA space that are very dense with samples. Applications
outside of image search, like personal photo management also pro-
vided an interesting perspective on organization alternatives. In
[5], authors utilized attentional models (similar to those proposed
in [8]) to crop images and fit multiple images to a single frame.
Notable benefits of this photo management system like automatic
placement of images on a single page break down when the result
images are very diverse. This weakness stems from the process of
clustering features globally instead of at a local page-scale, which
dilutes the utility of clustering.

2.3 Engaged and Guided Browsing
To fully utilize a user’s inspection ability, a system must be en-

gaging and guided by user preferences. Traditional page-based
navigation is time-consuming and can be boring. The process of
flipping to a new page of deeper results is visually disruptive and
takes time to navigate. Simultaneously, a user is more likely to
become frustrated as he or she explores deeper parts of a result list
because chances of finding new positive instances of the query con-
stantly decrease. Authors in [7] create a system that automatically
pushes the user through a set of results at high speeds by fixing the
size and position of images so that user attention is not broken.
The authors also experimented with a simple form of relevance
feedback to slightly modify which images would be displayed. In
[14], authors offer continuously evolving search threads in a single-
row interface and users are allowed to dynamically switch threads.
While both of these systems offer exciting new ways for the user
to break free of linear-browsing, the interfaces themselves may be
disruptive for user understanding of a query. First, the interfaces in
both works are a departure from well-known grid-based displays,
forcing users to battle a slight learning curve when first using either
system. Second, both systems were designed to serve more as an
annotation tool than as a navigation and understanding tool. This
design objective is not necessarily a fault, but it places an emphasis
on displaying many results very quickly instead of presenting an
intuitive organization of results. Third, other than relevance judg-
ments made within each query, there is no other way for the sys-
tem to engage and guide the user through his or her search results,
which adds dependence on the system, not the user, to intelligently



search a result space. An answer to this dilemma is to encourage
the user to influence how the next set of results will be organized.
Using a mouse click, key press, or even an eye tracker, the system
is given an indication of the image that is most relevant to the user’s
current search path and the next set of results are modified accord-
ingly. Guided browsing attempts to place the user at a new page that
is most related to the last image marked as relevant. This approach
differs from the above systems because it neither explicitly requires
that the user pick a new search thread nor is the new page of results
influenced by user relevance alone. Finally, although guided brows-
ing is the same spirit as relevance feedback approaches, there is no
additional computation required to handle his or her new relevance
judgement because the user is only jumping to different pages of
the already available result list.

3. DESIGN
With the principle goals of the proposed framework firm, differ-

ent design choices to achieve these goals are given a deeper analysis
in this section.

Computing the distance between a set of images is not trivial.
First, there are numerous forms of raw features like meta-data (time,
GPS location, user-based tags, etc.), low-level features (color, tex-
ture, etc.), and mid-level semantics, that can be used for distance
measurement. To maintain a flexible and robust system design,
feature input is not limited to any one type. Instead, all of these
possible data types are considered as potential raw features. An ab-
straction layer is a new subspace that maps the raw feature space
into a generic two-dimensional space. The mapping is constrained
to a 2D representation because image results will ultimately be or-
ganized in a fixed-size display space. One important note is that
there can be an infinite number of abstraction layers for a result set
because they are computed dynamically for each page of results,
and if the user so desires, he or she can request a new abstraction
layer to explore different contrasting sets of raw features. The only
requirement is that the raw-features can be numerically represented
in a score vector for each image in consideration. As a proof-of-
concept, experiments were conducted with both mid-level semantic
concept scores as visually illustrated in fig. 2. With this represen-
tation, an appropriate distance metric and feature-reduction algo-
rithm can be chosen, as discussed later in sec. 4.

3.1 Axis Layout
Display optimization is performed for only two dimensions of

visualization, so these two dimensions should be of high utility.
Referring to fig. 3a, most users are accustomed to the shown tradi-
tional grid-layout where the most relevant images are in the top-left
corner and the least relevant are in the bottom-right corner. While
the returned rank of images from a search engine is important, in
the context of a single page, this ordering provides little useful in-
formation to the user because a user is likely to scan through all
results currently displayed before navigating to a new page or al-
tering his or her search query. Therefore, in this work, the rank
order is preserved only at the coarse page level, and within each
page the two dimensions of the display are utilized to display two
dimensions that have maximal feature contrast within the abstrac-
tion space, shown in fig. 3b. The two contrast dimensions can be
mapped back from the abstraction layer to a set of coefficients in
the original raw-feature space, which can help the user understand
the significance of each display direction. Additional discussion
for the choice of vertical and horizontal axes is provided below.

One important choice is the assignment of the contrast axes, ei-
ther vertical or horizontal. Again, observing traditional search en-
gines, the vertical direction is the most important direction for a
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Figure 3: Visualization position for (a) traditional
ranked displays and (b) a display based on two ab-
stract layer contrast features. In (b) the highest con-
trast dimension is aligned vertically and the weaker
dimension horizontally. The strongest intersection
of both dimensions lies in the top-left corner.

user to consider, as web pages generally scroll up and down not left
and right. Text results in list form are presented vertically (from
most relevant to least relevant) and most image search systems have
adopted the grid ordering depicted in fig. 3a. As further motiva-
tion, this observation is posited: if images are aligned to a grid, it
requires less effort for a user to scan along a horizontal line because
this line is parallel to the physiological plane aligned with the hu-
man eyes. When a user is forced to move from one row to the next,
he or she is required to momentarily break attentional focus, so the
most important images should appear at the top. Although truly
based on the user’s native written language, an assertion is made
that users prefer to visually scan from left to right, so the most im-
portant objects should appear on the left. The consequence of these
two rules is that the best (strongest) intersection of the two axes
should appear in the top left and the worst (weakest) intersection in
the bottom right and thus the configuration agrees with traditional
ordering.

3.2 Visual Islands
A visual island (VI) is formed from the successful snapping of

images from the abstraction layer to discrete locations in the dis-
play. Following the computation of a 2D abstraction layer, the im-
ages must then be physically snapped to a grid in the constrained
2D display space. The resulting physical space should roughly
maintain the spatial layout that existed in the abstraction layer,
which has been proven to be intuitive by detecting highly contrast-
ing features, and therefore satisfies the intuitive display principle.
For example, if several images share many user-tags, they should
be proximal in the abstraction space. After snapping, the images
should also be proximal, if not physically adjacent, and will thus
constitute a visual island. More concretely, visual islands represent
local clusters of images with a similar abstraction layer represen-
tation. VI’s are neither restricted by size nor shape, so the promi-
nence of a single raw feature within a visual island (i.e. the concept
sky) or a geographic region is entirely dependent on the original
image set and the context of the current page.

3.3 Visual Islands Summary
Visual islands summaries (VIS) represent VI’s but in a smaller

display size. For example, if a full-screen display occupied a 6× 5
grid, then a small-screen display may occupy only a 3 × 3 grid,
as illustrated in fig. 4a. VIS’s are created in a fashion similar to a
normal VI. The one exception is that before a new abstraction layer
is computed, all images for a page are clustered according to their
raw-feature values. Various clustering methods may be used, but in



the current implementation the k-means clustering algorithm was
chosen, where k is always set to the total number of cells in the
VIS to be generated. The very small initial sample count (only the
total number of results on a single page) guarantees that the cluster-
ing process will run quickly, which is achieved with only a single
k-means iteration although the results of this iteration may not be
perfect. An alternative to clustering is performing a constant sub-
sampling from a full VI computed for the same page. However, the
simplicity of sub-sampling may decrease image diversity (by sam-
pling multiple times from the same visual island) and it generally
weakens the intuitiveness of the original VI’s contrast features be-
cause there are images available to show a gradual transition along
a contrast dimension.

3.4 Non-Linear Navigation
To fulfill the principle goal of guided user browsing, a method to

dynamically rearrange the result images is provided. In an interac-
tive environment, one can use the VI or VIS display to dynamically
reorganize displayed pages with a bias towards the user’s selection;
this process is called island hopping. Unlike traditional relevance
feedback. We limit the reorganization to changes in the order of dis-
playing individual pages. The specific question is which remaining
page should be shown given the relevance feedback provided by
the user in the currently displayed page. This non-linear naviga-
tion is instantly available, because no additional relevance labels
are evaluated in a new query. The page hopping criterion should
be designed so that the subsequent page allows the user to explore
deeper into the dimension that he or she is interested in. Details of
the hopping algorithm will be discussed in section 4. Later, each
list of pages is ordered according to the projected location of each
image, again with the top-left corner receiving the highest prefer-
ence, as illustrated in 4b. This method still allows the user to ex-
haust the entire set of query results as he or she chooses different
images to follow, but the order in which the results is presented is
entirely based on the image path of the user. This navigation tech-
nique allows the user to break free from traditional page-by-page
linear browsing and jump to a set of results more related to the
user’s preferred result.
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Figure 4: Examples of (a) Visual Island and Visual
Island Summary formation and (b) Non-Linear Nav-
igation over pages.

4. IMPLEMENTATION
The visual islands system employs three core representations:

raw features, a 2D abstraction layer, and a display space. As each
representation is generic, several different data types at different

levels (low-level features vs. mid-level concepts vs. semantic tags)
can be used at will. Mindful of the design discussions in sec. 3,
the following sections document the exact algorithms used in the
current implementation of visual islands.

4.1 Abstraction Layer
The term abstraction layer is defined as the projection of any

raw-feature modalities into a 2D coordinate representation. Many
methods have been discussed to perform this projection: low-level
clustering, principal component analysis [16], and even hierarchi-
cal clustering [11]. With these available tools, the system evalu-
ates two similar techniques to discover two contrast feature vectors
(hereafter referred to as e0 and e1) in the abstract layer: entropy
based detection and singular value decomposition (SVD). In both
of the following discussions, the resulting geometrical representa-
tion of the abstract layer’s top-left corner is

ˆ
e1 e0

˜
, as moti-

vated by sec. 3.1.

Hi(X) = −
X

x∈0,1

p(xi = x)log2[p(xi = x)]

e0 = argmax
i

Hi(X)

Hi,j(Y |X) = −
X

x∈0,1

X
y∈0,1

p(yj = y, xi = x)

∗log2[p(yj = y|xi = x)]

e1 = argmax
j

He0,j(Y |X)

Figure 5: Entropy-based method for choosing two
maximally contrasting dimensions over distributions
of binary features.

Entropy-based detection is a simple process that analyzes value
distributions of the raw-features and selects one dimension that pro-
duces the highest entropy (denoted as e0). The rationale of choos-
ing the highest entropy is to find an informative dimension in which
the samples exhibit a great variability, instead of concentrating in
a narrow range. For all computations in this implementation, a
simple binary quantization threshold is applied to raw-feature val-
ues into only two values, presence or absence, although this setting
could be modified in future system revisions. The probability of
seeing value a in dimension i of a feature vector x is defined as
p(xi = a). Following fig. 5, the point-wise entropy for dimension
i is computed over all samples X and all possible values, a ∈ 0, 1.
In the current implementation the point-wise entropy and condi-
tional point-wise entropy are used to select the two contrasting di-
mensions e0 and e1. First, using a point-wise entropy computation,
e0 is found. To determine the second contrast dimension, e1, an
additional computation is performed to find the highest conditional
entropy, given all possible values and probabilities of e0.

An SVD factorization provides a set of matrices that quantify
relationships between raw-features and image samples. It is a very
fast, reproducible algorithm used here to compute a low-dimensional
projection of the high-dimensional raw-features. As matrix-based
linear algebra algorithm, a basis matrix is computable that can be
used to map low-dimensional features back into the distributions
in the raw-feature space. These distributions can help the user un-
derstand the newly computed contrast dimensions and their display
space layout. The first prominent use of SVD for dimensionality
reduction was used in a latent semantic indexing (LSI) technique
for text document indexing [6]. Given a matrix of n samples and d
raw-features, SVD factorizes the data into three component matri-



ces:

A(d×n) = U(d×r)S(r×r)V
T
(n×r), (1)

where U represents raw-feature to projected feature affinity, S rep-
resents affinity among projected features, and V represents the doc-
ument to projection affinity. First, to achieve a reduced dimension-
ality, zero out all diagonals of the S matrix starting from the index
of the desired dimension; i.e. if r = 5 but the system only re-
quires two dimensions, then Si,i = 0, i ≥ 2 using a zero-based
index. Second, to project the raw-features into the lower dimen-
sional space, A∗, compute A∗ = AT US and truncate to keep only
the first two columns. Finally, to retrieve the distributions over for
the raw-features represented by each contrast-projected dimension,
use the new SVD basis for each direction: e0 =

ˆ
0 1

˜
(SUT )T

and e1 =
ˆ

1 0
˜
(SUT )T .

4.2 Island Snapping
Island snapping is process that converts the unconstrained 2D

coordinate system of the abstraction layer into a fixed, grid-cell dis-
play configuration while preserving the spatial configuration pro-
vided by the abstraction layer as closely as possible. The most
direct way to snap images located in the 2D abstraction space to
a grid is a brute-force quantization, where each image is assigned
to the grid cell that it is closest to. For example, if the coordinates
from the abstraction layer are taken as the center of an image, i,
only a simple Euclidian calculation is needed to discover the clos-
est grid cell, c.

dist(Pi, Pc) =
p

(xi − xc)2 + (yi − yc)2 (2)

c = argmin
c∈C

dist(Pi, Pc) (3)

However, a direct use of this approach will often distort the abstrac-
tion layer’s spatial layout and can create different snapped results
based on the order in which the images are evaluated. Thus, a more
disciplined algorithm, hereafter referred to as the corner snapping
algorithm, is proposed that snaps images by iterating over cells,
which have a fixed position and can thereby be ordered systemati-
cally.

Revisiting the principle goals in sec. 2, one observes that the
final island snapping stage must result in an intuitive layout of im-
age results. First, all potential cells in the visual island grid C are
ranked by their decreasing Euclidean distance to the center of the
display; the regular geometry of the grid will introduce many cells
that are equidistant, but this problem is addressed later. As dis-
cussed above, the system must determine the order of the cells in
the grid to process. This order is critical because in each iteration
the closest image to the processed cell will be snapped. Alternative
ordering, such as zig-zag ordering from top-left to bottom-right,
were also explored, but the visual results were far less satisfying.
Second, a state variable for each image indicating whether it has
been snapped or not, lock, is initialized to false. Now, the algorithm
proceeds to iterate through all of the ordered cells, identifying the
unlocked image i that is nearest to that cell, snapping the image to
its new location, and setting the image’s lock state repeating until
all images are locked. Although not guaranteed, the corner snap-
ping algorithm usually preserves the relative relations in the spatial
layout available in the abstraction layer quite accurately. The algo-
rithm is deterministic and will exactly reproduce the same results
in every run.

Early experimentation demonstrated that the frequency of very
close or overlapping images was quite high when dealing with ab-
straction layers derived from high-dimensional binary tag vectors.

The sparsity inherent in binary tag vectors created near-duplicate
raw-features that greatly diminished the visual effectiveness of the
abstraction layer and snapping algorithm. Although computation-
ally unavoidable in the abstraction layer, improvements could be
made to the corner snapping algorithm that better preserved the
context of the images in the abstraction layer, instead of relying
only on an image’s 2D placement. After studying physical and
contextual models, a link between all images, similar to an elastic
string was envisioned and implemented in the algorithm, as illus-
trated in fig. 6. Suppose that image i is to be snapped into grid cell
c. If a non-elastic string between i and j is unbreakable, then j will
move along a computable vector ~v towards cell c. This position
can be found with eq. 4, where Dij = dist(Pi, Pj) between the
original i and j positions, as defined in eq. 2.

P ∗
j = P ∗

i −
|Dij |

~v
(P ∗

i − Pj) (4)

With the use of a string model, the spatial layout of the images is
better maintained (and emphasized) as the images are snapped to
different cells.

physical string snapping

c
image i

image j

(a)

component representation

Pi * Pi

Pj *

Pj

Dij
Dij

c

v

(b)

staged corner snapping

Pj Pj *

(c)

Figure 6: Physical example and component repre-
sentations of iterative corner and string snapping.
(a) If image i is attached to image j, (b) then j will
move along a computable path between the old po-
sition of j (Pj) and the new position of i (P ∗

i ). (c)
Corner snapping applies movement from multiple
images simultaneously so that P ∗

j is not biased by
any one point in the next snapping iteration.

Fortunately, the original corner snapping algorithm is easily adapted
to one that accounts for string relationships between images; the
algorithm below provides a pseudo-code listing for the refined al-
gorithm. There are two important revisions to the corner snapping
algorithm regarding snapping in order to incorporate the addition of
strings. First, instead of applying a string pulling after every corner
snap, the string-based updates are staged until all cell positions with
equal distance from the display center are completed, as shown in
fig. 6c. This intentional staging process guarantees that unlocked
images will not haphazardly jump from corner to corner and instead
are pulled simultaneously from multiple snapped points, emulating
the stretching out of a net or sheet of fabric at all corners. Second,
to reduce the likelihood of the zero-sum movement for an image,
an exponential resistance, Ω, is applied to the string snapping step;
as resistance increases (between zero and one), the influence of a
distant corner snap is exponentially dampened. A fortuitous side-
effect of this extra resistance is that groups of images that almost
perfectly overlap in the abstraction layer are effectively pulled apart
with each round of string snapping.

4.3 Island Hopping
Visual island formation is an innovative step towards a more

intuitive display of image results. However, the system can be
augmented by a mechanism that facilitates dynamic exploration



Algorithm 1 string snap image(rows, cols, I, Ω)

1: C ← order cells by distance(rows, cols)
2: for all i ∈ I do
3: locki = false
4: end for
5: Dc = −1
6: corners← ∅
7: for all Pc ∈ C do
8: Pi = find closest unlocked(Pc, I, lock)
9: locki = true

10: corners← i
11: P ∗

i = Pc

12: if (Ω < 1) & (Dc > 0) & (dist(Ci, Pi) 6= Dc) then
13: for all lockj 6= true do
14: P ∗

j = 0
15: for all i ∈ corners do
16: ~v = dist(P ∗

i , Pj)
17: Dij = dist(Pi, Pj)

18: P ∗
j = P ∗

j + P ∗
i − (1− exp(−Dij

|~v| ∗Ω))(P ∗
i −Pj)

19: end for

20: P ∗
j =

P∗
j

count(corners)

21: end for
22: corners← ∅
23: end if
24: Dc = dist(Ci, Pi)
25: end for

of results driven by user interest. After the user indicates one or
more images as relevant (by clicking, for example) these images
can be used as probes to guide subsequent navigation, which satis-
fies the final principle goal of guided browsing. Two different ap-
proaches were explored during implementation, but only the sec-
ond approach elegantly complements other parts of the visual is-
lands framework.

A straight-forward technique uses two similar permutations: rank
the similarity between the probe image and a low-level centroid
computed for each page or rank the average similarity between the
probe image and every image on a page. Although numerically
different, both permutations of this technique place too large of
an emphasis on the low-level similarity of an image. The set of
results within a page may retain their order, but now the user is
limited to searching for images that look the same. Another tech-
nique best leverages the abstract layer by ranking pages based on
the placement of the probe image in each page’s abstract coordi-
nates, illustrated in fig. 7. Applying previous conclusions from
sec. 3.1, when a page places an image in the top-left of the dis-
play space, it has strong contrast features for both dimensions in
the abstraction layer and that page potentially has high relevance to
the probe image. The contrast features in the abstraction layer of
each page ({e(1)

0 , e
(1)
1 }, {e

(2)
0 , e

(2)
1 }, · · · , {e

(N)
0 , e

(N)
1 }) are com-

puted independently, so it is not possible to directly compare the
projected 2D positions of the image. However, as fig. 7 illustrates,
when all other images for a page are projected into this space, a
computation can be made that analyzes the normalized distance
between the probe image (after projection) and the top-left corner.
Sorting by ascending distance, the best order of pages for the probe
image can be found. Thus, the page jumping technique embraces
both a CBIR spirit (low-level features are projected into an abstract
layer) and the sprit of abstract layers in this work (normalized dis-
tance from the projected 2D space), which combine to accurately
detect the page with the most similar visual island.
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Figure 7: Example of best jump page computa-
tion utilizing abstract layer projection for each page
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all dynamically computed and different.

5. EVALUATION AND EXPERIMENT
To conduct experiments, the entire TRECVID2005 dataset was

used in several ways. This dataset was chosen because it has both
a large collection of ground-truth human-annotated labels (devel-
opment data with over sixty-one thousand annotated images) and
because it provides ground truth for 24 query topics defined by
NIST. The TRECVID[15] yearly evaluation has spurred innovation
and opportunity because it focuses on several core tasks of image
and video processing. Although the TRECVID2005 dataset may
be considered slightly homogeneous (broadcast news recorded in
three languages), it is sufficient for experiments in this work, which
focus on validating a new approach to user interfaces. Two tasks
were created to frame the experiments in this work: one task evalu-
ates intuitiveness and comprehensibility and another that measures
user speed and precision when presented with different interface
layouts. The different layouts considered were a baseline layout
(the grid layout of an ASR search over story segments), a corner-
snapped layout and a string-snapped layout (see sec. 4.2) A total
of 10 users with varied experience in multimedia search and re-
trieval were randomly paired with one of 24 query topics from the
TRECVID2005 topics. Across all experiments, the same user can
only be exposed to a query topic once, which prevents prior ex-
perience with the topic from affecting subsequent user decisions.
Users were asked to participate in at least three experiments for
each of the two tasks, but some users completed more. All exper-
iments were conducted using a web browser of the user’s choice,
HTML and javascript interaction, and image layout results that are
precomputed before all experiments.

5.1 Speed & Accuracy
To answer the question of coherence and diversity, the system

was evaluated for the speed and accuracy of user annotation. The
evaluation’s assertion is that after intuitively organizing search re-
sults, users will be able to discover positive images for a specific
query topic more accurately and more quickly.

To measure the speed and accuracy of the system, pages of re-
sults from a story-based query are generated using the baseline (de-
fault) order, the corner snapping algorithm, and the string snapping
algorithm. The user is asked to annotate one topic at a time for 15
pages under each of the three layout configurations. The user is
sequentially shown all pages using for a single layout and allowed
to break for a short amount of time. Using a simple activity log-
ger, the system tracks how much time it takes the user to navigate
through each set of pages and which images were annotated as rel-
evant. The system provides statistics independently, but they are



aggregated first by user and layout below for a more general study
of this experiment. To allow for an accurate annotation, unbiased
by user familiarity with a topic, the system allows users to skip a
topic if he or she feels that the topic is too vague or unfamiliar.

baseline corner-snap string-snap

Speed Analysis (time between labels in seconds)
te∈E 3.86± 2.20 3.99± 2.35 3.67± 1.84
te=0 5.30± 2.37 4.46± 3.20 4.40± 0.88

Average Performance Analysis (measured at each page)
precision 0.0883 0.0900 0.0963

recall 0.0064 0.0065 0.0069

Table 1: Mean precision (measured at the depth of
each page) and mean elapsed time t between posi-
tive labels on only the first (e = 0) or over all image
views (e ∈ E) measuring improved speed and accu-
racy from visual islands.

Table 1 describes the results for this experiment. A total of 18
unique query topics were evaluated by 8 unique users. While there
were a total of 24 topics available, the lower number of completed
topics is acceptable because users were permitted to skip topics
they are unfamiliar with, which is a requisite for this experiment.

For speed analysis, the action log was scanned to compute the
time elapsed between each positive annotation, initialized to zero
for each new page of results; a log entry was created when each
page of results is loaded and a log entry is created for each an-
notation. The times reported for all image views, te∈E , indicate
that use of either snapping algorithms decreases the time required
by users to find relevant images. An image viewing occurs when
the user sees a page of results from any of the layouts (baseline,
corner-snap, or string-snap). Users may artificially reduce anno-
tation time by remembering previous views of results in a single
topic. To discount this effect, the mean elapsed annotation time is
also computed for the first viewing of results in a topic (e = 0)
and is included in table 1. While these times are averaged over
fewer users, they demonstrate a clear benefit from the corner- and
string-snapping algorithms. The reduced time required for identi-
fying relevant results, as shown by all time measurements, can be
attributed to a layout that is easier for users to quickly inspect ex-
clusively due to organization by related mid-level semantics (con-
cepts); low-level image features were not processed for this exper-
iment because only manual concept labels were used.
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Figure 8: Annotation precision at many depths. Or-
acle plot indicates perfect (ground-truth) annota-
tion.

To analyze performance benefits from the proposed layouts, user
precision and recall (at each page depth) is also computed. Mea-
surements are made at page depths instead of at each image because
the layout of results using the visual islands algorithm are no longer
defined in a traditional row-scan method. It should be noted that
the relatively low values for precision and recall are not based on
user performance, but instead the results of the initial story-based
query; the performance of all methods (and the ground-truth itself)
are plotted in fig. 8 below.

Fig. 8 demonstrates the benefits of the string-snapping algorithm
in terms of improved precision. While not perfect (the oracle line),
both proposed methods demonstrate some improvement over the
baseline. An interesting trend is that as the depth of analysis in-
creases, the benefits from either algorithm seem to decrease. This
trend is explained by the observation that the quality (relevance) of
results and the similarity between individual image results (which
is best leveraged in the abstract layer) from the original list both
decrease at higher depths.

5.2 User Evaluation
The question of intuitiveness is only truly answerable by system

users themselves. While this is a subjective question, a rating sys-
tem can be employed to capture user opinions contrasting the dif-
ferent available display configurations. Here, an assertion is made
that users prefer a more intelligently organized result display over
a baseline, or unstructured display. Specifically, the experiment
solicits subjective opinions for intuitiveness and comprehensibility
and performs an objective measurement of how well the user under-
stood the results. For both parts of the experiment, TRECVID2005
development data (not test data) was used because it contains a
complete set of manual labels for 374 concepts, which allows the
abstraction layer to achieve the most accurate projection of raw fea-
tures (sec. 4).

In the first part of this experiment, users are presented with five
randomly chosen result pages from a single query topic, one at a
time. For each set page of results, all three displays are vertically
included on a single HTML result page. The vertical order of the
display configurations is randomly chosen for each page so that
there is no bias toward a single display. While the result sets are
bound to a single query topic, the topic text is not revealed to the
user because this experiment was created to judge the intuitiveness
and comprehensibility of the algorithm itself, results regardless of
the specific query. The users are then asked the two questions below
and are allowed to input a score of 1-5, where 1 is the best. Values
entered for these questions may be repeated (i.e. more than one
system can be rated 5 or 1).

Q1 How well does this organization help you comprehend this
set of images?

Q2 How intuitive is this organization of images (i.e. are image
groupings useful and/or related)?

Additionally, to discern a preference for the different display con-
figurations themselves, users are also asked to rank the different
displays from best to worst. No time limitation is enforced for this
activity.

Results from this task are documented in table 2. Unfortunately,
among 10 unique users, no strong opinion is clear from the users’
responses. For both questions and the final rating, users generally
preferred the baseline approach. While a subsequent discussion is
included in sec. 5.2.1, the conclusion of the subjective questions
in this test are either not statistically significant or show a minor
preference for the baseline layout approach.



baseline corner-snap string-snap

Subjective Survey
Q1 1.354± 0.291 1.750± 0.247 1.752± 0.261
Q2 1.434± 0.253 1.652± 0.301 1.780± 0.273

rank 1.721± 0.336 2.009± 0.143 2.037± 0.124

Memory Game (average user performance)
precision 0.915 0.931 0.869

recall 0.625 0.595 0.642

Table 2: Subjective and objective (memory) evalu-
ation results comparing the intuitiveness, compre-
hensibility, and preference for methods using visual
islands.

In the second part of this experiment, a memory game is created
to measure how well users can observe and retain knowledge about
a set of results. First, a random page and random layout configura-
tion is chosen by the system; the query topic providing these results
is the same as the topic evaluated in the subjective part. Once all
of the image results have finished loading, the user is given 30 sec-
onds to inspect the corresponding layout after which the images
are hidden and the memory game is shown. In the memory game,
a checkbox is created for each of the concepts under consideration
(16 for this experiment). The user must check/enable the concepts
that he or she remembers from the last page of shown results.
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Figure 9: Precision and recall of all users of the
memory game. Each point represents a user’s aver-
age performance for the specified layout.

As seen in both table 2 and fig. 9, the corner-snapping algorithm
was shown to generally improve precision in the memory game.
Half of all users scored a precision of 0.9 or higher in all experi-
ments, indicating that users were generally correct when they in-
dicated a concept was present. Recall scores, which quantify how
well the user identified all of the present concepts. On average,
users scored higher on recall with the string-snap algorithm, which
means that the layout of the string-snapping algorithm does gen-
erally increase the comprehensibility of a set of results. Informal,
post-experiment interviews reveal that some users did not under-
stand the definitions of certain concepts so they never considered
them present in the memory quiz, which may explain why many
users had very low individual recall scores.

5.2.1 Battling the Baseline Bias
Upon deeper analysis of the actual image results of these ex-

periments, a unique property of the baseline results surfaces. In
all baseline queries, a text-based search over transcripts from au-
tomatic speech recognition was used. The smallest atomic search

unit, called a document in the text-search community, is usually a
single recognized phrase of speech when using ASR. However, us-
ing the framework developed in [9],[3] the text documents in these
experiments are actually textual stories, with an average duration
around three minutes. The direct effect of this larger document
size is that images that belong to the same story will have the same
relevance score in the text-based search. Consequently, image re-
sults that may not have been scored similarly otherwise, are ranked
and positioned near each other in a visual rendering. Thus, a near-
ness due to temporal proximity is displayed in the baseline results,
whereas the corner- or string-snapped methods may break the tem-
poral relationship in favor of more intuitive visual islands within a
page of results. This behavior may artificially increase the user’s
preference for the baseline layout instead of the latter methods.

6. CONCLUSIONS AND FUTURE WORK
In this work, a novel organization algorithm for interactive result

display called visual islands was proposed and evaluated. Founded
by a few principle goals, this algorithm successfully offers the user
an alternative method of displaying results that is more coherent,
intuitive, and engaging through guided browsing. This increased
comprehensibility of image results is achieved by organizing im-
ages in a way that maximizes their informativeness (e.g. entropy or
latent semantics) in one of two abstract contrast dimensions. The
display methods were examined for improved speed and accuracy
in user browsing and improved precision based on a dynamic page
jumping algorithm. Finally, and perhaps most importantly, subjec-
tive evaluations consistently preferred the proposed display method
over the traditional, unorganized displays.

As a proof-of-concept, search results over a broadcast news cor-
pus were evaluated in the experiments and one example of these
results is shown in fig. 2. Although mid-level semantic concept
scores and user provided tags were used to form visual islands in
this work, the algorithm is general enough to accommodate just
about any raw-feature and still offer a more amenable display con-
figuration. This novel, low-cost algorithm will be employed in fu-
ture interactive display experiments as a easy way to more intu-
itively present image search results.

Although many options were evaluated informally during the im-
plementation of the visual islands algorithm, some additional av-
enues of exploration are left for future work. One question about
which method to choose (high entropy detection vs. SVD) for ab-
straction layer computation remains open. There are clearly in-
stances where raw-feature data is too sparse to be useful in SVD
formulations, so the choice can be automated based on statistics
in the data. Along these lines, additional projection methods that
preserve raw-feature similarity in small local clusters can be eval-
uated. One popular projection method employing local optimiza-
tion is locality preserving projections (LPP), as described in [1].
Finally, there is a large use potential for visual islands in continu-
ously scrolling displays to replace page-based displays. Using the
disciplined approaches in this paper, the visual islands algorithm
can be iteratively evaluated to develop a continuously evolving dis-
play based on images that the user has seen and the current relative
position in a result list.
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