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Abstract

Systematic content screening of cell phenotypes in mi-
croscopic images has been shown promising in gene func-
tion understanding and drug design. However, manual an-
notation of cells and images in genome-wide studies is cost
prohibitive. In this paper, we propose a highly efficient ac-
tive annotation framework, in which a small amount of ex-
pert input is leveraged to rapidly and effectively infer the
labels over the remaining unlabeled data. We formulate
this as a graph based transductive learning problem and
develop a novel method for label propagation. Specifically,
a label regularizer method is proposed to handle the im-
portant label imbalance issue, typically seen in the cellular
image screening applications. We also design a new scheme
which breaks the graph into linear superposition of contri-
butions from individual labeled samples. We take advantage
of such a superposable representation to achieve fast anno-
tation in an interactive setting. Extensive evaluations over
toy data and realistic cellular images confirm the superior-
ity of the proposed method over existing alternatives.

1. Introduction
Cellular Microscopic Screening: Gene function can be

assessed by analyzing disruptive effects on a biological pro-
cess caused by the absence or disruption of genes. With
recent advances in fluorescence microscopy imaging and
gene interference techniques like RNA interference (RNAi),
genome-wide high-content screening (HCS) has emerged as
a powerful approach to systematically study the functions of
each individual gene. These microscopic screenings gen-
erate a large number of biological readouts, including cell
size, cell viability, cell cycle, and cell morphology. A typ-
ical HCS cellular image usually contains a population of
cells shown in multi-channel signals, such as DNA channel
(indicating locations of nuclei) and F-actin channel (indi-
cating information of cytoplasm) (Fig. 1).

(a) (b)

Figure 1. Typical microscopic images of DrosophilaKc167 embry-
onic cells. (a) image of the DNA channel; (b) image of the F-actin
channel after homomorphic enhancement.

Recently through manual analysis of fluorescence mi-
croscopy images, cellular phenotypes visible in RNAi cell
images (e.g., cytoskeletal organization and cell shape) have
been found important for HCS study [5]. Specifically, when
an individual gene is ”turned off” by the RNAi technol-
ogy, the resulting changes of the morphological structures
of the cells in the images can be used to infer the function
of the gene on the biological process under investigation
(e.g., drug design, disease mechanism). However, a criti-
cal barrier preventing successful deployment of large-scale
genome-wide HCS is the lack of efficient and robust meth-
ods for automating phenotype classification and quantita-
tive evaluation of the rapidly increasing collection of HCS
images
Interactive Microscopy Annotation: One important

task in HCS is to rapidly retrieve the most relevant cellu-
lar images from the database given a certain cell phenotype
of interest specified by biologists. Currently this is handled
in a manual way - biologists first examine a few example
images showing the phenotype of interest, and then man-
ually browse through individual microscopic images, and
assess the relevance of each image to the cellular pheno-
types. Apparently, this manual procedure is very expensive
and relies on well trained domain experts. Recently, a su-
pervised learning manner based cellular phenotype identi-
fication system was developed [7]. However, it still replies
much on the exhausted expert input.



In this paper, we propose an efficient interactive anno-
tation framework for RNAi microscopic cellular images.
Starting with the expert labeling of a few cells according
to some predefined phenotypes, the system learns to infer
the phenotype classes of unlabeled cells on the microscopic
images. The learning is done in a semi-supervised manner
that both the labeled and unlabeled data are utilized. Given
the predicted phenotype label for the cells, image-level rel-
evance scores are also computed. Then the system recom-
mends the most relevant cell images to the biologist who
will review the results and make further cell-level annota-
tion. This interactive procedure is repeated until a sufficient
number of relevant images are retrieved or no additional
positive images can be found.
The objective of the proposed interactive system is to

drastically improve the throughput of finding relevant im-
ages from a large RANi cellular image collection. The un-
derlying technical goal is to develop a novel graph transduc-
tive learning approach that can execute accurate cell pheno-
type prediction, and also work in an incremental manner
to handle new cell labels obtained from the interactive an-
notation procedure. Note the proposed system is different
from the regular relevance feedback or active learning sys-
tems for image retrieval. Here the annotation is done at the
cell level, while relevance scoring and recommendation are
conducted at the image level.
Motivation: A major challenge in developing effective

solutions for the aforementioned applications is a robust
cell phenotype prediction method that we may use to rec-
ommend relevant images throughout the process. To meet
this objective, we propose an efficient learning method that
leverages the power of graph transduction. There have
been some promising graph based transductive learning ap-
proaches proposed recently, such as local and global consis-
tency (LGC) [10], and the method based on Gaussian fields
and harmonic functions (GFHF) [13]. However, there are
two major problems in applying such techniques to the cel-
lular image annotation task. First, the manual cell labeling
on microscopic images easily generates imbalanced labels
since the browsed HCS is usually bias to a certain pheno-
type. In such situations, existing methods like LGC and
GFHF tend to fail, as illustrated in a toy example in Fig. 2
(a) (b). Second, the interactive annotation system needs re-
spond fast to the incremental labels to fulfil the realistic an-
notation application. To solve these problems, we propose
a novel graph propagation technique with label regularizer
to handle the imbalanced label issue, and a new superpos-
able graph propagation approach to achieve the incremental
learning in terms of new labels. Through extensive exper-
iments over synthetic data and realistic RANi cellular im-
ages, we demonstrate the proposed techniques can improve
annotation accuracy while improving the speed at the same
time.

The remainder of this paper is organized as follows. In
Section 2, we briefly review two existing graph transduc-
tive learning approaches, LGC and GFHF, then propose the
new approach of superposable graph transduction with label
regularizer. Section 3 shows the experimental evaluation of
label regularizer method. Section 4 reports the experimental
results of interactive annotation results on real microscopic
images. Concluding remarks and discussion are given in
Section 5.

2. Methodology
First we describe the notation used in the paper. Given

the dataset asX = (Xl,Xu) = {x1, · · · ,xl,xl+1, · · · ,xn}
and the labels of a small portion of the data {y1, · · · , yl},
where yi ∈ L = {1, · · · , c}. The objective is to infer the la-
bels {yl+1, · · · ,yn} of the unlabeled data {xl+1, · · · ,xn}.
The graph is represented as G = {X , E}, where X = {xi}
and E = {eij}. The sample xi is treated as the node on
the graph and the weight of edge eij is wij . So the weight
matrix is denoted as W = {wij} and the node degree ma-
trix D = diag(dii) is defined as dii =

n∑
j=1

wij , where dii

is degree of node xi. The label matrix Y is described as
Y ∈ Rn×c with Yij = 1 if xi is with label yi = j and
Yij = 0 otherwise. Moreover, the ith row and jth column
vectors are denoted as Yi· and Y·j , respectively.

2.1. Brief survey on graph transductive learning
Graph based semi-supervised methods commonly treat

the samples (labeled and unlabeled) as the nodes on a graph
and the edge as the affinity evaluation between nodes. A
classification function F ∈ Rn×c is estimated on the graph
to minimize a predefined loss function Q(F ), which usu-
ally reflects the global smoothness and the local fitting on
labeled nodes. Since the mincuts method proposed by Blum
and Chawla [3], there are a lot of related work has been done
in the past a few years. Here we briefly summarized two
emerging graph transductive learning approaches, Gaussian
fields and harmonic functions (GFHF) and local and global
consistency (LGC) . A more detailed survey paper can be
found in [12].
Gaussian Fields and Harmonic Functions (GFHF)

[13]: In this approach, the Gaussian random fields is viewed
as the quadratic loss function with infinity weight to lock
the labeled nodes by the given labels. The graph regularizer
based loss function is defined as:

Q(F ) =
1
2

n∑
i=1

n∑
j=1

wij‖Fi· − Fj·‖2 + M
l∑

i=1

‖Fi· − Yi·‖2

(1)
The row vector of Fi· ∈ Rc is the function value at the
node xi, which reflects the likelihood of this node belongs
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Figure 2. The demonstration of imbalance labels issue on the
widely used two-moon toy data. The large markers denote the
labeled samples and the small color markers show the classifica-
tion results. (a) LGC with error rate 0.185; (b) GFHF with error
rate 0.165; (c) LR-LGC with error rate 0.00; (d) LR-GFHF with
error rate 0.005.

to different class. The coefficient M −→ ∞ is used to
clamp the given labels. Therefore, in order to minimize the
above graph cost function, we force Fi· = Yi· for xi ∈ Xl.
The optimal F � = arg min

F
Q(F ) is a harmonic func-

tion, which satisfies two conditions:
1)�F = 0 on unlabeled data, where� = D−W is the

graph Laplacian;
2) Fi· = Yi· on labeled data.
The above optimization can be obtained by solving the

harmonic function with closed form of matrix manipula-
tions. The weight matrixW is re-permutated as labeled and
unlabeled sets:

W =
[

Wll Wlu

Wul Wuu

]
(2)

Correspondingly, let F = [Fl Fu]′ and D =
diag(Dll, Duu). From �F = 0 on the unlabeled data, the
values of classification function on unlabeled nodes are de-
rived as:

Fu = (Duu − Wuu)−1WulFl (3)

Local and Global Consistency (LGC) : Considering lo-
cal and global consistency, a new elastic regularizer frame-
work is proposed in [10].

Q(F ) =
1
2

n∑
i=1

n∑
j=1

wij

∥∥∥∥ Fi·√
Dii

− Fj·√
Dii

∥∥∥∥
2

+µ
n∑

i=1

‖Fi·−Yi·‖2

(4)

Let S = D−1/2WD1/2, the above cost function can be
approximated in the matrix form as:

Q(F ) =
1
2
tr {F ′F − F ′SF + µ(F − Y )′(F − Y )} (5)

The optimization of the above graph regularization can
be achieved by calculating the partial derivative.

∂Q
∂F

= 0 =⇒ F = β(I − αS)−1Y (6)

where α = 1/(1+µ), β = µ/(1+µ). Comparing toGFHF
approach, LGC is more flexible since there is no force term
to clamp the given labels. However, this advantage could
bring more drawbacks in case of imbalanced labels since
the given minority labels can be changed to the majority
class after propagation.

2.2. Superposition Law
The label matrix Y can be decomposed to the sum of a

series individual sample label mask. For each individual la-
beled sample xi, the label mask is defined as Ŷi = {ŷij} ∈
Rn×c, where only one nonzero element ŷij = 1 if yi = j.

So we can write Y =
l∑

i=1

Ŷi. Replace Y in Eq. 6 by the the

sum of individual label mask, we can get:

F = β(I − αS)−1
l∑

i=1

Ŷi =
l∑

i=1

β(I − αS)−1Ŷi =
l∑

i=1

F̂i (7)

where F̂i = β(I − αS)−1Ŷi is the classification function
propagated only by labeled sample xi. From this equa-
tion, we can conclude that the classification function F ob-
tained by graph propagating using the labeled sample set
Xl = {x1, · · · ,xl} equals to the sum of a functional set
F = {F̂1, · · · , F̂l}, where each element of F is the classifi-
cation function propagated from a individual sample in Xl.
We call this as superposition law in graph propagation pro-
cedure. This principle motivated us that the classification
function F can be incrementally updated as to new labeled
samples instead of recalculating the propagation from the
entire label set. Besides the supposition law on individual
labels, it also can be described on each class as:

F =
c∑

j=1

∑
yi=j

β(I − αS)−1Ŷi =
c∑

j=1

∑
yi=j

F̂i (8)

∑
yi=j F̂i denote the propagated component by the labels

from class j. Apparently, it only has the jth column vector
nonzero, which numerically equals F·j .

2.3. Label Regularizer
In the traditional graph regularization formulation such

as Eq. 1 and Eq. 4, the weights of the labeled nodes have not



been considered. Here, we propose the label regularization
term to solve the imbalance labels issue. First, let’s see how
the imbalance labels problem generated. Without losing any
generality, we here analyze two-class case here. Assume
the number of labels are y1,··· ,l1 = 1, yl1+1,··· ,l1+l2 = −1,
where l1 + l2 = l. From the class superposition equation 8,

F =
l∑

i=1

F̂i =
l1∑

i=1

F̂i +
l∑

i=l1+1

F̂i (9)

If l1 << l2 and assume the graph is connected, the derived
classification function will have bias to samples from the
majority class. In other word, the nodes will mostly be la-
beled as the majority class. We illustrated this imbalanced
labels issue on graph propagation using the widely used
two-moon toy data, as shown in Fig. 2. For the two class
problem, the numbers of the positive and negative labels
are 1 (red large diamond marker) and 10 (black large cir-
cle marker), respectively. The propagation results by LGC
and GFHF are shown in (a) and (b). The graph construc-
tion follows the approach in [10] with Gaussian kernel size
δ = 0.1. Fig. 2 (c) and (d) shows the results by label regu-
larizer approaches, which will be discussed in the below.
Here we propose the label-regularized LGC (LR-LGC)

approach to handle the imbalanced label problem:

F =
l∑

i=1

viiF̂i =
l∑

i=1

β(I − αS)−1viiŶi (10)

= β(I − αS)−1V Y

where the node weight matrix V = {vii} ∈ Rn×n is a
diagonal matrix and the value vii is normalized node degree
whin each individual class, which is computed as:

vii = dii/Dj = dii/
l∑

i=1

diiYij (11)

where assume xi is with label yi = j, thenDj =
l∑

i=1

diiYij

is the total degree of the labeled nodes in class j. If we
trace back to the graph regularization framework in Eq. 5,
the revised loss function with label regularizer is:

Q(F ) =
1
2
tr {F ′F − F ′SF + µ(F − V Y )′(F − V Y )}

(12)
Conducting the partial differential on Q(F ) as to F will
result the same optimal F as Eq 10.
Similarly, we can apply the label regularizer term to the

harmonic function formulation to derive label-regularized
GFHF (LR-GFHF) approach. We rewrite the label regular-
izer matrix as:

V =
[

Vll 0
0 0

]
(13)

Note that F = [Fl Fu]′ Y = [Yl Yu]′ and the har-
monic conditions requires Fl = Yl, we can rewrite the clas-
sification function as F = [Yl Fu]′. From �F = 0 on
unlabeled data, we can get the function value of F on unla-
beled data as:

Fu = (Duu − Wuu)−1WulVllYl (14)

2.4. Active Graph Transduction for Interactive An-
notation

In the application of cellular microscopic image annota-
tion, the expert interaction incrementally provide more la-
beled cell samples. Therefore, the graph propagation will
be updated for each round of annotation. From the super-
position law, we know that the graph propagation can be in-
cremental in terms of new labels since the propagated func-
tional components from new labeled data can be superposed
to the previous optimized classification functions. Consid-
ering label regularizer, the new labeled data will change the
weights vii on individual nodes. We hereby proposed the
following active graph transduction approach.
The classification function F and label matrix Y can be

written as the concatenation of column vectors as F =
[F·1 · · ·F·j · · ·F·c], and Y = [Y·1 · · ·Y·j · · ·Y·c], where
F·j , Y·j(j = 1, · · · , c) is corresponding to labeled samples
from class j. Considering the superposition principle, the
column vector F·j is computed as:

F·j = β(I − αS)−1V Y·j (15)

The above equation can be seen as the vector version of
superposition law of Eq. 8. Assume the new labeled sample
xs with degree dss is with class ys = j. From the discussion
above, the label matrix is only updated in the jth column,
which is vector Y·j . Thereby, from Eq. 15, only the vector
F·j need to be renewed. Let Dj denotes the total degree of
the labeles in class j without counting new labeled sample
xs, we can calculate two coefficients λ, γ as:

λ =
Dj

Dj + dss
γ =

dss

Dj + dss
(16)

Obviously, the coefficients λ, γ satisfy λ + γ = 1. Then the
new vector Fnew

j can be updated as:

Fnew
·j = λF·j + γF̂s = λF·j + γP·s (17)

where F̂s is the propagated component with only labels xs.
Let P = β(I − αS)−1, F̂·s is exactly the sth column vec-
tor of P , i.e. F̂s = P·s. Based on the superposition law
discussed in the previous section, the updating of F by re-
placing the kth column with Fnew

·j is equivalent to the the
optimization result directly obtained from Eq. 12. How-
ever, the superposition approach shows more efficiency in



Input: cell samples X = {x1, · · · ,xl,xl+1, · · · ,xn}, la-
beled sample Yl = {y1, · · · ,yl}, class L = {1, · · · , c},
microscopic image setZ , each of which contains a cell sam-
ple subset X̂ .
1. Graph Construction:
Calculate the affinity matrixW = {wij}, node degree
matrixD = diag(dii), total degree of labeled samples
for each class Dj , and propagation matrix P ;

2. Initialization Propagation:
Calculate the propagated function: F = PY , and
F·j = PY·j , j = 1, · · · , c;

3. Given a new labeled sample xs and ys = j:
Compute the coefficients: λ = Dj

Dj+dss
, γ = dss

Dj+dss
;

4. Update classification function F :
With the calculated λ, γ, update the function F in the
jth column as Fnew

·j = λF·j + γP·s and Djnew =
Dj + dss;

5. If there are more new labeled samples, go to [3], else
go to [6];

6. Update image relevance to cellular phenotypes:
For each microscopic image, update the image rele-
vance score using Eq. 18.

Output: The image relevance score to cellular phenotypes.
Figure 3. Active annotation by superposable graph transductive
algorithm with label regularizer.

terms of time cost since we reduce the computation from
matrix multiplication to scale multiplication and vector ad-
dition. Note that the superposition framework can not be
simply extended to LR-GFHF since the updating as to new
labels requires to calculating the inverse of a dimensional-
decreasing matrix, as shown in Eq. 14.
During active annotation for cellular microscopic im-

ages, the cells in each screening are propagated and finally
assigned with soft labels denoted by the classification func-
tion F . Assume that the microscopic image zt contains the
a subset of cell samples X̂t. The image relevance vector
r = {rj}, (j = 1, · · · , c) representing the relevance score
of this microscopy to each cellular phenotype is computed
using the normalized soft labels.

rj =
∑

xt∈X̂t

Ftj/nt (18)

where rj is the relevance score as to the cellular phenotype
j and nt is the number of cells in this image. The recom-
mended microscopic screening corresponding to a certain
cellular phenotype query is based on the ranking of these
relevance scores. we summarize the superposable transduc-
tive learning algorithm for interactive annotation in Fig. 3.

Figure 4. The performance comparison on the two-moon toy data.
The kernel size is δ = 0.1 (top row) and δ = 0.2 (bottom row).

3. Experiments for Validating Label Regular-
izer Method

3.1. Toy Data
One of the illustration of the experiments on two-moon

toy data has been show in Fig. 2, including 318 positive
samples and 282 negative samples. Although in previous
literatures , this two moon data has the perfect propaga-
tion results with reasonable setting [10][6]. However, the
classification results have been empirically shown sensitive
to the location of the given labels and ratio between two
classes. Here we conduct more systematic experiments on
this two-moon data. We fix one class with only one given
label and the other class has number of the labeled sam-
ples from 1 to 20. The accuracy is based on the average of
the 100 rounds random selections of the labeled samples.
Fig. 4 shows the performance curves of the proposed label
regularizer approaches, LR-LGC and LR-GFHF, compared
with the standard LGC and GFHF methods. From the fig-
ure, we can see the label regularized approaches are much
more robust to the imbalance labels and graph construction
(different Gaussian kernel size δ).

3.2. USPS digital data
In order to comparing the experiments in [10], we use the

same data for our handwritten digital experiments. A total
of 3874 USPS digital samples, containing 1269, 929, 824,
and 852 samples for the four digital 1, 2, 3, 4 is used to eval-



Figure 5. Performance comparing on USPS handwritten digital
database: imbalance test (top row) and random test (bottom row).

uate the proposed approaches. We design two experimen-
tal strategies for comparison studies. First we deliberately
create the imbalance label cases by using bias labels for a
certain digital. For instance, we use l̃ labels for each digital
of 1,2, and 3 and r · l̃ labels of digital 4. We called r imbal-
ance ratio, which is from 1 to 20 in the experiments. The
second strategy is that we random choose some labels from
the data, guaranteeing at least one label for each digital.
Besides standard LGC and GFHF, another manifold reg-
ularization approach, Laplacian Regularized Least Squares
(LapRLS) [2], is also tested for comparison study. Fig. 5
shows the experimental results. The error rate is based on
the average on 100 trials.
Moreover, the procedure of building an efficient and ro-

bust graph is the key part of the graph based methods. The
graph construction issue mostly means the calculation of
the affinity matrix W . Usually, people prefer to use RBF
kernel matrix [10] [4]. The value of the kernel size δ is not
learnable in case of small labeled data. Previous research
has shown that the propagation results highly depend on the
kernel size δ selection [6]. However, this fixed size of ker-
nel is not feasible to real data since the samples may not
be sampled evenly and uniformly. There are some methods
proposed to improve the graph construction, such as local
scalling [9], local linear approximation [6], and adaptive
kernel size selection [4]. In our experiments on real data
(the above USPS handwritten digital and later cell images),
we use an adaptive kernel size based on the mean distance

(b)(a)

Figure 6. The automatic segmentation result of the microscopy im-
age of Fig. 1. (a) nuclei segmentation; (b) extracted cell bodies.

ofK-nearest neighborhoods. The number of nearest neigh-
bors is empirically set asK = 6 for the experimental study.
From the comparison in Fig. 5, we can conclude that the

label regularizer can improve the performance of LGC and
GFHF and in both imbalance case (highly improved) and
random case (slightly improved as the number of labels is
increased). Especially, LR-LGC achieved the best perfor-
mance in most cases.

4. Experiments on Active Annotation of Cellu-
lar Microscopy

4.1. Material and Preprocessing

In our experiments, we use the microscopic images of
DrosophilaKc167 embryonic cells to validate the active an-
notation approach in both accuracy and time cost. The im-
ages are acquired by automated microscopy with a Univer-
sal Imaging AutoScope Nikon TE300 [7]. The previous bi-
ological study on this dataset shows that the image appear-
ance in the cell level reflected the underlying gene func-
tion expression [1]. However, it requires a huge burden of
manual searching the positive cell samples and annotating
the cellular phenotypes. Here we use 70 HCS microscopy
screening sets, containing 210 cell images of three channels
(only DNA and F-actin images are used for analysis). First
we conduct homomorphic filtering on the raw data to get
enhancement and denoising. Since the DNA signal is fairly
strong, protruding out from a relatively uniform dark back-
ground; thus, nuclei are easily segmented by a histogram
thresholding technique. However, cytoplasmic segmenta-
tion remains a challenging task due to intensity variation
and cellular phenotype diversity. Starting from the well-
segmented nuclei region, we applied a seeded watershed al-
gorithm combining deformable model refining to separate
both isolated and attached cell bodies as presented in [11]
and [8]. Fig. 6 shows the cell segments of a cellular micro-
scopic image. After segmentation, we obtained a total of
3162 valid cell segments, among of which 191 (6%) cells
were manually labeled.

1abbreviated as CycA-sti since this cellular phenotype is frequently
found in case of knocking down gene CycA and sti by RNAi.



Cell Phenotype Appearance Description

Actin Accumula-
tion (AA)

actin accumulation in the cell body, bright intensity,
may have non-round nuclei;

Cell Cycle Arrest
(CycA-sti) 1

large size, round cells with multi-nuclei;

Longthin-LPA
(LL)

resulted long punctuate actin, with cell shape as pro-
longed water drop or long thin poles shape;

LS-Fla (LF) cells with large spiky and filamentous structure;

Rho large and flat shape, with multi-nuclei, non-round.

Table 1. Biologically pre-defined cellular phenotypes and the ap-
pearance description.

(a) (b) (c) (d) (e)

Figure 7. The cell segments examples of predefined cellular phe-
notype prototypes. The top row is the cytoplasm and the bottom
row is the corresponding nuclei. (a) Actin Accumulation (AA); (b)
Cell Cycle Arrest (CycA-sti); (c) Longthin-LPA (LL); (d) LS-Fla
(LF); and (e) Rho.

For these cell segments, biologists pre-defined five dis-
tinct cellular phenotypes (Table 1). All these cellular pheno-
types exhibit unique texture and geometric characteristics,
as the cell prototypes shown in Fig. 7. In order to capture
the morphological and appearance properties of different
cellular phenotypes, a total of 214 dimensional attributes,
including wavelet features, Zernike moments features, Har-
alick features, region properties, were computed from the
cell segments [7].

4.2. Active Transduction for Interactive Annotation

Since each microscopic image contains a population of
cells, some of which belongs to different phenotypes. How-
ever, the most dominant cellular phenotype in a certain mi-
croscopy reflects the underlying gene ’turn down’ function
expression. Hence, the microscopic images are categorized
in five types, corresponding to the five phenotype in cell
level. The task of annotating the image class is to ranking
the image based on the relevance to a certain cell phenotype
query. It can help the scientists rapidly target the most rel-
evant genes related to a biological hypothesis. Moreover,
it also can assist to collect the positive samples for further
mining task.
In these experiments, we show how the active annotation

framework improves the procedure of discovering the rele-
vant microscopies given a small portion of labelled cells.
In each annotation iteration, the values F = {Fij} for in-
dividual cells are obtained to compute the image relevance

Figure 8. The performance of active annotation using graph trans-
ductive learning approach. X coordinate denotes the interaction
rounds and Y coordinate denotes the accuracy of top 5 ranked mi-
croscopy images.

scores. Staring from 10 initial cellular labels, at least one for
each phenotypes, we simulated the interactive annotation
procedure by subsequentially adding 10 more cell labels in
the next round. Fig. 8 gives the performance comparison of
the five approaches. We can see that the annotation accuracy
on the microscopies increases as to getting more cell labels.
The label regularizer adjustment improved both LGC and
GFHF. Eventually, after 8 rounds annotation, only 80 cell
labels (around 2.5% of the total cell segments) can achieve
92.6% annotation accuracy (by LR-LGC). Fig. 9 and 10
shows two examples of the top four recommended micro-
scopies by the system under the cellular phenotype query of
AA and Rho. Meanwhile, the merit on computational cost
of the active annotation is presented in Table 2. Since the
graph construction can be executed off line, the table only
provides the computation cost during active annotation pro-
cedure. The superposable frame work with LR-LGC highly
reduced the computation burden, which can satisfy the re-
quirement of online realtime annotation.

Method LGC GFHF LapRLS LR-LGC LR-GFHF

Computation Cost (sec.) 0.81 70.05 218.9 0.14 70.28

Table 2. Computation cost of active annotation (8 rounds) on the
microscopic cellular images.

5. Discussion and Conclusion
In this work, we proposed a novel graph transduction

learning framework for the application of interactive RNAi
cellular image annotation. To handle the fundamental prob-
lem in predicting cell phenotypes from a small set of train-
ing samples and highly imbalanced cell labels, we incor-
porate the label regularizer term to develop a new graph
propagation approach. The merits of the proposed tech-
nique have been validated by significant performance gains
over the toy data, USPS digital data, and real RANi cellular



(d)(c)

(a) (b)

Figure 9. Active annotation result on the top four ranked micro-
scopies under the query of AA cellular phenotype. The ranking
scores are 0.8871, 0.8269, 0.7732, and 0.6245, respectively.

(a)

(c) (d)

(b)

Figure 10. Active annotation result on the top four ranked micro-
scopies under the query of Rho cellular phenotype. The ranking
scores are 0.6667, 0.4286, 0.4242, and 0.4186, respectively.

images. Furthermore, in order to facilitate realtime inter-
action, we developed a superposable transductive learning
algorithm to achieve the fast updating of cellular label prop-
agation which adapts to incremental new cell labels gener-
ated from the interactive annotation.
The contributions in the application aspect include a

novel framework for real-time analysis of bimolecular
screening. We model the cellular image annotation task as
a joint procedure of cell label propagation and image rel-
evance ranking. Biologists may use the system to anno-
tate and retrieve cellular images showing a large variety of
cell phenotypes which are critical for various applications
such as large scale gene function study and drug designs.
To the best of our knowledge, this is the first multi-level
graph transduction learning system successfully validated
over real microscopic cellular images. The superposable
graph transductive learning, real-time interaction designs

make the system a truly scalable option for handling the ex-
plosively growing amount of cellular images in biological
applications.
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