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ABSTRACT 

In this paper we present a systematic study of automatic 
classification of consumer videos into a large set of diverse semantic 
concept classes, which have been carefully selected based on user 
studies and extensively annotated over 1300+ videos from real 
users. Our goals are to assess the state of the art of multimedia 
analytics (including both audio and visual analysis) in consumer 
video classification and to discover new research opportunities. We 
investigated several statistical approaches built upon global/local 
visual features, audio features, and audio-visual combinations. 
Three multi-modal fusion frameworks (ensemble, context fusion, 
and joint boosting) are also evaluated. Experiment results show that 
visual and audio models perform best for different sets of concepts. 
Both provide significant contributions to multimodal fusion, via 
expansion of the classifier pool for context fusion and the feature 
bases for feature sharing. The fused multimodal models are shown 
to significantly reduce the detection errors (compared to single 
modality models), resulting in a promising accuracy of 83% over 
diverse concepts.  To the best of our knowledge, this is the first 
work on systematic investigation of multimodal classification using 
a large-scale ontology and realistic video corpus. 

Categories and Subject Descriptors 
Information Search and Retrieval; Multimedia Databases; Video 
Analysis   

General Terms 
Algorithms, Management, Performance 

Keywords 
Video classification, semantic classification, consumer video 
indexing, multimedia ontology 

1. INTRODUCTION 
With the explosive growth of user generated content, there has been 
tremendous interest in developing next-generation technologies for 
organizing and indexing multimedia content including photos, 
videos, and music. One of the major efforts in recent years involves 

automatic semantic classification of media content into a large 
number of predefined concepts that are both relevant to practical 
needs and amenable to automatic detection. The outcomes of such 
classification processes are high-level semantic descriptors, 
analogous to textual terms describing document content, and can be 
very useful for developing powerful retrieval or filtering systems for 
consumer media.  

Large-scale semantic classification systems require several critical 
components. First, a large ontology is needed to define the list of 
important concepts and the relations among the concepts. Such 
ontologies may be constructed from the results of formal user 
studies or data mining of user interaction with online systems. 
Second, a large corpus consisting of realistic data are needed for 
training and testing automatic classifiers. An annotation process is 
also needed to obtain the concept labels of the defined concepts over 
the corpus. Third, signal processing and machine learning tools are 
needed to develop robust classifiers (also called models or concept 
detectors) that can be used to detect presence of each concept in any 
test data. 

Recently, developments of such large-scale semantic classification 
systems have been reported for generic classes (e.g., car, airplane, 
flower) [17] and multimedia concepts in news videos [15].  In the 
consumer media domain, only limited efforts have been conducted 
to categorize consumer photos or videos into a small number of 
classes. In a companion paper [10], we have described a systematic 
effort to establish the first large-scale ontology and benchmark data 
set for consumer video classification. It consists of over 100 relevant 
and potentially detectable concepts, and annotation of 25 selected 
concepts over a set of 1338 consumer videos. The availability of 
such large ontology and rigorously annotated benchmark data set 
brings about a unique opportunity for evaluating state-of-the-art 
machine learning tools and multimedia analytics in automatic 
semantic classification.  

In this paper, we present several novel statistical models and 
multimodal fusion frameworks for automatic audio-visual content 
classification. On the visual side, we investigate different 
approaches using both global and local features and ensemble 
fusion with multiple parameter sets. On the audio side, we 
develop techniques based on simple Gaussian models as well as 
advanced statistical methods such as probabilistic latent semantic 
analysis. One of our main goals is to understand the individual 
contributions of audio and visual models and find the optimal 
fusion strategies. To this end, we have developed and evaluated 
several fusion frameworks, ranging from simple weighted 
averaging, multimodal context fusion by boosted conditional 
random field, to multi-class joint boosting. 
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Through extensive experiments, we have demonstrated promising 
detection accuracy of the proposed classification methods, and more 
valuably, important insights about the contributions of individual 
algorithms and modalities in detecting a diverse set of semantic 
concepts. The multimodal multi-concept classification system is 
shown to reduce the detection errors by as much as 15% (in terms of 
equal error rate) compared to alternatives using single modalities 
only. Audio models, though not as effective as the visual 
counterpart in terms of average performance, play an indispensable 
role – several concepts exclusively rely on the audio models and 
audio models provide significant contributions to the performance 
gains in model fusion. 

We briefly review the ontology and semantic concepts for consumer 
videos in Sec. 2. Visual and audio models are described in Sec. 3 
and 4 respectively.  We present three multimodal fusion frameworks 
in Sec. 5. Extensive experiments for performance evaluation and 
discussion of results are included in Sec. 6.  

2. SELECTION OF THE SEMANTIC 
CONCEPTS 

Our research focuses on semantic concept detection over a 
collection of consumer videos, and an ontology of concepts derived 
from user studies, both originated at the Eastman Kodak company 
[10].  The videos were shot by about 100+ participants in a year-
long user study, using the video mode of current-generation 
consumer digital cameras, which can capture videos of arbitrary 
duration at TV-quality resolution and frame rate.  The full ontology 
of over 100 concepts was developed to cover real consumer needs 
as revealed by the studies.  For our experiments, we further pared 
these down to 25 concepts that were simultaneously useful to users, 
practical both in terms of the anticipated viability of automatic 
detection and of annotator labeling, and sufficiently represented in 
the video collection.  The concepts fall into several broad categories 
including activities (e.g. skiing, dancing), occasions (e.g. birthday, 
graduation), locations (e.g. beach, park), or particular objects in the 
scene (e.g. baby, boat, groups of three or more people).  Most 
concepts were intrinsically visual, although some concepts, such as 
music and cheering, were primarily acoustic. 

The Kodak video collection comprised over 1300 videos with an 
average length of 30 s.  We had annotators label each video with 
each of the concepts; for most concepts, this was done on the basis 
of keyframes taken every 10 s, although some concepts (particularly 
the acoustic ones) relied on watching and hearing the full video.  
This resulted in labels for 5166 keyframes.   

We also experimented with gathering additional data from the video 
sharing site YouTube.  Using each of our concept terms as a query, 
we downloaded several hundred videos for each concept.  We then 
manually filtered these results to discard videos that were not 
consistent with the consumer video genre (e.g. edited or broadcast 
content), resulting in 1874 videos with an average duration of 145 s.  
The YouTube videos were then manually relabeled with the 25 
concepts, but only at the level of entire videos instead of keyframes. 

More details on the video collections and labels are provided in a 
companion paper [10]. 

3. VISUAL-BASED DETECTORS 
We first define some terminology.  Let 1, , MC CL denote M 

semantic concepts we want to detect, and let D  denote the set of 
training data {( , )}II y .  Each I is an image and the corresponding 

1{ , , }My y=I I Iy L  is the vector of concept labels, where iyI  = +1 

or -1 denotes, respectively, the presence or absence of concept iC  
in image I. 

3.1 Global Visual Features & Baseline Models 

The visual baseline model uses three attributes of color images: 
texture, color and edge.  Specifically, three types of global visual 
features are extracted: Gabor texture (GBR), Grid Color Moment 
(GCM), and Edge Direction Histogram (EDH).  These features have 
been shown effective and efficient in detecting generic concepts in 
several previous works [2], [3], [15].  The GBR feature is used to 
estimate the image properties related to structures and smoothness; 
GCM approximates the color distribution over different spatial areas; 
and EDH is used to capture the salient geometric cues like lines. A 
detailed description of these features can be found in [16]. 

 
Figure 1: The workflow of the visual baseline detector.  

Based on these global visual features, two types of support vector 
machine (SVM) classifiers are learned for detecting each concept: 
(1) one SVM classifier is trained over each of the three features 
individually; and (2) these features are concatenated into one feature 
vector over which a SVM classifier is trained.  Then the detection 
scores from all different SVM classifiers are averaged to generate 
the baseline visual-based concept detector.  

The SVMs are implemented using LIBSVM (Version 2.81) [1] with 
the RBF kernel.  For learning each SVM classifier, we need to 
determine the parameter setting for both the RBF kernel (γ ) and 
the SVM model (C) [1].  Here we employ a multi-parameter set 
model instead of cross-validation so that we can reduce the 
degradation of performance in the case that the distribution of the 
validation set is different from the distribution of the test set.  
Instead of choosing the best parameter set from cross-validation, we 
average the scores from the SVM models with 25 different sets of 
parameters C  and γ : 

{ }86420 2,2,2,2,2=C , { }4224 2,2,2,2,2 ++−−= kkkkkγ , 
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where ( )( )2log 1/ fk ROUND D= and 
fD is the dimen-

sionality of the feature vector based on which the SVM classifier is 
built ( 2kγ =  is the recommend parameter in [1]).  The multi-
parameter set approach is applied to each of the three features 
mentioned above, as well as the aggregate feature, as shown in Fig. 
1. Note the scores (i.e., distances to the SVM decision boundary) 
generated by each SVM are normalized before averaging. Various 
normalization strategies are described in Sec. 5.1. 

3.2 Visual Models Using Local Features 

Complementary to the global visual features, local descriptors such 
as SIFT features [11] have been shown very useful for detecting 
specific objects.  Recently, an effective bag-of-features (BOF) 
representation [4] has been proposed for image classification.  In 
BOF images are represented by a visual vocabulary constructed by 
clustering the original SIFT descriptors into a set of visual tokens.  
BOF provides a uniform middle-level representation through which 
the original orderless SIFT descriptors of an image can be mapped 
to a feature vector, and based on this feature vector the learning-
based algorithms, such as the SVM classifier, can be applied for 
concept detection.  Lately, using the BOF representation, the Spatial 
Pyramid Matching (SPM) approach [9] and the Vocabulary-Spatial 
Pyramid Matching (VSPM) approach [7] have been developed to 
fuse information from multiple resolutions in the spatial domain and 
multiple visual vocabularies of different granularities. Promising 
performance has been obtained for detecting generic concepts like 
bike and person.  In this work, we experimented with the VSPM 
approach [7] to investigate the power of the local SIFT features in 
detecting diverse concepts in the consumer domain. 
 

3.2.1 Local SIFT Descriptor 
The 128-dimensional SIFT feature proposed in [11] has been proven 
effective in detecting objects, because it is designed to be invariant 
to relatively small spatial shift of region positions, which often 
occurs in real images. Computing the SIFT descriptor over the 
affine covariant regions results in local description vectors which 
are invariant to affine transformations of the image.  In this work, 
instead of computing SIFT features over the detected interest points 
as in the traditional feature extraction algorithms [11], we extract 
SIFT features for every image patch with 16x16 pixels over a grid 
with spacing of 8 pixels as in [9].  This dense sampling method has 
been shown more effective in detecting generic concepts [9] than 
the traditional method using selected interest points only. 
 

3.2.2 Vocabulary-Spatial Pyramid Match Kernel 
For each concept iC , the SIFT features from all the positive 
training images for this concept are first aggregated together, and 
through hierarchical clustering these SIFT features are clustered into 
L+1 sets of clusters 0 , , L

i iLV V  with level 0 being the coarsest 
and level L the finest. l

iV  represents a visual vocabulary  

comprised of ln visual tokens 
,1 ,{ , , }

l

l l l
i i i nv v= LV . The visual 

vocabularies are expected to include the most informative visual 
descriptors that are characteristic of images sharing the same 
concept.  

Given the visual vocabulary at each level l
iV , the local features of 

an image are mapped to tokens in the vocabulary and counts of 
tokens are computed to form a token histogram 

,1 ,( ) ( ), ( )
l

l l l
i i i nH h hI I I⎡ ⎤= ⎣ ⎦L . In the Spatial Pyramid Match Kernel 

(SPMK) method, each image is further decomposed into 4s blocks in 
a hierarchical way (s = 0, …, S), with a separate token histogram 

,
, ( )l s

i kH I  associated with each spatial block. 

To compute matches between two images 
pI and 

qI , histogram 

intersection is used. 

{ }4, , ,
, , , ,1 1

( , ) min ( ), ( )
s

lnl s l s l s
i p q i k j p i k j qk j

h h
= =

= ∑ ∑I I I IM . 

The final vocabulary-spatial pyramid match kernel defined by 
vocabulary l

iV  is given by weighted sum of matches at different 
spatial levels: 

,0 ,

11

( , ) ( , )
( , )

2 2

l l s
Si p q i p ql

i p q S S ss − +=
= +∑

I I I I
I I

M M
K  .              

The above measure is used to construct a kernel matrix, whose 
elements represent similarities (or distances) between all pairs of 
training images (including both positive and negative samples) for 
concept iC . Images coming from iC  are likely to share common 

visual tokens in l
iV  and thus have high matching scores in the 

kernel matrix.  The process of constructing VSPM kernels for multi-
level vocabularies is illustrated in Fig. 2.  The VSPM kernels 
provide important complementary visual cues to the global visual 
features and are utilized in two ways for concept detection: (1) For 
each individual concept iC , the VSPM kernels 0 , , L

i iLK K  are 
combined with weights into an ensemble kernel:  

0

Lensemble l
i l il

w
=

=∑K K , 

where weights lw can be heuristically determined in a way similar 
to  [6] or optimized through experimental validation.  Then the 
ensemble kernel is directly used for learning a one-vs.-all SVM 
classifier for detection of concept iC ; (2) VSPM kernels from 
different concepts are shared among different concept detectors 
through a joint boosting framework which will be described in detail 
in Section 5.3.  
 
 
 
 
 
 
 
 

Figure 2: Illustration of the kernel construction process used in 
the Vocabulary-Spatial Pyramid Match (VSPM) model. 
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4. AUDIO-BASED DETECTOR 
The soundtracks of each video are described and classified by two 
techniques, single Gaussian modeling, and probabilistic latent 
semantic analysis (pLSA) [18] of Gaussian mixture model (GMM) 
component occupancy histograms, both described below.  All 
systems start with the same basic representation of the audio, as 25 
Mel-frequency Cepstral Coefficients (MFCCs) extracted from 
frequencies up to 7 kHz over 25 ms frames every 10 ms.  Since each 
video has a different duration, it will result in a different number of 
feature vectors; these are collapsed into a single clip-level feature 
vector by the two techniques described below.  Finally, these fixed-
size summary features are compared to one another, and this matrix 
of distances (comparing positive examples with a similar number of 
randomly-chosen negative examples) is used to train a SVM 
classifier for each concept.  The distance-to-boundary values from 
the SVM are taken to indicate the strength of relevance of the video 
to the concept, either for direct ranking or to feed into the fusion 
model. 

4.1 Single Gaussian Modeling 
After the initial MFCC analysis, each soundtrack is represented as a 
set of d = 25 dimensional feature vectors, where the total number 
depends on the length of the original video.   (In some experiments 
we augmented this with 25 dimensions of ‘delta MFCCs’ giving the 
local time-derivative of each component, which slightly improved 
results.) To describe the entire dataset in a single feature vector, we 
ignore the time dimension and treat the set as samples from a 
distribution in the MFCC feature space, which we fit with a single 
25-dimensional Gaussian by measuring the mean and (full) 
covariance matrix of the data.  This approach is based on common 
practice in speaker recognition and music genre identification, 
where the distribution of cepstral features, ignoring time, is found to 
be a good basis for classification. 
To calculate the distance between two distributions, as required for 
the gram-matrix input (kernel matrix as defined in Sec. 3.2) to the 
SVM, we have tried two approaches.  One is to use the Kullback-

Leibler (KL) divergence between the two Gaussians, Namely, if 
video clip i has a set of MFCC features denoted Xi, described by 
mean vector μi and covariance matrix Σi, then the KL distance 
between videos i and j is: 

 
The second approach simply treats the d-dimensional mean vector 
μi concatenated with the d(d+1)/2 unique values of the covariance 
matrices Σi as a point in a new (25+325 dimensional) feature space, 
normalizes each dimension by its standard deviation across the 
entire training set, then builds a gram matrix from the Euclidean 
distance between these normalized feature statistic vectors. 

4.2 Probabilistic Latent Semantic Analysis 

The Gaussian modeling assumes that different activities are 
associated with different sounds whose average spectral shape, as 
calculated by the cepstral feature statistics, will be sufficient to 
discriminate categories.  However, a more realistic assumption is 
that each soundtrack will consist of many different sounds that may 
occur in different proportions even for the same category, leading to 
variation in the global statistics.  If, however, we could decompose 
the soundtrack into separate descriptions of those specific sounds, 
we might find that the particular palette of sounds, but not 
necessarily their exact proportions, would be a more useful indicator 
of the content.  Some kinds of sounds (e.g. background noise) may 
be common to all classes, whereas some sound classes (e.g. a baby’s 
cry) might be very specific to particular classes of video.   

To build a model better able to capture this idea, we first trained a 
large Gaussian mixture model, comprising M = 256 Gaussian 
components, on a subset of MFCC frames chosen randomly from 
the entire training set.  (The number of mixtures was optimized in 
pilot experiments.)  These 256 mixtures are considered as 
anonymous sound classes from which each individual soundtrack is 
assembled – the analogues of words in document modeling. Then, 
we classify every MFCC frame in a given soundtrack to one of the 
mixture components, and describe the overall soundtrack with a 

 
Figure 3: Illustration of the calculation of audio features as the pLSA weights describing the histogram of GMM 

component utilizations. Top left shows the formation of the global GMM; bottom left shows the formation of the topic 
profiles, p(g|z); top right shows the analysis of each clip into topic weights by matching each histogram to a 

combination of topic profiles, and bottom left shows the final classification by SVM. 
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histogram of how often each of the 256 Gaussians was chosen when 
quantizing the original representation.  Note that this representation 
also ignores temporal structure, but it is able to distinguish between 
nearby points in cepstral space, depending on how densely that part 
of feature space is represented in the entire database, and thus how 
many Gaussian components it received in the original model. The 
idea of using histograms of acoustic tokens to represent the entire 
soundtrack is also similar to that in using visual token histograms 
for image representation (Sec. 3.2). 

We could use this histogram directly, but to remove redundant 
structure and to give a more compact description, we go on to 
explain the histogram with probabilistic Latent Semantic Analysis 
(pLSA) [18].  This approach, originally developed to generalize the 
distributions of individual words in documents on different topics, 
models the histogram as a mixture of a smaller number of ‘topic’ 
histograms, giving each document a compact representation in terms 
of a small number of topic weights.  The individual topics are 
defined automatically to maximize the ability of the reduced-
dimension model to match the original set of histograms.  During 
training, the topic definitions are driven to a local optimum by using 
the EM algorithm.  Specifically, the histogram representation gives 
the probability p(g|c) that a particular component, g, will be used in 
clip c as the sum of the distribution of components for topic z, p(g|z), 
weighted by the specific contributions of each topic to clip c, p(z|c), 
i.e. 

 
The topic profiles p(g|z) (which are shared between all clips), and 
the per-clip topic weights p(z|c), are optimized by EM.  The number 
of distinct topics determines how accurately the individual 
distributions can be matched, but also provides a way to smooth 
over irrelevant minor variations in the use of certain Gaussians.  We 
tuned it empirically on the development data, and found that around 
160 topics was the best number for our task.  Representing a test 
item similarly involves finding the best set of weights to match the 
observed histogram as a combination of the topic profiles; we match 
in the sense of minimizing the KL distance, which requires an 
iterative solution.  Finally, each clip is represented by its vector of 
topic weights, and the SVM’s gram matrix (referred to as kernel 

audioK in Section 5.3) is calculated as the Mahalanobis (i.e. 
covariance-normalized Euclidean) distance in that 160-dimensional 
space.  The process of pLSA feature extraction is illustrated in Fig. 
3. 

5. FUSION OF AUDIO-VISUAL FEATURES 
AND MODELS 
Semantic concepts are usually defined by both visual and audio 
characteristics.  For example, “dancing” is usually accompanied 
with background “music”.  It can be expected that by combining the 
audio and visual features and corresponding models, better 
performance can be obtained than using any single modality.  In the 
section, we develop three fusion strategies for combining audio and 
visual features and models. 

5.1 Ensemble Fusion 
One intuitive strategy to fuse the audio-based and visual-based 
detection results is ensemble fusion, which typically combines 
independent detection scores by weighted sum along with some 
normalization procedures to adjust the raw scores before fusion. 
For normalization, we utilize z-score Eqn.(1), sigmoid Eqn.(2), and 
sigmoid after normalization with z-score (sigmoid2)  Eqn.(3). 

   ( ) ( ) /f x x μ σ= −                                       (1) 

( ) ( )1/ 1 expf x x= + −⎡ ⎤⎣ ⎦
                                   (2) 

( ) ( )1/ 1 exp , ( ) /f x v v x μ σ= + − = −⎡ ⎤⎣ ⎦
                     (3) 

where x is the raw score, μ  and σ  are mean and standard 
deviation respectively. 
Such ensemble fusion method has been applied to combining the 
SVM models using different parameters and features (as illustrated 
in Fig. 1). Here, we extend the fusion process to include audio 
models, using optimal weights that are determined by maximizing 
the performance of the fused model over a separate validation data 
set. The cross-modal fusion architecture is shown in Fig. 4. 

 

Figure 4: Ensemble fusion of audio and visual models. 

5.2 Audio-Visual BCRF (AVBCRF) 
In all of the approaches mentioned above, each concept is detected 
independently from each other in the one-vs.-all manner.  However, 
semantic concepts do not occur in isolation -- knowing the 
information about certain concepts (e.g. “person”) of an image is 
expected to help detection of other concepts (e.g. “wedding”).  
Based on this idea, in the following two subsections, we propose to 
use context-based concept detection methods for multimodal fusion 
by taking into account the inter-conceptual relationships.  
Specifically, two algorithms are developed under two different 
fusion frameworks: (1) an Audio-Visual Boosted Conditional 
Random Field (AVBCRF) method where a two-stage Context-Based 
Concept Fusion (CBCF) framework is utilized; (2) an Audio-Visual 
Joint Boosting (AVJB) algorithm where both audio-based and 
visual-based kernels are combined to train multi-class concept 
detectors jointly.  The former can be categorized as late fusion since 
it combines prediction results from models that have been trained 
separately. On the contrary, the latter is considered as an early 
fusion approach as it utilizes kernels derived from individual 
concepts in order to learn joint models for detecting multiple 
concepts simultaneously. In addition, on the visual side, CBCF fuses 
baseline models using global features, while AVJB further explores 
the potential benefits of local visual features. We will introduce 
AVBCRF in this subsection, and the AVJB algorithm will be 
described in the next subsection. 

Fused Normalized 
Visual Model  

(Fig. 1)

Normalized 
Audio Model

´ WV 

´ WA 

+ Fused  
AV model
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The Boosted Conditional Random Field (BCRF) algorithm is 
proposed in [8] as an efficient context-based fusion method for 
improving concept detection performance.  Specifically, the 
relationships between different concepts are modeled by a 
Conditional Random Field (CRF), where each node represents a 
concept and the edges between nodes represent the pairwise 
relationships between concepts.  This BCRF algorithm has a two-
layer framework (as shown in Fig. 5).  In the first layer, independent 
visual-based concept detectors are applied to get a set of initial 
posterior probabilities of concept labels on a given image.  Then in 
the second layer the detection results of each individual concept are 
updated through a context-based model by considering the detection 
confidence of the other concepts. Here we extend BCRF to include 
models using both visual and audio modalities. 

 
Figure 5: The context-based concept fusion framework based on 

Boosted Conditional Random Field. 

For each image I, the input observations are the initial posterior 
probabilities 

, ,[ , ]vis aio=I I Ih h h , including the visual-based 

independent detection results 1
, , ,{ , , }M

vis vis vish h=I I Ih L  as well as the 

audio-based independent detection results 1
, , ,{ , , }M

aio aio aioh h=I I Ih L .  

Then these inputs are fed into the CRF to get the improved posterior 
probabilities ( | )P Iy I through inference based on the inter-

conceptual relationships.  After inference the belief ibI  on each node 

iC  is used to approximate the posterior probability: 

( 1| ) ( 1)i iP y bI II= ± ≈ ± .  The aim of CRF modeling is to minimize 
the total loss J for all concepts over all the training data (D): 

(1 ) / 2 (1 ) / 2
1

( 1) ( 1)
i iM y yi i

i
J b b+ −

∈ =
= − + −∏ ∏ I I

I II D
.      (4) 

Eqn.(4) is an intuitive function: the minimizer of J favors those 
posteriors closest to training labels.  
To avoid the difficulty of designing potential functions in CRF, the 
Boosted CRF framework developed in [14] is incorporated and 
generalized to optimize the logarithm of Eqn.(4): 

{ }( ) / 2
1

,
a rg m in{ log } arg m in log

i i i

i i i

M y F G
i

b F G
J e − +

∈ =
= ∑ ∑ I I I

I I I
I D

 (5) 

in an iterative boosting process by finding the optimal iFI  and iGI , 

where iFI  and iGI  are additive models: 

    ( ) ( )1 1
( ),   ( )T Ti i i i

t t
F T f t G T g t

= =
= =∑ ∑I I I I

, 

( )if tI
 is a discriminant function (e.g. SVM or logistic) with input hI 

as the feature, and ( )ig tI
 is a discriminant function (e.g. SVM in our 

algorithm) with the current belief ( )ib tI
 as the feature in iteration t.  

Both ( )if tI
 and ( )ig tI

 can be considered weak classifiers learned 
by the standard boosting procedure, but over different features. The 
contributions from other concept scores to detection of a specific 
concept are explored in each iteration since the whole set of concept 
detection scores are used as input to the classifiers in each iteration. 
More details about the formula derivation can be found in [8], [14].  

5.3 Audio-Visual Joint Boosting (AVJB)  
In this section, we will introduce a systematic early fusion 
framework to combine the audio-based and visual-based 
features/kernels for training multi-class concept detectors.  Instead 
of training independent detectors based on visual features and audio 
features separately, the visual features/kernels and audio 
features/kernels can be used together to learn concept detectors at 
the first place.  To this end, we adopt the joint boosting and kernel 
sharing framework developed in [7] which utilizes a two-stage 
framework: (1) the kernel construction stage; and (2) the kernel 
selection and sharing stage.  In the first stage, concept-specific 
features/kernels such as the VSPM kernels described in Sec. 3.2.2, 
are constructed to capture the most representative characteristics of 
the visual content for each concept individually.  Note local visual 
features (e.g., SIFT-based visual tokens) are used here. Then in the 
second stage, these kernels are shared by different concepts through 
a joint boosting algorithm which can automatically select the 
optimal kernels from the kernel pool to learn a multi-class concept 
detector jointly.  This two-stage framework can be directly 
generalized to incorporate audio-based kernels.  That is, in the first 
stage, based on acoustic analysis various features/kernels can be 
constructed (such as the audio vocabulary and kernel described in 
Sec. 4.2), and these kernels can be added into the rich kernel pool 
together with all the visual-based kernels, and in the second stage 
the optimal subset of kernels are selected and shared through the 
joint boosting learning algorithm. 
The process of joint boosting is illustrated in Fig. 6.  By sharing 
good kernels among different concept detectors, individual concepts 
can be enhanced by incorporating the descriptive power from other 
concepts.  Also by sharing the common detectors among concepts, 
required kernels and training samples for detecting individual 
concepts will be reduced [7], [13].  
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Figure 6: Illustration of kernel and classifier sharing using joint 
boosting. A kernel pool K is shared by different detectors. First, 
using kernel K*(1) a binary classifier is used to separate C1 and 
C2 from the background. Then using K*(2) a binary classifier 

further picks out C1. 
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In Section 3.2.2 we obtained L+1 concept-specific VSPM kernels 
0 , , L
i iLK K  for each concept Ci corresponding to the multi-

resolution visual vocabularies 0 , , L
i iLV V .  In addition, in Section 

4.2 we have the audio-based kernel audioK .  Then the joint boosting 
framework from [7] can be directly adopted here for sharing visual 
and audio based kernels for concept detection.    Specifically, during 
each iteration t, we select the optimal kernel K*(t) and the optimal 
subset of concepts S*(t) to share the optimal kernel.  Then a binary 
classifier is trained using kernel K*(t) which tries to separate 
concepts in subset S*(t) from the background (for the other concepts 
not in S*(t), a prediction kc

i(t) is given based on the prior).  After 
that, we calculate the training error of this binary classifier and re-
weight the training samples similar to the Real AdaBoost algorithm.  
Finally all weak classifiers from all iterations are fused together to 
generate the multi-class concept detector.  

6. EXPERIMENTS  
In this section, we evaluate the performance of features, models, and 
fusion methods described earlier. We conduct extensive experiments 
using the Kodak benchmark video set described in Section 1. 
Among the 25 concepts annotated over the video set, we use 21 
visual-dominated concepts to evaluate the performance of visual 
methods and impact of incorporating additional methods based on 
audio features. Audio-based methods are also evaluated by using 
three additional audio-dominated concepts (singing, music, and 
cheer). In the discussion following each experiment, we highlight 
main findings and important insights in italic text. 

6.1 Experimental Setup & Performance 
Metrics 

Each concept detection algorithm is evaluated in five runs and the 
average performances over all runs are reported.  The data sets in 
the runs are generated as follows: the entire data set D is randomly 
split to 5 subsets D1, …, D5.  By rotating these 5 subsets, we 
generate the training set, validation set, and test set for each run.  
That is, for run 1, training set = {D1,D2}, validation set = D3, test set 
= {D4,D5}.  Then we switch one subset for run 2, where training set 
={D2,D3}, validation set = D4, test set = {D5,D1}.  Similarly, we can 
keep switching to generate the data sets for run 3, run 4, and run 5.  
For each run, all algorithms are trained over the training set and 
evaluated over the test set, except for the AVBCRF algorithm in 
which the validation set is used to learn the joint boosting model 
that fuses individual detectors learned using the training set 
separately. 
The average precision (AP) and mean average precision (MAP) 
are used as performance metrics.  AP is related to multi-point 
average precision value of a precision-recall curve.  AP is an 
official performance metric used by TRECVID [12].  To calculate 
AP for concept Ci we first rank the test data according to the 
classification posteriors of concept Ci . Then from top to bottom, 
the precision after each positive sample is calculated.  These 
precision values are averaged over the total number of positive 
samples for Ci .  AP favors highly ranked positive samples and 
combines precision and recall values in a balanced way.  MAP is 
the average of per-concept APs across all concepts. To help 
readers compare performance, in some cases, we also report the 
detection accuracy based on Equal Error Rate (EER). 

6.2 Performance Comparison and Discussions 

6.2.1 Baseline Approaches 
Visual Baseline 

First, we evaluate the visual baseline detector with multiple 
parameter sets described in Sec. 3.1.  For score normalization, we 
used sigmod which was shown to outperform other options. Fig. 7 
shows the performance when different numbers of SVMs with 
distinct parameter settings are fused.  “Top(n)” denotes the fused 
model that computes average of detection scores from n detectors 
that achieve top performance over the validation set.  The objective 
here is to study the effect of varying the number of models during 
ensemble fusion. Intuitively, the more models used in fusion the 
more stable the fused performance will be when testing over unseen 
data set. Such conjecture has been confirmed in our experiments – 
Top25 gives the best MAP performance as well as good APs over 
different concepts.  On the other hand, APs of Top1 are not stable 
across different concepts and the MAP is the worse among all 
compared methods.  This indicates that in our data sets the 
distribution of the validation set is quite different from that of the 
test set, and the conventional method optimizing a single set of 
parameters by cross-validation suffers from over fitting.  In 
comparison, the multi-parameter set model can get relatively stable 
performance in such case.  Based on this observation, in the 
following experiments, the “Top25” results are used and referred to 
as the visual-based baseline detection results. Fig. 7 also shows the 
AP of random guess, which is proportional to the number of positive 
samples of each concept.  

From the above results, we found that in general frequent concepts 
enjoy higher detection accuracy. However, other factors such as 
concept definition specificity and content consistency are also 
important. For example, concepts like “sunset”, “parade”, “sports”, 
“beach” and “boat”, though infrequent (# of positive samples < 100), 
can be detected with high accuracy. On the other hand, some 
frequent concepts like “group of 3” and “one person” have much 
lower accuracy. This confirms that careful choices and definitions of 
concepts play a critical role in developing robust semantic 
classification systems. 
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Figure 7: Performance of visual baseline detectors fusing 
varying numbers of models with different parameter sets 

Audio Baseline 

Fig. 8 shows the results of the three different audio-based 
approaches (single Gaussians with either KL or Mahalanobis 
distance measure, or the pLSA modeling of GMM component 
histograms).  We see that all three approaches perform roughly the 
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same, with different models doing best for individual concepts.  
There is also a wide variation in performance depending on the 
concept, which is to be expected since different labels will be 
more or less evident in the soundtrack.  However, the main 
determinant of performance of audio-based classifiers appears to 
be the prior likelihood of that label, suggesting that a large 
amount of training data is the most important ingredient for a 
successful classifier.  For example, although the infrequent classes 
“wedding”, “museum”, and “parade” have APs similar to more 
common classes “cheer” and “one person”, their variation is much 
larger among the 5-fold cross-validation. Such a relationship 
between the frequency and the performance variance was also 
found in the visual detectors. Though not shown in Fig. 7 (due to 
space limit in the graph), the infrequent concepts (“boat”, 
“parade”, and “ski”) have  accuracy similar to common concepts 
(“one person”, “shows”, and “sports”), but much larger 
performance variance among cross validation. Since different 
approaches have similar performances, in the following 
experiments, the single Gaussian with KL distance measure is 
used as the audio-based baseline detector. 

Since most of the selected concepts are dominated by the visual 
cues, the results show the visual-based models as expected 
achieve higher accuracy than the audio models for most concepts. 
However, audio models also provide significant benefits. For 
example, concepts like “music”, “singing”, and “cheer” can be 
detected by audio models only due to the nature of the concepts. 
Even for some visually dominated concepts (like “museum” and 
“animal”), audio methods were found to be more reliable than 
visual counterparts. The soundtracks of video clips from these 
concepts provide rather consistent audio features for 
classification. This also suggests these two concepts may need to 
be refined to be more specific so that the corresponding visual 
content may be more consistent (e.g., “animal” refined to “dog” 
and “cat” etc).  

 
Figure 8: Performance of audio-based classifiers on Kodak 
data using MFCC+delta-MFCC base features.  Labels are 
sorted by prior probability (guessing).  Error bars indicate 

standard deviation over 5-fold cross-validation testing. 

6.2.2 Audio-Visual Fusion Approaches 
Ensemble Fusion 
We evaluate different normalization strategies used in ensemble 
fusion described in Section 5.1. Specifically, we compare 
normalization methods based on z-score, sigmoid, or sigmoid 2 
(i.e., z-score followed by sigmoid). Additionally, we test two 
different score fusion methods – uniform average and weighted 
average.  

We found uniform averaging between audio and visual baseline 
models does not perform as well as visual models alone.  This is 
reasonable as most of the selected concepts have stronger cues 
from visual appearances than audio attributes; thus equal 
weighting is not expected to be the best option. This is indeed 
confirmed in results shown in Fig. 9, which compares weighted 
audio-visual combination with different normalization strategies. 
Among different score normalization strategies, the z-score 
method performs best, outperforming the visual-only model by 
4% in MAP. The improvement is especially significant for several 
concepts, “dance”, “parade” and “show”, with 6% - 24% gains in 
terms of AP. Note the optimal weights for combining audio and 
visual models are determined through validation, and thus vary 
across different concepts. For most concepts, the visual models 
dominate, with the visual weight ranging from 0.6 to 1. 

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000
Random
Visual
Audio
AV AVG z-score
AV WS z-score

an
im

al
ba

by
be

ac
h

bir
thd

ay
bo

at
da

nc
ing

cro
wd

gr
ou

p_
3+

gr
ou

p_
2

mus
eu

m
nig

ht
on

e_
pe

rso
n

pa
ra

de
pa

rk
pic

nic
pla

yg
ro

un
d

sh
ow

s
sk

i
sp

or
t

su
ns

et
wed

din
g

MAP

 
Figure 9: Comparison of weighted fusion of audio and visual 

models with different score normalization processes. 

The above results show that with simple weighted averaging 
schemes, audio and visual models can be combined to improve 
the concept detection accuracy. However, additional care is 
needed to determine the appropriate weights and score 
normalization strategies. 

Audio-Visual Boosted CRF & Audio-Visual Joint Boosting 

Fig. 10 shows the per-concept AP of different audio-visual fusion 
algorithms, where “AVBCRF + baseline” corresponds to the 
method that computes average of the posteriors from AVBCRF 
and the visual baseline, and “AVJB + baseline” corresponds to the 
method that computes average of the posteriors from AVJB and 
the visual baseline. “ALL” corresponds to the method that we 
average the posteriors from AVBCRF, AVJB, and the visual 
baseline model.  From our previous experiences [3], combining 
the advanced algorithms (e.g. AVBCRF and AVJB) with the 
visual baseline usually gives better performance than using these 
advanced algorithms alone.  For comparison, the best performing 
ensemble fusion method (weighted combination of audio and 
visual based detection scores with z-score normalization) is also 
shown in the figure. 

By combining visual baseline detectors and audio baseline 
detectors through context fusion, the AVBCRF algorithm 
improves the performance by more than 10% when it is fused 
with the visual baseline.  The improvements over many concepts 
are significant, e.g. 40% over “animal”, 51% over “baby”, 228% 
over “museum”, 35% over “dancing”, and 21% over “parade””.  
These results confirm the power of incorporating inter-concept 
relations into the context fusion model. Our experiments also 
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show that context fusion among visual models only does not 
provide performance gain on the average. Only when the audio 
models are incorporated into the context fusion, clear 
performance gain is achieved. This is interesting and important – 
the audio models provide non-trivial complementary benefits in 
addition to the visual models.  
Compared to straightforward weighted averaging over audio and 
visual models for each concept, the AVBCRF context fusion 
method shows more consistent improvement over the diverse set 
of concepts. Most importantly, it avoids the problem of large 
performance degradation by weighted average model over a few 
concepts (“sunset” and “museum”), when models from one 
modality are significantly worse than the others. In other words, 
by fusing multimodal models over a large pool of concepts, the 
stability of the detectors can be greatly improved. 

Fig. 11 gives an example of the top 20 detected video clips for the 
“parade” concept (ranked based on the detection scores in 
descending order) using both AVBCRF and visual based baseline.  
Many irrelevant videos (marked by red rectangular) are included 
in the top result when using only visual based baselines.  This is 
because most of these irrelevant videos contains crowd in the 
outdoor scene and the visual appearances are similar to those of 
“parade” images.  By using AVBCRF, such irrelevant videos are 
removed largely because of the help from the audio models.  
Parade scenes are usually accompanied with noisy sound from the 
crowd and loud music associated with the parade.  The visual 
appearances plus audio together can distinguish “parade” videos 
more effectively than only using a single type of features. 
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Figure 10: comparison of different audio-visual fusion 
algorithms. 

AVJB does not  result in improved performance when it is applied 
alone or combined with the visual baseline.  This indicates that 
the use of local features and feature sharing in AVJB is not as 
effective as the exploration of inter-concept context modeling in 
AVBRCF. However, AVJB does provide complementary benefits 
– by combining AVJB with AVBCRF and visual baseline, we 
achieved further improvements over many concepts, e.g. 10% 
over “animal”, 12% over “baby”, 7% over “beach”, 7% over 
“crowd”, 7% over “one person”, etc.  It is interesting to see that 
most concepts benefiting from feature sharing (AVJB) overlap 
with concepts benefiting from context fusion (AVBCRF). More 
research is needed to gain deeper understanding of the mechanism 
underlying this phenomenon, and develop techniques that may 
automatically discover such concepts.  

Analysis of the results from the AVJB models also allows us to 
investigate the relative contributions of features extracted from 
images of individual concepts, and how they are shared across 
classifiers of multiple concepts. Fig. 12 shows the frequency of 
individual kernels used by the AVJB algorithm in simultaneously 
detecting 21 concepts through 200 iterations.  Only 25 out of the 
total 64 kernels (3 visual-based kernels for each concept and 1 
audio kernel for all concepts) are selected by the feature selection  
/sharing procedures.  It’s surprising to see that single audio kernel 
turns out to be the most frequently used kernel, more than any 
other kernels constructed from visual features (described in Sec. 
3.2.2). This again confirms the importance of multimodal fusion – 
despite the lower accuracy achieved by the audio models (com-
pared to their visual counterparts), the underlying audio features 
play an important role in developing multimodal fusion models.  

Top 20 video clips detected by visual baseline model 

 
Top 20 video clips detected by AVBCRF + visual baseline 

 
Figure 11: Top 20 video clips from the “parade” concept. The 

irrelevant videos are marked by red rectangles. Video clips 
are ranked based on the detection scores in descending order. 

The feature selection and sharing processes used in AVJB are 
useful in pruning the feature pool in order to make the models 
more compact. Kernels learned from “birthday”, “museum”, and 
“picnic” are discarded because of their relatively poor quality.  
Images from these concepts have highly diverse visual content 
and thus the learned visual vocabularies and associated kernels 
can not capture meaningful characteristics of these concepts.  
To allow comparison with other classification systems, we also 
measure the detection accuracy using a common metric, Equal 
Error Rate (EER). EER values of the visual model, audio model, 
the final fused model (“AV ALL” shown in Fig. 10) are shown  in 
Fig. 13. It can be seen that the proposed fusion framework is 
effective, reducing the overall error rates from 0.2 (using visual 
models alone) to 0.17 – a 15% improvement. It is also 
encouraging to see that with sound approaches of audio-visual 
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content analytics and machine learning, a satisfactory accuracy of 
83% can be achieved in detecting the diverse set of semantic 
concepts over consumer videos. 

Figure 12: Frequency of kernels used by the AVJB algorithm 
throughout 200 iterations. 
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Figure 13: EER comparison of different algorithms. 

 
7. CONCLUSIONS 
We develop new methods and assess the state of the art in 
automatic classification of consumer videos into a large set of 
semantic concepts. Experiments of 24 diverse concepts over 
1300+ videos from real users reveal several important findings – 
specificity of concept definitions and numbers of training samples 
play important roles in determining the detector performance; 
both audio and visual features contribute significantly to the 
robust detection performance; inter-concept context fusion is 
more effective than the use of complex local features; and most 
importantly a satisfactory detection accuracy as high as 83% over 
diverse semantic concepts is demonstrated. The results confirm 
the feasibility of semantic classification of consumer videos and 
suggest novel ideas for further improvements. One important area 
is to incorporate other contextual information such as user profile 
and social relations. Another direction is to explore advanced 
frameworks that model the synchronization and the temporal 
evolution among audio and visual features of temporal events.  

8. ACKNOWLEDGEMENT 
This project has been supported in part by Eastman Kodak and 
Intel. Wei Jiang is also a Kodak Graduate Research Fellow. 

9. REFERENCES 

[1] C.C. Chang and C.J. Lin. LIBSVM: a Library for Support 
Vector Machines. 2001,  
http://www.csie.ntu.edu.tw/~cjlin/libsvm. 

[2] S.F. Chang, et al. Columbia University TRECVID-2005 
Video Search and High-Level Feature Extraction. In NIST 
TRECVID workshop, Gaithersburg, MD, 2005. 

[3] A. Amir, et al. IBM Research TRECVID-2004 Video 
Retrieval System. In NIST TRECVID 2004 Workshop, 
Gaithersburg, MD, 2004. 

[4] R.Fergus, P. Perona, A. Zisserman. Object class recognition 
by unsupervised scale-invariant learning. IEEE Proc. CVPR, 
2003, pp. 264-271. 

[5] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic 
regression: a statistical view of boosting. Dept. Statistics, 
Stanford University Technical Report, 1998. 

[6] K. Grauman and T. Darrel. Approximate correspondences in 
high dimensions. Advances in NIPS. 2006. 

[7] W. Jiang, S.F. Chang, and A.C. Loui. Kernel sharing with 
joint boosting for multi-class concept detection. In CVPR 
Workshop on Semantic Learning Applications in Multimedia, 
Minneapolis, MN, 2007. 

[8] W. Jiang, S.F. Chang, and A.C. Loui. Context-based concept 
fusion with boosted conditional random fields. In IEEE Proc. 
ICASSP. vol.1, 2007, pp. 949-952.  

[9] S. Lazebnic, C. Schmid, and J. Ponce. Beyond bags of 
features: spatial pyramid matching for recognizing natural 
scene categories. In Proc. CVPR, vol. 2, 2006, pp. 2169-2178. 

[10] A.C. Loui, et al. Kodak Consumer Video Benchmark Data 
Set: Concept Definition & Annotation. ACM Multimedia 
Information Retrieval Workshop, Sept. 2007. 

[11] D.G. Lowe. Object recognition from local scale-invariant 
features. In Proc. ICCV, 1999, pp.1150-1157. 

[12] NIST. TREC Video Retrieval Evaluation (TRECVID). 2001 
-- 2006, http://www-nlpir.nist.gov/projects/trecvid/ 

[13] A. Torralba, K. Murphy, and W. Freeman. Sharing features: 
effective boosting procedure for multi-class object 
detection. In Proc. CVPR, vol. 2, 2004, pp. 762-769. 

[14] A. Torralba, K. Murphy, and W. Freeman. Contextual 
models for object detection using boosted random fields.  
Advances in NIPS, 2004. 

[15] A. Yanagawa, et al. Columbia University's Baseline 
Detectors for 374 LSCOM Semantic Visual Concepts. 
Columbia University ADVENT Tech. Report # 222-2006-8, 
March 2007,  
http://www.ee.columbia.edu/dvmm/columbia374 . 

[16] A. Yanagawa, W. Hsu, and S.-F. Chang. Brief Descriptions 
of Visual Features for Baseline TRECVID Concept 
Detectors. Columbia University ADVENT Tech. Report 
#219-2006-5, July 2006. 

[17] Caltech 101 data sets, 
http://www.vision.caltech.edu/Image_Datasets/Caltech101 

[18] T. Hoffmann. Probabilistic latent semantic indexing.  In 
Proc.  SIGIR, 1999.

 

264



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


